This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdélyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.
Citation: Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah. Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions[J]. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752
[1] | Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067 |
[2] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[3] | Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri . Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709 |
[4] | Mohamed Jleli, Bessem Samet . Nonexistence for fractional differential inequalities and systems in the sense of Erdélyi-Kober. AIMS Mathematics, 2024, 9(8): 21686-21702. doi: 10.3934/math.20241055 |
[5] | Min Jiang, Rengang Huang . Existence of solutions for $q$-fractional differential equations with nonlocal Erdélyi-Kober $q$-fractional integral condition. AIMS Mathematics, 2020, 5(6): 6537-6551. doi: 10.3934/math.2020421 |
[6] | Miao Yang, Lizhen Wang . Lie symmetry group, exact solutions and conservation laws for multi-term time fractional differential equations. AIMS Mathematics, 2023, 8(12): 30038-30058. doi: 10.3934/math.20231536 |
[7] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[8] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[9] | XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666 |
[10] | Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245 |
This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdélyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.
Fractional calculus is one of the most widely used mathematical analysis which deals with different ways to represent the real and complex number powers of the differentiation or integration operator and creating a calculus for the same operators in the generalized form. This calculus has numerous applications in the fields of science and engineering viz viscoelasticity, engineering mechanics, control systems, biological population models, etc. In specific, this branch of mathematics involves the methods and notion to solve the differential equations concern with a fractional derivative of unknown function which is also called fractional differential equations (FDEs). Moreover, this fractional calculus has been widely employed for modeling the engineering and physical processes which are possibly represented in terms of FDEs. This type of fractional derivative model is utilized in order to provide accurate modeling of those systems which needs to be accurate modeling of damping and also has the capability of modeling the complex engineering problems [10,11,12,14,15,16,17,23]. In recent years, a variety of numerical and analytical modeling approaches with their applications to new problems have been addressed in the research field of mechanics, electrodynamics of complex medium, and aerodynamics, etc. The application of Erdélyi-Kober fractional integrals is discussed in detail with the examples in [7,11,12,25,27,31]. Unlike integer derivatives, fractional derivatives access the system's global evolution rather than just its local characteristics; as a result, when dealing with certain phenomena, they provide more accurate models of real-world behaviour than standard derivatives. In real life, differential equations of fractional order are used to calculate the movement or flow of electricity, the motion of an object back and forth like a pendulum, and to explain thermodynamic concepts, etc. Additionally, in medical terms, they are used to visualize the progression of diseases. They represent real-world behaviour more accurately than standard derivatives. The coupled system consists of a couple of differential equations with pair of dependent variables and a single independent variable. The coupled system of FDEs becomes a more popular research field due to its vast applications in real-time problems namely anomalous diffusion, ecological models, chaotic systems, and disease models [1,2,8,20,24,26]. Boundary value problems (BVPs) applied to a coupled system with non-linear differential equations attracting researchers because of its applications in plasma physics and heat conduction; see [3,4,5,6,18,19,21,22,28,29,32], and the references cited therein. The nonlinear coupled system of Riemann-Liouville FDEs
{RLDqx(t)=f(t,x(t),y(t)),RLDpy(t)=g(t,x(t),y(t)),x(0)=0,x(T)=n∑i=1αiHIρiy(ηi),ηi∈(0,T),y(0)=0,y(T)=n∑i=1βiHIγix(θi),θi∈(0,T), | (1.1) |
for 0<t<T and 1<q,p≤2, was investigated in [30], where RLDq, RLDp denote the Riemann-Liouville fractional derivatives (RLFDs) of order q, p, f, g:[0,T]×R×R→R are given continuous functions, and αi, βi∈R, i=1,2,⋯,n are positive real constants. Fixed-point theorems were also employed to prove the main results. The Caputo type FDEs nonlinear coupled system
{cDα1u(t)+λ1f1(t,u(t),v(t))=0,cDα2v(t)+λ2f2(t,u(t),v(t))=0,u′(0)=u″(0)=⋯=un−1(0)=0,u(1)=μ1∫10a(s)v(s)dA1(s),v′(0)=v″(0)=⋯=vn−1(0)=0,v(1)=μ2∫10b(s)u(s)dA2(s), | (1.2) |
for 0<t<1, n−1<α1≤n, m−1<α2≤m, and n,m≥2, were examined in [34], where λi>0 is a parameter, Dαi0+ is the standard Caputo derivative; μi>0 is a constant, ∫10a(s)v(s)dA1(s), ∫10b(s)u(s)dA2(s) denote the Riemann-Stieltjes integrals. Leray-Schauder's alternative and the contraction mapping principle proved the existence and uniqueness of solutions.
In this study, a coupled system with non-linear FDEs is considered and which is represented as in (1.3).
{cDςu(τ)=f(τ,v(τ),cDϱ1v(τ)),τ∈[0,1]:H,1<ς≤2,0<ϱ1<1,cDϱv(τ)=g(τ,u(τ),cDς1u(τ)),τ∈[0,1]:H,1<ϱ≤2,0<ς1<1, | (1.3) |
Equation (1.3) is subjected to the Erdélyi-Kober, Riemann-Liouville integral boundary conditions are given in Eq (1.4).
{u(0)=μ1Jpu(ω),u(1)=τ1Iϵ1,θ1σ1u(ξ),0<ω,ξ<1,v(0)=μ2Jqv(ζ),v(1)=τ2Iϵ2,θ2σ2v(η),0<ζ,η<1, | (1.4) |
where cDj represents the Caputo derivatives of order j,{j=ς,ϱ,ϱ1,ς1}, Jp and Jq are the Riemann-Liouville integrals of order p,q>0 and Iϵi,θiσi(i=1,2) is the Erdélyi-Kober integrals of order σi>0,θi>0,ϵi∈R(i=1,2),f,g:H×R×R→R are continuous functions and μi,τi(i=1,2) are real constants. The structure of this proposed work is as follows: Section 2 deals with some facts and definitions related to this study. Section 3 gives a solution for the system described in Eq (2) and (3). The examples of the proposed problem are drawn to validate the applications in Section 4. Finally, the discussion is presented.
