Research article Special Issues

Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions

  • This paper is concerned with the existence of solutions for a nonlinear multi-term impulsive fractional q-integro-difference equation with nonlocal boundary conditions. The appropriated fixed point theorems are applied to accomplish the existence and uniqueness results for the given problem. We demonstrate the application of the obtained results with the aid of examples.

    Citation: Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi. Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions[J]. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985

    Related Papers:

    [1] Mohammad Esmael Samei, Lotfollah Karimi, Mohammed K. A. Kaabar . To investigate a class of multi-singular pointwise defined fractional q–integro-differential equation with applications. AIMS Mathematics, 2022, 7(5): 7781-7816. doi: 10.3934/math.2022437
    [2] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [3] Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164
    [4] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [5] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [6] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [7] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [8] Jarunee Soontharanon, Thanin Sitthiwirattham . On sequential fractional Caputo (p,q)-integrodifference equations via three-point fractional Riemann-Liouville (p,q)-difference boundary condition. AIMS Mathematics, 2022, 7(1): 704-722. doi: 10.3934/math.2022044
    [9] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [10] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
  • This paper is concerned with the existence of solutions for a nonlinear multi-term impulsive fractional q-integro-difference equation with nonlocal boundary conditions. The appropriated fixed point theorems are applied to accomplish the existence and uniqueness results for the given problem. We demonstrate the application of the obtained results with the aid of examples.



    Impulsive systems are found to be of great help in the study of the phenomena exhibiting abrupt changes, such as the passage of a solid body from a given fluid density to another fluid density [1], remittent vibrators [2], instantaneous disturbances in cellular neural networks [3], shock changes in stock exchange [4], etc. Evolutionary hereditary processes undergoing abrupt or sudden changes are modeled with the aid of impulsive fractional differential equations [5,6]. Such processes naturally occur in bio-medical sciences [7,8], thermo-elasticity [9], heat conduction [10], plasma physics [11], and engineering problems [12].

    The subject of fractional calculus has been extensively studied during the last two decades in view of its vast applications in science and technology. Examples include chaotic synchronization [13], immune systems [14], neural networks [15], fractional diffusion [16], ecology [17], etc. For the fundamental concepts of fractional calculus, we refer the reader to the text [18]. In particular, there has been shown a great interest in investigating the existence, uniqueness and stability of solutions for initial and boundary value problems. One can find an uptodate account of these problems in the book [19], while a variety of recent results involving different kinds of fractional derivatives can be found in the articles [20,21,22,23,24,25,26]. The natural extension of fractional differential equations to fractional q-difference equations also received significant attraction. For details and examples of nonlinear fractional q-difference equations subject to different kinds of boundary conditions involving q-derivatives and q-integrals, for instance, the articles [27,28,29,30,31,32,33] and the references cited therein.

    Let us now review some recent results on impulsive fractional and fractional q-difference equations. In [34], the authors studied a Caputo-Hadamard type fractional impulsive hybrid system with nonlinear fractional integral conditions. Impulsive fractional q-integro-difference equations with separated boundary conditions were investigated in [35]. Some stability results for abstract fractional differential equations with non-instantaneous impulses can be found in [36]. The authors in [37] discussed the existence of solutions for an impulsive fractional q-difference equation with nonlocal condition. Some existence results for an impulsive fractional q-difference equation with antiperiodic boundary conditions were proved in [38]. In [39], the authors obtained exact solutions for linear Riemann-Liouville fractional differential equations with impulses.

    Motivated by the recent development on impulsive fractional q-difference equations, in this paper, we introduce and study a nonlinear multi-term impulsive nonlocal boundary value problem involving Caputo type fractional q-derivative operators of different orders and the Riemann-Liouville fractional q-integral operator. In precise terms, we discuss the existence of solutions for the following problem:

    {ϖcDαqu(t)+(1ϖ)cDβqu(t)=af(t,u(t))+bIδqg(t,u(t)),tJ=[0,1],ttσ,Δu(tσ)=Iσ(u(tσ)),Δu(tσ)=˜Iσ(u(tσ)),σ=1,2,3.....,p,u(0)+u(0)=0,u(1)+u(η)=0,η(tm,tm+1),0mp,ηtσ, (1.1)

    where cDωq denotes the Caputo fractional q-derivative of order ω, (ω=α,β) and Iδq denotes the Riemann-Liouville fractional q-integral of order δ, 0<δ<1, 0<q<1, 1<α<2 and 0<β<1 such that αβ>1, 0<ϖ1, a,bR+ and f,g:J×RR are continuous functions. Further, Iσ,˜Iσ:RR are also continuous functions, Δu(tσ)=u(t+σ)u(tσ),Δu(tσ)=u(t+σ)u(tσ), where u(t+σ) and u(tσ) represent the right and left-hand limits of u(t), respectively, at t=tσ(σ=1,2,3,...,p) and 0=t0<t1<t2<...<tσ<...<tp<tp+1=1,J=J{t1,t2,t3,...,tσ}.

    Here, we emphasize that the problem (1.1) is novel in the sense that it consists of a multi-term fractional q-integro-difference equation involving Caputo type fractional q-derivative and q-Riemann-Liouville integral operators subject to impulsive conditions and nonlocal boundary data. We make use of the fixed-point approach to discuss the existence and uniqueness of solutions for the problem at hand. First of all, we prove an auxiliary lemma dealing with the linear variant of the problem (1.1), which enables us to convert the given nonlinear problem into a fixed-point problem. Then we apply the Schaefer's fixed point theorem to establish an existence result for the problem (1.1), while the uniqueness of its solutions is obtained via Banach's contraction mapping principle. The work accomplished in this paper is not only new in the given configuration but it also accounts for some new results as special cases, for details, see Section 5.

    The structure of the rest of the paper is as follows. In section 2, we recall some basic definitions from fractional q-calculus and prove a fundamental lemma which plays a key role in the analysis of the problem at hand. Main results concerning the existence and uniqueness of solutions for the problem (1.1) are proved in Section 3, while examples illustrating these results are discussed in Section 4.

    Let J0=[0,t1],J1=(t1,t2],J2=(t2,t3],....,Jσ=(tσ,tσ+1],σ=1,2,3,...,p with tp+1=1 and introduce the space: PC(J,R)={u:JR|uC(Jσ), σ=0,1,...,pandu(t+σ)exist, forσ=1,...,p} endowed with the norm u=suptJ|u(t)|. Obviously, PC(J,R) is a Banach space.

    Let us first collect some necessary concepts and definitions from q-fractional calculus [40,41].

    We define a q-real number as

    [a]q=1qa1q,aR,qR+{1}.

    The q-analogue of the Pochhammer symbol (q-shifted factorial) is defined by

    (a;q)0=1,(a;q)k=k1i=0(1aqi),kN{}.

    The q-analogue of the exponent (xy)k is given by

    (xy)(0)=1,(xy)(k)=k1j=0(xyqj),kN,x,yR.

    The q-gamma function Γq(y) is defined as

    Γq(y)=(1q)(y1)(1q)y1,

    where yR{0,1,2,...}. Observe that Γq(y+1)=[y]qΓq(y).

    Definition 2.1. Let f be a function defined on [0,b],b>0 and a(0,b) is an arbitrary fixed point. The fractional q-integral of the Riemann-Liouville type is defined by

    (Iβq,af)(t)=ta(tqs)(β1)Γq(β)f(s)dq(s),β>0,

    provided the integral exists. Moreover, (Iγq,aIβq,af)(t)=(Iβ+γq,af)(t);γ,βR+,a(0,t).

    We define the q-derivative of a function f as follows:

    (Dqf)(t)=f(t)f(qt)tqt,t0,(Dqf)(0)=limt0(Dqf)(t).

    Furthermore, D0qf=f,Dnqf=Dq(Dn1qf),n=1,2,3,....

    Definition 2.2. ([41]) The fractional q-derivative of the Riemann-Liouville type of order β is defined as

    (Dβq,af)(t)={(Iβq,af)(t),β<0,f(x),β=0,(DβqIββq,af)(t),β>0, (2.1)

    where β is the smallest integer greater than or equal to β.

    In passing, we remark that

    (i) (Dβq,aIβq,af)(t)=f(t),0<a<t.

    (ii) Iβq,a((xa)(λ))=Γq(λ+1)Γq(β+λ+1)(xa)(β+λ),0<a<x<b,βR+,λ(1,).

    Definition 2.3. ([41]) The fractional q-derivative of the Caputo type of order βR+ is defined by

    (cDβq,af)(t)=(Iββq,aDβqf)(t).