This section recollects the definitions and some basics facts related to the proposed study are presented [9,12,23,33].
Definition 2.1. The Riemann-Liouville integral of order ϱ>0 for a function f(τ) is defined as
Jϱf(τ)=1Γ(ϱ)τ∫0(τ−θ)ϱ−1f(θ)dθ,τ>0, |
provided that the right hand side is point wise defined on [0,∞).
Definition 2.2. The Caputo derivative of order ϱ>0 of a function f:[0,∞)→R is defined as
cDϱf(τ)=1Γ(n−ϱ)τ∫0(τ−θ)n−ϱ−1f(n)(θ)dθ,n−1<ϱ<n, |
where n=[ϱ]+1 and [ϱ] denotes the integral part of the real number.
Definition 2.3. The Erdélyi-Kober fractional integral of order ς1>0 with η>0 and ϱ1∈R of a continuous function f:(0,∞)→R is defined by
Iϱ1,ς1ηf(τ)=ητ−η(ς1+ϱ1)Γ(ς1)τ∫0θηϱ1+η−1(τη−θη)1−ς1f(θ)dθ, |
provided the right hand side is point wise defined on R+.
Remark 2.4. For η=1, the above operator is reduced to the Kober operator
Iϱ1,ς11f(τ)=τ−(ς1+ϱ1)Γ(ς1)τ∫0θϱ1(τ−θ)1−ς1f(θ)dθ,η,ς1>0, |
that was introduced for the first time by Kober in [13]. For ϱ1=0, the kober operator is reduced to the Riemann-Liouville integral with a power weight:
I0,ς11f(τ)=τ−ς1Γ(ς1)τ∫01(τ−θ)1−ς1f(θ)dθ,ς1>0. |
Lemma 2.5. Given the functions ν,ρ∈C(H,R), the solution of the problem
cDςu(τ)=ν(τ),τ∈H,1<ς≤2,cDϱv(τ)=ρ(τ),τ∈H,1<ϱ≤2,u(0)=μ1Jpu(ω),u(1)=τ1Iϵ1,θ1σ1u(ξ),v(0)=μ2Jqv(ζ),v(1)=τ2Iϵ2,θ2σ2v(η), | (2.1) |
is equivalent to the fractional integral equations
u(τ)=Jςν(τ)+μ1Λ1(a4−a3τ)Jς+pν(ω)+1Λ1(a1τ+a2)[τ1Iϵ1,θ1σ1Jςν(ξ)−Jςν(1)], | (2.2) |
and
v(τ)=Jϱρ(τ)+μ2Λ2(b4−b3τ)Jϱ+qρ(ζ)+1Λ2(b1τ+b2)[τ2Iϵ2,θ2σ2Jϱρ(η)−Jϱρ(1)]. | (2.3) |
Here the non zero constants Λ1 and Λ2 are
Λ1=a1a4+a3a2≠0,Λ2=b1b4+b3b2≠0, | (2.4) |
where
a1=1−μ1ωpΓ(p+1), a2 = μ1ωp+1Γ(p+2), | (2.5) |
a3=1−τ1Γ(ϵ1+1)Γ(ϵ1+θ1+1),a4 = 1−τ1ξΓ(ϵ1+(1σ1)+1)Γ(ϵ1+(1σ1)+θ1+1), | (2.6) |
and
b1=1−μ2ζqΓ(q+1), b2 = μ2ζq+1Γ(q+2), | (2.7) |
b3=1−τ2Γ(ϵ2+1)Γ(ϵ2+θ2+1), b4 = 1−τ2ηΓ(ϵ2+(1σ2)+1)Γ(ϵ2+(1σ2)+θ2+1). | (2.8) |
Proof. The general solution for the Eq (2.1) can be expressed as
u(τ)=Jςν(τ)+c0+c1τ, | (2.9) |
v(τ)=Jϱρ(τ)+d0+d1τ, | (2.10) |
where c0,c1,d0,d1 are arbitrary constants.
Substituting the (1.4) in Eqs (2.9) and (2.10), the following equations will be obtained.
c0=1Λ1(μ1a4Jς+pν(ω)+a2[τ1Iϵ1,θ1σ1Jςν(ξ)−Jςν(1)]), |
c1=1Λ1(a1[τ1Iϵ1,θ1σ1Jςν(ξ)−Jςν(1)]−μ1a3Jς+pν(ω)), |
d0=1Λ2(μ2b4Jϱ+qρ(ζ)+b2[τ2Iϵ2,θ2σ2Jϱρ(η)−Jϱρ(1)]), |
d1=1Λ2(b1[τ2Iϵ2,θ2σ2Jϱρ(η)−Jϱρ(1)]−μ2b3Jϱ+qρ(ζ)), |
where a1,a2,a3,a4,b1,b2,b3,b4 are given by (2.5)–(2.8). Substituting the values of c0,c1,d0,d1 in (2.9) and (2.10) respectively, we get the solution for (2.1).
Let us introduce the space U={u:u∈C(H,R) and cDς1u∈C(H,R)} with the norm defined by
‖u‖U=‖u‖+‖cDς1u‖=supτ∈H|u(τ)|+supτ∈H|cDς1u(τ)|. |
Then (U,‖.‖U) is a Banach space and also let us introduce the space V={v:v∈C(H,R) and cDϱ1v∈C(H,R)} with the norm defined by
‖v‖V=‖v‖+‖cDϱ1v‖=supτ∈H|v(τ)|+supτ∈H|cDϱ1v(τ)|. |
Then (V,‖.‖V) is a Banach space.