    Remark 2.1. For 0<a<t and βRN, the following relations hold [41]:

    (a) (cDβ+1q,af)(t)=(cDβq,aDqf)(t);

    (b) (cDβq,aIβq,af)(t)=f(t);

    (c) (Iβq,acDβq,af)(t)=f(t)β1k=0(Dkqf)(a)Γq(k+1)tk(a/t;q)k;

    In the following lemma, we solve the linear variant of the problem (1.1), which plays a fundamental role in the forthcoming analysis.

    Lemma 2.1. Let ϱC([0,1],R) and η(tm,tm+1), m is a non-negative integer such that 0mp. Then the unique solution of the boundary value problem:

    {ϖcDαqu(t)+(1ϖ)cDβqu(t)=ϱ(t),tJ,ttσ,σ=1,2,3.....,p,Δu(tσ)=Iσ(u(tσ)),Δu(tσ)=˜Iσ(u(tσ)),σ=1,2,3.....,p,u(0)+u(0)=0,u(1)+u(η)=0,ηtσ, (2.2)

    is given by

    u(t)={(ϖ1ϖ)t0(tqs)(αβ1)Γq(αβ)u(s)dqs+1ϖt0(tqs)(α1)Γq(α)ϱ(s)dqs+(1t)B,tJ0;(ϖ1ϖ)ttσ(tqs)(αβ1)Γq(αβ)u(s)dqs+1ϖttσ(tqs)(α1)Γq(α)ϱ(s)dqs+σi=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtiti1(tiqs)(α1)Γq(α)ϱ(s)dqs]+σi=1(tti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+σi=1Ii(u(ti))+σi=1(tti)˜Ii(u(ti))+(1t)B,tJσ,σ=1,2,...,p, (2.3)

    where

    B=p+1i=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtiti1(tiqs)(α1)Γq(α)ϱ(s)dqs]+pi=1(1ti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+(ϖ1ϖ)ηtm(ηqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖηtm(ηqs)(α2)Γq(α1)ϱ(s)dqs+mi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+pi=1Ii(u(ti))+pi=1(1ti)˜Ii(u(ti))+mi=1˜Ii(u(ti)),

    Proof. Let u be a solution of the q-fractional boundary value problem (2.2). Then, for tJ0, we have

    cDαqu(t)=(ϖ1ϖ)cDβqu(t)+1ϖϱ(t).

    Operating the q-integral operator Iαq to both sides of the above equation, we get

    u(t)=(ϖ1ϖ)t0(tqs)(αβ1)Γq(αβ)u(s)dqs+1ϖt0(tqs)(α1)Γq(α)ϱ(s)dqsa1a2t, (2.4)

    where a1,a2R are arbitrary constants. Differentiating (2.4) with respect to t, we obtain

    u(t)=(ϖ1ϖ)t0(tqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖt0(tqs)(α2)Γq(α1)ϱ(s)dqsa2. (2.5)

    Similarly, for t(t1,t2], we obtain

    u(t)=(ϖ1ϖ)tt1(tqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtt1(tqs)(α1)Γq(α)ϱ(s)dqsb1b2(tt1), (2.6)

    where b1,b2R are arbitrary constants.

    u(t)=(ϖ1ϖ)tt1(tqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtt1(tqs)(α2)Γq(α1)ϱ(s)dqsb2. (2.7)

    From (2.4)–(2.7), we get

    u(t1)=(ϖ1ϖ)t10(t1qs)(αβ1)Γq(αβ)u(s)dqs+1ϖt10(t1qs)(α1)Γq(α)ϱ(s)dqsa1a2t1,u(t+1)=b1,
    u(t1)=(ϖ1ϖ)t10(t1qs)(αβ2)Γq(αβ1)u(s)dqs+1ϖt10(t1qs)(α2)Γq(α1)ϱ(s)dqsa2,u(t+1)=b2.

    In view of the impulsive conditions: Δu(t1)=I1(u(t1)) and Δu(t1)=˜I1(u(t1)), we find that

    b1=(ϖ1ϖ)t10(t1qs)(αβ1)Γq(αβ)u(s)dqs+1ϖt10(t1qs)(α1)Γq(α)ϱ(s)dqsa1a2t1+I1(u(t1)),b2=(ϖ1ϖ)t10(t1qs)(αβ2)Γq(αβ1)u(s)dqs+1ϖt10(t1qs)(α2)Γq(α1)ϱ(s)dqsa2+˜I1(u(t1)).