Clearly, the product space (U×V,‖.‖U×V) is a Banach space with the norm defined by
‖(u,v)‖U×V=‖u‖U+‖v‖Vfor(u,v)∈U×V. |
In view of Lemma 2.5, we define an operator F:U×V→U×V by
F(u,v)(τ)=(F1(u,v)(τ),F2(u,v)(τ)), |
where
F1(u,v)(τ)=Jςf(θ,v(θ),cDϱ1v(θ))(τ)+μ1Λ1(a4−a3τ)Jς+pf(θ,v(θ),cDϱ1v(θ))(ω)+1Λ1(a1τ+a2)[τ1Iϵ1,θ1σ1Jςf(θ,v(θ),cDϱ1v(θ))(ξ)−Jςf(θ,v(θ),cDςv(θ))(1)], |
and
F2(u,v)(τ)=Jϱg(θ,u(θ),cDς1u(θ))(τ)+μ2Λ2(b4−b3τ)Jϱ+qg(θ,u(θ),cDς1u(θ))(ζ)+1Λ2(b1τ+b2)[τ2Iϵ2,θ2σ2Jϱg(θ,u(θ),cDς1u(θ))(η)−Jϱg(θ,u(θ),cDϱu(θ))(1)]. |
Let us present the following assumptions that are used afterward here:
(H1) Assume that f,g:H×R×R→R are continuous functions and there exists constants K1,K2>0, such that
(i)|f(τ,u1,v1)−f(τ,u2,v2)|≤K1(|u1−u2|+|v1−v2|),(ii)|g(τ,u1,v1)−g(τ,u2,v2)|≤K2(|u1−u2|+|v1−v2|), |
for each τ∈H and all ui,vi∈R,i=1,2.
(H2) χ1=Δ1+Δ2Γ(2−ς1), χ2=Δ′1+Δ′2Γ(2−ϱ1), where χ=max{χ1,χ2}.
(H3) Assume that f,g:H×R×R→R are continuous functions and there exists real constants li,λi≥0(i=1,2) and l0,λ0>0 such that for all ui∈R(i=1,2). We have
(i)|f(τ,u1,u2)|≤l0+l1|u1|+l2|u2|,(ii)|g(τ,u1,u2)|≤λ0+λ1|u1|+λ2|u2|. |
For making a simplified expression, the following terms are introduced throughout this study:
G1=1Γ(ς+1)+|μ1|(|a4|+|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a2|+|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)], | (3.1) |
G2=1Γ(ς)+|μ1|(|a3|)|Λ1|ως+pΓ(ς+p+1)+|a1||Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)], | (3.2) |
G′1=1Γ(ϱ+1)+|μ2|(|b4|+|b3|)|Λ2|ζϱ+qΓ(ϱ+q+1)+(|b2|+|b1|)|Λ2|[|τ2|ηϱΓ(ϵ2+(ϱσ2)+1)Γ(ϱ+1)Γ(ϵ2+(ϱσ2)+θ2+1)+1Γ(ϱ+1)], | (3.3) |
G′2=1Γ(ϱ)+|μ2|(|b3|)|Λ2|ζϱ+qΓ(ϱ+q+1)+|b1||Λ2|[|τ2|ηϱΓ(ϵ2+(ϱσ2)+1)Γ(ϱ+1)Γ(ϵ2+(ϱσ2)+θ2+1)+1Γ(ϱ+1)], | (3.4) |
Δ1=K1G1, P1=G1M1, Δ2=K1G2, P2=G2M1, Δ′1=K2G′1, P′1=G′1M2, Δ′2=K2G′2, P′2=G′2M2,
A=(G1+G2Γ(2−ς1))l0+(G′1+G′2Γ(2−ϱ1))λ0, | (3.5) |
B=(G′1+G′2Γ(2−ϱ1))max{λ1,λ2}, | (3.6) |
C=(G1+G2Γ(2−ς1))max{l1,l2}. | (3.7) |
Theorem 3.1. Suppose that (H3) condition holds. Furthermore, it is assumed that max{B,C}<1. Then, on H, the BVP (1.3) and (1.4) have at least one solution.
Proof. The F:U×V→U×V operator is shown to be completely continuous. It follows that the F operator is continuous by the continuity of the f and g functions.
Let Θ⊂U×V be bounded. Then there exists positive constants N1 and N2 such that f(τ,v(τ),cDϱ1v(τ))≤N1 and g(τ,u(τ),cDς1u(τ))≤N2 for all (u,v)∈Θ.
Step 1: To show that F is uniformly bounded.