    Thus, (2.6) becomes

    u(t)=(ϖ1ϖ)tt1(tqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtt1(tqs)(α1)Γq(α)ϱ(s)dqs+(ϖ1ϖ)t10(t1qs)(αβ1)Γq(αβ)u(s)dqs+1ϖt10(t1qs)(α1)Γq(α)ϱ(s)dqs+(tt1)[(ϖ1ϖ)t10(t1qs)(αβ2)Γq(αβ1)u(s)dqs+1ϖt10(t1qs)(α2)Γq(α1)ϱ(s)dqs]+I1(u(t1))+(tt1)˜I1(u(t1))a1a2t,tJ1.

    In general, for tJσ, we get

    u(t)=(ϖ1ϖ)ttσ(tqs)(αβ1)Γq(αβ)u(s)dqs+1ϖttσ(tqs)(α1)Γq(α)ϱ(s)dqs+σi=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtiti1(tiqs)(α1)Γq(α)ϱ(s)dqs]+σi=1(tti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+σi=1Ii(u(ti))+σi=1(tti)˜Ii(u(ti))a1a2t,tJσ. (2.8)

    Differentiating (2.8) with respect to t, we get

    u(t)=(ϖ1ϖ)ttσ(tqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖttσ(tqs)(α2)Γq(α1)ϱ(s)dqs+σi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+σi=1˜Ii(u(ti))a2. (2.9)

    Now, using the condition u(0)+u(0)=0 after finding u(0) and u(0) from (2.4) and (2.5), respectively, we obtain a1+a2=0. On the other hand, from (2.8) and (2.9), we have

    u(1)=p+1i=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtiti1(tiqs)(α1)Γq(α)ϱ(s)dqs]+pi=1(1ti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+pi=1Ii(u(ti))+pi=1(1ti)˜Ii(u(ti))a1a2,
    u(η)=(ϖ1ϖ)ηtm(ηqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖηtm(ηqs)(α2)Γq(α1)ϱ(s)dqs+mi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+mi=1˜Ii(u(ti))a2.

    Making use of the condition: u(1)+u(η)=0 and a1+a2=0, we obtain

    a1=p+1i=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtiti1(tiqs)(α1)Γq(α)ϱ(s)dqs]pi=1(1ti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs][(ϖ1ϖ)ηtm(ηqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖηtm(ηqs)(α2)Γq(α1)ϱ(s)dqs]mi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]pi=1Ii(u(ti))pi=1(1ti)˜Ii(u(ti))mi=1˜Ii(u(ti)),
    a2=p+1i=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+1ϖtiti1(tiqs)(α1)Γq(α)ϱ(s)dqs]+pi=1(1ti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+[(ϖ1ϖ)ηtm(ηqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖηtm(ηqs)(α2)Γq(α1)ϱ(s)dqs]+mi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+1ϖtiti1(tiqs)(α2)Γq(α1)ϱ(s)dqs]+pi=1Ii(u(ti))+pi=1(1ti)˜Ii(u(ti))+mi=1˜Ii(u(ti)).

    Inserting the above values of a1 and a2 in (2.4) and (2.8), we obtain (2.3). Conversely, if (2.3) has a solution u, then it can easily be verified that that u satisfies the problem (2.2).

    By Lemma 2.1, we can transform the problem (1.1) into a fixed point problem: u=Fu, where F:PC(J,R)PC(J,R) is defined by