For each τ∈H, we have
|F1(u,v)(τ)|≤supτ∈H{Jς|f(θ,v(θ),cDϱ1v(θ))|(τ)+|μ1||Λ1|(|a4−a3τ|)Jς+p|f(θ,v(θ),cDϱ1v(θ))|(ω)+1|Λ1|(|a1τ+a2|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v(θ),cDϱ1v(θ))|(ξ)+Jς|f(θ,v(θ),cDϱ1v(θ))|(1)]}≤N1{Jς(1)+|μ1||Λ1|(|a4−a3τ|)Jς+p(ω)+1|Λ1|(|a1τ+a2|)[|τ1|Iϵ1,θ1σ1Jς(ξ)+Jς(1)]}≤N1{1Γ(ς+1)+|μ1|(|a4|+|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a2|+|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤N1G1, |
and
|F1(u,v)′(τ)|≤supτ∈H{Jς−1|f(θ,v(θ),cDϱ1v(θ))|(τ)+|μ1||Λ1|(|a3|)Jς+p|f(θ,v(θ),cDϱ1v(θ))|(ω)+1|Λ1|(|a1|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v(θ),cDϱ1v(θ))|(ξ)+Jς|f(θ,v(θ),cDϱ1v(θ))|(1)]}≤N1{1Γ(ς)+|μ1|(|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤N1G2, |
which implies that
|cDς1F1(u,v)(τ)|≤1Γ(1−ς1)τ∫0(τ−θ)−ς1|F1(u,v)′(θ)|dθ≤N1G2Γ(1−ς1)τ∫0(τ−θ)−ς1dθ≤1Γ(2−ς1)(N1G2). |
Thus, we have
‖F1(u,v)‖U=‖F1(u,v)‖+‖cDς1F1(u,v)‖≤N1(G1+G2Γ(2−ς1)). |
Similarly, we get
|F2(u,v)(τ)|≤supτ∈H{Jϱ|g(θ,u(θ),cDς1u(θ))|(τ)+|μ2||Λ2|(|b4−b3τ|)Jϱ+q|g(θ,u(θ),cDς1u(θ))|(ζ)+1|Λ2|(|b1τ+b2|)[|τ2|Iϵ2,θ2σ2Jϱ|g(θ,u(θ),cDς1u(θ))|(η)+Jϱ|g(θ,u(θ),cDς1u(θ))|(1)]}≤N2G′1, |
and
|F2(u,v)′(τ)|≤supτ∈H{Jϱ−1|g(θ,u(θ),cDς1u(θ))|(τ)+|μ2||Λ2|(|b3|)Jϱ+q|g(θ,u(θ),cDϱu(θ))|(ζ)+1|Λ2|(|b1|)[|τ2|Iϵ2,θ2σ2Jϱ|g(θ,u(θ),cDς1u(θ))|(η)+Jϱ|g(θ,u(θ),cDς1u(θ))|(1)]}≤N2G′2, |
which implies that
|cDϱ1F2(u,v)(τ)|≤1Γ(2−ϱ1)(N2G′2). |
As a result, the following expression is obtained,
‖F2(u,v)‖V=‖F2(u,v)‖+‖cDϱ1F2(u,v)‖≤N2(G′1+G′2Γ(2−ϱ1)). |
Therefore, the above equation follows the inequalities in which operator F is uniformly bounded.
Step 2: To show that F is equicontinuous. Let τ1,τ2∈H with τ1<τ2. Then we have
![]() |
(3.8) |
and
|cDς1F1(u,v)(τ2)−cDς1F1(u,v)(τ1)|≤1Γ(1−ς1)[τ1∫0[(τ1−θ)−ς1−(τ2−θ)−ς1]|F1(u,v)′(θ)|dθ−τ2∫τ1(τ2−θ)−ς1|F1(u,v)′(θ)|dθ]≤N1G2Γ(2−ς1)[2|τ2−τ1|1−ς1+|τ1−ς12−τ1−ς11|]. | (3.9) |
Also, we obtain
|F2(u,v)(τ2)−F2(u,v)(τ1)|≤N2{1Γ(ϱ+1)[2|τ2−τ1|ϱ+|τϱ2−τϱ1|]+|μ2||Λ2|(|b3||τ2−τ1|)ζϱ+qΓ(ϱ+q+1)+1|Λ2|(|b1||τ2−τ1|)[|τ2|ηϱΓ(ϵ2+ϱσ2+1)Γ(ϱ+1)Γ(ϵ2+ϱσ2+θ2+1)+1Γ(ϱ+1)]}, | (3.10) |
and
|cDϱ1F2(u,v)(τ2)−cDϱ1F2(u,v)(τ1)|≤N2G′2Γ(2−ϱ1)[2|τ2−τ1|1−ϱ1+|τ1−ϱ12−τ1−ϱ11|]. | (3.11) |
This operator with Eqs (3.8)–(3.11) tends to zero when τ2→τ1. Subsequently, the F operator is equicontinuous and completely continuous according to Arzelˊa-Ascoli Theorem.
Step 3: To prove that the set ϖ={(u,v)∈U×V:(u,v)=μF(u,v),0<μ≤1} is bounded.
Let (u,v)∈ϖ. Then (u,v)=μF(u,v). For any τ∈[0,1], we have
u(τ)=μF1(u,v)(τ),v(τ)=μF2(u,v)(τ). |
Then
|u(τ)|≤supτ∈H{Jς|f(θ,v(θ),cDϱ1v(θ))|(τ)+|μ1||Λ1|(|a4−a3τ|)Jς+p|f(θ,v(θ),cDϱ1v(θ))|(ω)+1|Λ1|(|a1τ+a2|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v(θ),cDϱ1v(θ))|(ξ)+Jς|f(θ,v(θ),cDϱ1v(θ))|(1)]}≤(l0+l1‖v‖+l2‖cDϱ1v‖){1Γ(ς+1)+|μ1|(|a4|+|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a2|+|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤(l0+l1‖v‖+l2‖cDϱ1v‖)G1≤G1(l0+max{l1,l2}‖v‖V), |
and
|u′(τ)|≤supτ∈H{Jς−1|f(θ,v(θ),cDϱ1v(θ))|(τ)+|μ1||Λ1|(|a3|)Jς+p|f(θ,v(θ),cDϱ1v(θ))|(ω)+1|Λ1|(|a1|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v(θ),cDϱ1v(θ))|(ξ)+Jς|f(θ,v(θ),cDϱ1v(θ))|(1)]}≤(l0+l1‖v‖+l2‖cDϱ1v‖){1Γ(ς)+|μ1|(|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤G2(l0+max{l1,l2}‖v‖V), |
which implies that
|cDς1u(τ)|≤G2(l0+max{l1,l2}‖v‖V)Γ(1−ς1)τ∫0(τ−θ)−ς1dθ≤G2Γ(2−ς1)(l0+max{l1,l2}‖v‖V). |
Hence we have
‖u‖U≤‖u‖+‖cDς1u‖≤(G1+G2Γ(2−ς1))l0+(G1+G2Γ(2−ς1))max{l1,l2}‖v‖V. |
We can have in a similar way,
|v(τ)|≤supτ∈H{Jϱ|g(θ,u(θ),cDς1u(θ))|(τ)+|μ2||Λ2|(|b4−b3τ|)Jϱ+q|g(θ,u(θ),cDς1u(θ))|(ζ)+1|Λ2|(|b1τ+b2|)[|τ2|Iϵ2,θ2σ2Jϱ|g(θ,u(θ),cDς1u(θ))|(η)+Jϱ|g(θ,u(θ),cDς1u(θ))|(1)]}≤G′1(λ0+max{λ1,λ2}‖u‖U), |
and
|v′(τ)|≤G′2(λ0+max{λ1,λ2}‖u‖U), |
which implies that
|cDϱ1v(τ)|≤G′2Γ(2−ϱ1)(λ0+max{λ1,λ2}‖u‖U). |
Hence we have
‖v‖V≤‖v‖+‖cDϱ1v‖≤(G′1+G′2Γ(2−ϱ1))λ0+(G′1+G′2Γ(2−ϱ1))max{λ1,λ2}‖u‖U. |
Thus, we find that
‖u‖U+‖v‖V≤(G′1+G′2Γ(2−ϱ1))λ0+(G1+G2Γ(2−ς1))l0+(G1+G2Γ(2−ς1))max{l1,l2}‖v‖V+(G′1+G′2Γ(2−ϱ1))max{λ1,λ2}‖u‖U≤A+B‖u‖U+C‖v‖V≤A+max{B,C}‖(u,v)‖U×V, |
which implies that
‖(u,v)‖U×V≤A1−max{B,C}. |
The above equation proves that the set ϖ is bounded. Therefore, the F operator consists of at least a single fixed point according to the (see [33] Theorem 1.9). As a result, the boundary value problem is represented in Eqs (1.3) and (1.4) also, consist of at least a single solution on H.
Theorem 3.2. Suppose that (H1), (H2) and χ<12 hold, then the BVP (1.3) and (1.4) has a unique solution on H.
Proof. Let us fix M1=supτ∈[0,1]|f(τ,0,0)|<∞ and M2=supτ∈[0,1]|g(τ,0,0)|<∞ and we define
ˆρ≥max{P1+P2Γ(2−ς1)12−(Δ1+Δ2Γ(2−ς1)),P′1+P′2Γ(2−ϱ1)12−(Δ′1+Δ′2Γ(2−ϱ1))}. |
Consider the set Bˆρ={(u,v)∈U×V:‖(u,v)‖U×V≤ˆρ}.
Now, to prove that FBˆρ⊂Bˆρ. For (u,v)∈Bˆρ, we have
|F1(u,v)(τ)|≤supτ∈H{Jς|f(θ,v(θ),cDϱ1v(θ))|(τ)+|μ1||Λ1|(|a4−a3τ|)Jς+p|f(θ,v(θ),cDϱ1v(θ))|(ω)+1|Λ1|(|a1τ+a2|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v(θ),cDϱ1v(θ))|(ξ)+Jς|f(θ,v(θ),cDϱ1v(θ))|(1)]}≤Jς(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(1)+|μ1||Λ1|(|a4−a3τ|)Jς+p(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(ω)+1|Λ1|(|a1τ+a2|)[|τ1|Iϵ1,θ1σ1Jς(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(ξ)+Jς(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(1)]≤[K1‖v‖V+M1]{1Γ(ς+1)+|μ1|(|a4|+|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a2|+|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤Δ1ˆρ+P1, |
and
|F1(u,v)′(τ)|≤supτ∈H{Jς−1|f(θ,v(θ),cDϱ1v(θ))|(τ)+|μ1||Λ1|(|a3|)Jς+p|f(θ,v(θ),cDϱ1v(θ))|(ω)+1|Λ1|(|a1|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v(θ),cDϱ1v(θ))|(ξ)+Jς|f(θ,v(θ),cDϱ1v(θ))|(1)]}≤Jς−1(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(1)+|μ1||Λ1|(|a3|)Jς+p(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(ω)+1|Λ1|(|a1|)[|τ1|Iϵ1,θ1σ1Jς(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(ξ)+Jς(|f(θ,v(θ),cDϱ1v(θ))−f(θ,0,0)|+|f(θ,0,0)|)(1)]≤[K1‖v‖V+M1]{1Γ(ς)+|μ1|(|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤Δ2ˆρ+P2, |
which implies that
|cDς1F1(u,v)(τ)|≤1Γ(1−ς1)τ∫0(τ−θ)−ς1|F1(u,v)′(θ)|dθ≤Δ2ˆρ+P2Γ(2−ς1). |
Hence,
‖F1(u,v)‖U=‖F1(u,v)‖+‖cDς1F1(u,v)‖≤(Δ1+Δ2Γ(2−ς1))ˆρ+(P1+P2Γ(2−ς1))≤ˆρ2. |
In this same way, we have
|F2(u,v)(τ)|≤Δ′1ˆρ+P′1, |
and
|F2(u,v)′(τ)|≤Δ′2ˆρ+P′2, |
which implies that
|cDς1F1(u,v)(τ)|≤Δ′2ˆρ+P′2Γ(2−ϱ1). |
In consequence, we get
‖F2(u,v)‖V=‖F2(u,v)‖+‖cDϱ1F2(u,v)‖≤(Δ′1+Δ′2Γ(2−ϱ1))ˆρ+(P′1+P′2Γ(2−ϱ1))≤ˆρ2. |
Hence, we get
‖F(u,v)‖U×V=‖F1(u,v)‖U+‖F2(u,v)‖V≤ˆρ. |
Hence, FBˆρ⊂Bˆρ.