    (Fu)(t)=(ϖ1ϖ)ttσ(tqs)(αβ1)Γq(αβ)u(s)dqs+aϖttσ(tqs)(α1)Γq(α)f(s,u(s))dqs+bϖttσ(tqs)(α+δ1)Γq(α+δ)g(s,u(s))dqs+σi=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+aϖtiti1(tiqs)(α1)Γq(α)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ1)Γq(α+δ)g(s,u(s))dqs]+σi=1(tti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+aϖtiti1(tiqs)(α2)Γq(α1)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs]+σi=1Ii(u(ti))+σi=1(tti)˜Ii(u(ti))+(1t){p+1i=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+aϖtiti1(tiqs)(α1)Γq(α)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ1)Γq(α+δ)g(s,u(s))dqs]+pi=1(1ti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+aϖtiti1(tiqs)(α2)Γq(α1)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs]+(ϖ1ϖ)ηtm(ηqs)(αβ2)Γq(αβ1)u(s)dqs+aϖηtm(ηqs)(α2)Γq(α1)f(s,u(s))dqs+bϖηtm(ηqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs+mi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+aϖtiti1(tiqs)(α2)Γq(α1)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs]+pi=1Ii(u(ti))+pi=1(1ti)˜Ii(u(ti))+mi=1˜Ii(u(ti))}, (3.1)
    (Fu)(t)=(ϖ1ϖ)ttσ(tqs)(αβ2)Γq(αβ1)u(s)dqs+aϖttσ(tqs)(α2)Γq(α1)f(s,u(s))dqs+bϖttσ(tqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs+σi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+aϖtiti1(tiqs)(α2)Γq(α1)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs]+σi=1˜Ii(u(ti)){p+1i=1[(ϖ1ϖ)titi1(tiqs)(αβ1)Γq(αβ)u(s)dqs+aϖtiti1(tiqs)(α1)Γq(α)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ1)Γq(α+δ)g(s,u(s))dqs]+pi=1(1ti)[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+aϖtiti1(tiqs)(α2)Γq(α1)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs]+(ϖ1ϖ)ηtm(ηqs)(αβ2)Γq(αβ1)u(s)dqs+aϖηtm(ηqs)(α2)Γq(α1)f(s,u(s))dqs+bϖηtm(ηqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs+mi=1[(ϖ1ϖ)titi1(tiqs)(αβ2)Γq(αβ1)u(s)dqs+aϖtiti1(tiqs)(α2)Γq(α1)f(s,u(s))dqs+bϖtiti1(tiqs)(α+δ2)Γq(α+δ1)g(s,u(s))dqs]+pi=1Ii(u(ti))+pi=1(1ti)˜Ii(u(ti))+mi=1˜Ii(u(ti))}. (3.2)

    Lemma 3.1. The operator F:PC(J,R)PC(J,R) defined by (3.1) is completely continuous.

    Proof. Observe that continuity of F follows from that of f,g,Iσ and ˜Iσ. Let Bρ={uPC(J,R):uρ}PC(J,R). Then, there exist positive constants Qi>0(i=1,2,3,4) such that |f(t,u)|Q1,|g(t,u)|Q2,|Iσ(u)|Q3 and |˜Iσ(u)|Q4,uBρ. Thus, uBρ, we have

    |(Fu)(t)||ϖ1|ϖttσ(tqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖttσ(tqs)(α1)Γq(α)|f(s,u(s))|dqs+|b|ϖttσ(tqs)(α+δ1)Γq(α+δ)|g(s,u(s))|dqs+σi=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)|g(s,u(s))|dqs]+σi=1|tti|[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+σi=1|Ii(u(ti))|+σi=1|tti||˜Ii(u(ti))|+|1t|{p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)|g(s,u(s))|dqs]+pi=1|1ti|[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖηtm(ηqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs+mi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+pi=1|Ii(u(ti))|+pi=1|1ti||˜Ii(u(ti))|+mi=1|˜Ii(u(ti))|}
    |ϖ1|ϖttσ(tqs)(αβ1)Γq(αβ)ρdqs+|a|ϖttσ(tqs)(α1)Γq(α)Q1dqs+|b|ϖttσ(tqs)(α+δ1)Γq(α+δ)Q2dqs+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)ρdqs+|a|ϖtiti1(tiqs)(α1)Γq(α)Q1dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)Q2dqs]+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)Q1dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)Q2dqs]+p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)ρdqs+|a|ϖtiti1(tiqs)(α1)Γq(α)Q1dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)Q2dqs]+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)Q1dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)Q2dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖηtm(ηqs)(α2)Γq(α1)Q1dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)Q2dqs+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)Q1dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)Q2dqs]+p(2Q3+3Q4)[|ϖ1|ϖ(2p+2Γq(αβ+1)+3p+1Γq(αβ))ρ+|a|ϖ(2p+2Γq(α+1)+3p+1Γq(α))Q1+|b|ϖ(2p+2Γq(α+δ+1)+3p+1Γq(α+δ))Q2+p(2Q3+3Q4)]=Θ,