Next to prove that F is a contraction mapping on Bˆρ.
For ui,vi∈Bˆρ,i=1,2 and for each τ∈H, we have
|F1(u1,v1)(τ)−F1(u2,v2)(τ)|≤supτ∈H{Jς|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(τ)+|μ1||Λ1|(|a4−a3τ|)Jς+p|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(ω)+1|Λ1|(|a1τ+a2|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(ξ)+Jς|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(1)]}≤(K1‖v1−v2‖V){1Γ(ς+1)+|μ1|(|a4|+|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a2|+|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤Δ1‖v1−v2‖V, |
and
|F1(u1,v1)′(τ)−F1(u1,v1)′(τ)|≤supτ∈H{Jς−1|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(τ)+|μ1||Λ1|(|a3|)Jς+p|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(ω)+1|Λ1|(|a1|)[|τ1|Iϵ1,θ1σ1Jς|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(ξ)+Jς|f(θ,v1(θ),cDϱ1v1(θ))−f(θ,v2(θ),cDϱ1v2(θ))|(1)]}≤(K1‖v1−v2‖V){1Γ(ς)+|μ1|(|a3|)|Λ1|ως+pΓ(ς+p+1)+(|a1|)|Λ1|[|τ1|ξςΓ(ϵ1+(ςσ1)+1)Γ(ς+1)Γ(ϵ1+(ςσ1)+θ1+1)+1Γ(ς+1)]}≤Δ2‖v1−v2‖V. |
Thus, we obtain
|cDς1F1(u1,v1)(τ)−cDς1F1(u2,v2)(τ)|≤1Γ(1−ς1)τ∫0(τ−θ)−ς1|F1(u1,v1)′(θ)−F1(u2,v2)′(θ)|dθ≤1Γ(2−ς1)(Δ2‖v1−v2‖V). |
Therefore,
‖F1(u1,v1)−F1(u2,v2)‖U=‖F1(u1,v1)−F1(u2,v2)‖+‖cDς1F1(u1,v1)−cDς1F1(u2,v2)‖≤(Δ1+Δ2Γ(2−ς1))‖v1−v2‖V.≤χ1‖v1−v2‖V. |
In a similar way, we can find
|F2(u1,v1)(τ)−F2(u2,v2)(τ)|≤supτ∈H{Jϱ|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(τ)+|μ2||Λ2|(|b4−b3τ|)Jϱ+q|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(ζ)+1|Λ2|(|b1τ+b2|)[|τ2|Iϵ2,θ2σ2Jϱ|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(η)+Jϱ|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(1)]}≤Δ′1‖u1−u2‖U, |
and
|F2(u1,v1)′(τ)−F2(u2,v2)′(τ)|≤supτ∈H{Jϱ−1|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(τ)+|μ2||Λ2|(|b3|)Jϱ+q|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(ζ)+1|Λ2|(|b1|)[|τ2|Iϵ2,θ2σ2Jϱ|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(η)+Jϱ|g(θ,u1(θ),cDς1u1(θ))−g(θ,u2(θ),cDς1u2(θ))|(1)]}≤Δ′2‖u1−u2‖U, |
which implies that
|cDϱ1F2(u1,v1)(τ)−cDϱ1F2(u2,v2)(τ)|≤1Γ(2−ϱ1)(Δ′2‖u1−u2‖U). |
In consequence, we get
‖F2(u1,v1)−F2(u2,v2)‖V=‖F2(u1,v1)−F2(u2,v2)‖+‖cDϱ1F2(u1,v1)−cDϱ1F2(u2,v2)‖≤(Δ′1+Δ′2Γ(2−ϱ1))‖u1−u2‖U≤χ2‖u1−u2‖U. |
Consequently, we obtain
‖F(u,v)‖U×V≤χ1‖v1−v2‖V+χ2‖u1−u2‖U≤max{χ1,χ2}(‖u1−u2‖U+‖v1−v2‖V)≤χ‖(u1−u2)+(v1−v2)‖U×V. |
Thus, the F operator is referred to as a contraction operator (see [33] Theorem 1.4) and produced a unique fixed point that generates a unique solution for the BVP of (1.3) and (1.4) on H.
Example 4.1. Consider the following coupled system of non-integer order differential equations subject to the Riemann-Liouville, Erdélyi-Kober integral conditions:
{cD76u(τ)=1√36+τ2cosτ+49300cosv(τ)+353(60+τ)cD13v(τ),cD54v(τ)=e−2τ√16+τ2+39240sinu(τ)+252(190+τ)cD15u(τ),u(0)=J43u(13),u(1)=4I16,5432u(15),v(0)=4J65v(12),v(1)=I64,1876v(17). | (4.1) |
Here, ς=7/6,ϱ=5/4,ϱ1=1/3,ς1=1/5,μ1=1,μ2=4,τ1=4,τ2=1,p=4/3,q=6/5, σ1=3/2,ϵ1=1/6,θ1=5/4,σ2=7/6,ϵ2=6/4,θ2=1/8,ω=1/3,ζ=1/2,ξ=1/5,η=1/7, and also
f(τ,v(τ),cDϱ1v(τ))=1√36+τ2cosτ+49300cosv(τ)+353(60+τ)cD13v(τ),g(τ,u(τ),cDς1u(τ))=e−2τ√16+τ2+39240e−τsinu(τ)+252(190+τ)cD15u(τ). |
Clearly,
|f(τ,v(τ),cDϱ1v(τ))|≤16+49300‖v‖+35180‖cD13v‖|g(τ,u(τ),cDς1u(τ))|≤14+39240‖u‖+25380‖cD15u‖. |
Thus, l0=1/6,l1=49/300,l2=35/180,λ0=1/4,λ1=39/240,λ2=25/380. Using the given data, we find that a1=0.8059,a2=0.0277,a3=−1.9549,a4=0.6521,Λ1=0.4713 and b1=−0.5802,b2=0.3591,b3=0.0876,b4=0.8751,Λ2=−0.4763 and also G1=2.3068,G2=2.4740,G′1=2.2666,G′2=2.1105. Furthermore, we can find
B=(G′1+G′2Γ(2−ϱ1))max{λ1,λ2}=0.7482,C=(G1+G2Γ(2−ς1))max{l1,l2}=0.9650. |
Thus, max{B,C}=0.9650<1.
All of the hypotheses of the theorem 3.1 are satisfied. Therefore, there is a solution for the problem (4.1) on H.
Example 4.2. Consider the following coupled system of non-integer order differential equations subject to the Riemann- Liouville, Erdélyi-Kober integral conditions:
{cD53u(τ)=125τv(τ)+125τ2 cD45v(τ)+τ,cD65v(τ)=135τu(τ)+135τ3 cD35u(τ)+τ,u(0)=2J32u(14),u(1)=I13,4352u(16),v(0)=J12v(15),v(1)=2I76,6454v(18). | (4.2) |
Here, ς=5/3,ϱ=6/5,ϱ1=4/5,ς1=3/5,μ1=2,μ2=1,τ1=1,τ2=2,p=3/2,q=1/2, σ1=5/2,ϵ1=1/3,θ1=4/3,σ2=5/4,ϵ2=7/6,θ2=6/4,ω=1/4,ζ=1/5,ξ=1/6,η=1/8 and also K1=1/10,K2=1/5. Clearly,
|f(τ,u1,v1)−f(τ,u2,v2)|≤125(|u1−u2|+|v1−v2|),|g(τ,u1,v1)−g(τ,u2,v2)|≤135(|u1−u2|+|v1−v2|). |
Using the given data, we find that a1=0.8119,a2=0.0188,a3=0.4065,a4=0.9283, Λ1=0.7608,b1=0.4954,b2=0.0673,b3=0.4605,b4=0.9563,λ2=0.5047 and also G1=1.3483G2=1.7870,G′1=1.9601,G′2=2.0589,Δ1=0.0539,Δ2=0.0715,Δ′1=0.0560, Δ′2=0.0588. We can find
χ1=(Δ1+Δ2Γ(2−ς1))=0.1345,χ2=(Δ′1+Δ′2Γ(2−ϱ1))=0.1201. |
Thus, χ=max{χ1,χ2}=0.1345<1.
All of the hypotheses of the theorem 3.2 are satisfied. Therefore, there is a unique solution for the problem (4.2) on H.
This paper implemented the Riemann-Liouville, Erdélyi-Kober integral conditions with Leray-Schauder and Banach fixed point theorems based solution for a Caputo type coupled differential equations of non-integer order. The results are obtained through fixing the parameters of interest for the proposed problem (1.3) and (1.4), such as (p,q,μ1,μ2,τ1,τ2) which makes the distinctive classes of the problem. For example, by applying the value for p,q=1 with a boundary condition in the proposed solution, the following equation will be obtained for the problem (1.3) and (1.4):
{u(0)=μ1∫ω0u(θ)dθ,u(1)=τ1Iϵ1,θ1σ1u(ξ),0<ω,ξ<1,v(0)=μ2∫ζ0v(θ)dθ,v(1)=τ2Iϵ2,θ2σ2v(η),0<ζ,η<1, |
the result will be in the form of (1.3)–(1.4):
{u(0)=0,u(1)=τ1Iϵ1,θ1σ1u(ξ),0<ξ<1,v(0)=0,v(1)=τ2Iϵ2,θ2σ2v(η),0<η<1, |
when applying the μ1=μ2=0.
We thank the reviewers for their constructive remarks on our work.
All authors declare no conflicts of interest in this paper.
[1] |
B. Ahmad, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real, 9 (2008), 1727–1740. doi: 10.1016/j.nonrwa.2007.05.005
![]() |
[2] |
B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 83 (2016), 234–241. doi: 10.1016/j.chaos.2015.12.014
![]() |
[3] |
M. Ahmad, A. Zada, J. Alzabut, Hyers–Ulam stability of a coupled system of fractional differential equations of Hilfer–Hadamard type, Demonstratio Mathematica, 52 (2019), 283–295. doi: 10.1515/dema-2019-0024
![]() |
[4] |
D. Baleanu, J. Alzabut, J. M. Jonnalagadda, Y. Adjabi, M. M. Matar, A coupled system of generalized Sturm–Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives, Adv. Differ. Equ., 2020 (2020), 1–30. doi: 10.1186/s13662-019-2438-0
![]() |
[5] | A. Berhail, N. Tabouche, M. M. Matar, M. Mohammed, J. Alzabut, Boundary value problem defined by system of generalized Sturm–Liouville and Langevin Hadamard fractional differential equations, Math. Method. Appl. Sci., 2020, https://doi.org/10.1002/mma.6507. |
[6] |
A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 1–23. doi: 10.1186/s13662-020-03162-2
![]() |
[7] |
P. Duraisamy, T. N. Gopal, M. Subramanian, Analysis of fractional integro-differential equations with nonlocal Erdelyi-Kober type integral boundary conditions, Fract. Calc. Appl. Anal., 23 (2020), 1401–1415. doi: 10.1515/fca-2020-0069
![]() |
[8] |
Z. M. Ge, W. R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Soliton. Fract., 33 (2007), 270–289. doi: 10.1016/j.chaos.2005.12.040
![]() |
[9] | A. Granas, J. Dugundji, Fixed point theory, B. Am. Math. Soc., 41 (2004), 267–271. |
[10] | R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000. |
[11] | S. Kalla, L. Shyam, V. S. Kiryakova, H. An, Function generalized fractional calculus based upon compositions of Erdélyi-Kober operators in Lp, Math. Japonica, 35 (1990), 1151–1171. |
[12] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006. |
[13] | H. Kober, On fractional integrals and derivatives, Q. J. Math., 1 (1940), 193–211. |
[14] |
T. Jin, H. Ding, H. Xia, J. Bao, Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type, Chaos Soliton. Fract., 142 (2021), 110409. doi: 10.1016/j.chaos.2020.110409
![]() |
[15] |
T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simulat., 190 (2021), 203–221. doi: 10.1016/j.matcom.2021.05.018
![]() |
[16] |
T. Jin, X. Yang, H. Xia, H. Ding, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with Caputo type, Fractals, 29 (2021), 2150012. doi: 10.1142/S0218348X21500122
![]() |
[17] | R. L. Magin, Fractional calculus in bioengineering, 2 Eds., Begell House Redding, 2006. |
[18] |
M. Manigandan, M. Subramanian, P. Duraisamy, T. N. Gopal, On Caputo-Hadamard type fractional differential equations with nonlocal discrete boundary conditions, Discontinuity, Nonlinearity, and Complexity, 10 (2021), 185–194. doi: 10.5890/DNC.2021.06.002
![]() |
[19] |
M. M. Matar, J. Alzabut, J. M. Jonnalagadda, A coupled system of nonlinear Caputo–Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Method. Appl. Sci., 44 (2021), 2650–2670. doi: 10.1002/mma.6711
![]() |
[20] |
R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339 (2000), 1–77. doi: 10.1016/S0370-1573(00)00070-3
![]() |
[21] |
S. Muthaiah, D. Baleanu, N. G. Thangaraj, Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations, AIMS Mathematics, 6 (2021), 168–194. doi: 10.3934/math.2021012
![]() |
[22] |
S. Muthaiah, D. Baleanu, Existence of solutions for nonlinear fractional differential equations and inclusions depending on lower-order fractional derivatives, Axioms, 9 (2020), 1–17. doi: 10.30821/axiom.v9i1.7235
![]() |
[23] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. |
[24] | T. Qi, Y. Liu, Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Space., 2017 (2017), 6703860. |
[25] |
M. Subramanian, A. Zada, Existence and uniqueness of solutions for coupled systems of Liouville-Caputo type fractional integrodifferential equations with Erdélyi-Kober integral conditions, Int. J. Nonlin. Sci. Num., 22 (2021), 543–557. doi: 10.1515/ijnsns-2019-0299
![]() |
[26] |
M. Subramanian, T. N. Gopal, Analysis of boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative, Proyecciones, 39 (2020), 1555–1575. doi: 10.22199/issn.0717-6279-2020-06-0093
![]() |
[27] |
M. Subramanian, D. Baleanu, Stability and existence analysis to a coupled system of Caputo type fractional differential equations with Erdelyi-kober integral boundary conditions, Appl. Math. Inf. Sci., 14 (2020), 415–424. doi: 10.18576/amis/140307
![]() |
[28] |
M. Subramanian, A. R. V. Kumar, T. N. Gopal, Analysis of fractional boundary value problem with non local flux multi-point conditions on a caputo fractional differential equation, Stud. Univ. Babes-Bolyai. Math., 64 (2019), 511–527. doi: 10.24193/subbmath.2019.4.06
![]() |
[29] |
M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, A. Zada, Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions, Adv. Differ. Equ., 2021 (2021), 1–46. doi: 10.1186/s13662-020-03162-2
![]() |
[30] |
J. Tariboon, S. K. Ntouyas, W. Sudsutad, Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions, J. Nonlinear Sci. Appl., 9 (2016), 295–308. doi: 10.22436/jnsa.009.01.28
![]() |
[31] | N. Thongsalee, S. Laoprasittichok, S. K. Ntouyas, J. Tariboon, System of fractional differential equations with Erdélyi-Kober fractional integral conditions, Open Math., 13 (2015), 847–859. |
[32] |
W. Zhang, W. Liu, T. Xue, Existence and uniqueness results for the coupled systems of implicit fractional differential equations with periodic boundary conditions, Adv. Differ. Equ., 2018 (2018), 1–28. doi: 10.1186/s13662-017-1452-3
![]() |
[33] | Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds., World Scientific, 2016. |
[34] |
Y. Zi, Y. Wang, Positive solutions for Caputo fractional differential system with coupled boundary conditions, Adv. Differ. Equ., 2019 (2019), 80. doi: 10.1186/s13662-019-2016-5
![]() |
1. | Muath Awadalla, Muthaiah Subramanian, Kinda Abuasbeh, Existence and Ulam–Hyers Stability Results for a System of Coupled Generalized Liouville–Caputo Fractional Langevin Equations with Multipoint Boundary Conditions, 2023, 15, 2073-8994, 198, 10.3390/sym15010198 | |
2. | Muthaiah Subramanian, Shorog Aljoudi, Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative, 2022, 6, 2504-3110, 629, 10.3390/fractalfract6110629 | |
3. | Hassan J. Al Salman, Muath Awadalla, Muthaiah Subramanian, Kinda Abuasbeh, On a System of Coupled Langevin Equations in the Frame of Generalized Liouville–Caputo Fractional Derivatives, 2023, 15, 2073-8994, 204, 10.3390/sym15010204 |