    which implies that FuΘ. On the other hand, for tJσ,0σp, we have

    |(Fu)(t)||ϖ1|ϖttσ(tqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖttσ(tqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖttσ(tqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs+σi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+σi=1|˜Ii(u(ti))|+p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)|g(s,u(s))|dqs]+pi=1|1ti|[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖηtm(ηqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs+mi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+pi=1|Ii(u(ti))|+pi=1|1ti||˜Ii(u(ti))|+mi=1|˜Ii(u(ti))|
    |ϖ1|ϖttσ(tqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖttσ(tqs)(α2)Γq(α1)Q1dqs+|b|ϖttσ(tqs)(α+δ2)Γq(α+δ1)Q2dqs+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)Q1dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)Q2dqs]+p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)ρdqs+|a|ϖtiti1(tiqs)(α1)Γq(α)Q1dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)Q2dqs]+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)Q1dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)Q2dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖηtm(ηqs)(α2)Γq(α1)Q1dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)Q2dqs+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)ρdqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)Q1dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)Q2dqs]+p(Q3+3Q4)[|ϖ1|ϖ(3p+2Γq(αβ)+p+1Γq(αβ+1))ρ+|a|ϖ(3p+2Γq(α)+p+1Γq(α+1))Q1+|b|ϖ(3p+2Γq(α+δ)+p+1Γq(α+δ+1))Q2+p(Q3+3Q4)]=˜Θ.

    Hence, for t1,t2Jσ,0σp, we have

    |(Fu)(t2)(Fu)(t1)|t2t1|(Fu)(s)|dqs˜Θ(t2t1),

    which implies that F is equicontinuous on all Jσ,σ=0,1,2,...p. Thus, by the Arzela-Ascoli theorem, the operator F:PC(J,R)PC(J,R) is completely continuous.

    Theorem 3.1. (Schaefer's fixed-point theorem [42]) Let E be a Banach space. Assume that F:EE is a completely continuous operator and the set Ω={uE|u=ζFu,0<ζ<1} is bounded. Then F has a fixed point in E.

    Theorem 3.2. Assume that

    (S1) There exist nonnegative functions μ1(t),μ2(t),ϕ1(t),ϕ2(t)L(0,1) and positive constants Qi(i=3,4) such that |f(t,u)|μ1(t)+μ2(t)|u|, |g(t,u)|ϕ1(t)+ϕ2(t)|u|, |Iσ(u)|Q3, |˜Iσ(u)|Q4 for t[0,1],uR and σ=1,2,...,p.

    Then the problem (1.1) has at least one solution on J.

    Proof. Let us consider the set Ω={uPC(J,R)|u=ζFu,0<ζ<1}, where the operator F:PC(J,R)PC(J,R) is defined by (3.1) and define a ball Bε={uPC(J,R):uε}. We just need to show that the set Ω is bounded as it has already been proved in Lemma 2 that the operator F is completely continuous. Let uΩ, then u=ζFu,0<ζ<1. For any tJ, we have

    |u(t)|=ζ|(Fu)(t)||ϖ1|ϖttσ(tqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖttσ(tqs)(α1)Γq(α)|f(s,u(s))|dqs+|b|ϖttσ(tqs)(α+δ1)Γq(α+δ)|g(s,u(s))|dqs+σi=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)|g(s,u(s))|dqs]+σi=1|tti|[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+σi=1|Ii(u(ti))|+σi=1|tti||˜Ii(u(ti))|+|1t|{p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)|g(s,u(s))|dqs]+pi=1|1ti|[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖηtm(ηqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs+mi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))|dqs]+pi=1|Ii(u(ti))|+pi=1|1ti||˜Ii(u(ti))|+mi=1|˜Ii(u(ti))|}
    |ϖ1|ϖttσ(tqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖttσ(tqs)(α1)Γq(α)(μ1(s)+μ2(s)|u(s)|)dqs+|b|ϖttσ(tqs)(α+δ1)Γq(α+δ)(ϕ1(s)+ϕ2(s)|u(s)|)dqs+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)(μ1(s)+μ2(s)|u(s)|)dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)(ϕ1(s)+ϕ2(s)|u(s)|)dqs]+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)(μ1(s)+μ2(s)|u(s)|)dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)(ϕ1(s)+ϕ2(s)|u(s)|)dqs]+pi=1|Ii(u(ti))|+pi=1|˜Ii(u(ti))|+p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)(μ1(s)+μ2(s)|u(s)|)dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)(ϕ1(s)+ϕ2(s)|u(s)|)dqs]+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)(μ1(s)+μ2(s)|u(s)|)dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)(ϕ1(s)+ϕ2(s)|u(s)|)dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖηtm(ηqs)(α2)Γq(α1)(μ1(s)+μ2(s)|u(s)|)dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)(ϕ1(s)+ϕ2(s)|u(s)|)dqs+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)(μ1(s)+μ2(s)|u(s)|)dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)(ϕ1(s)+ϕ2(s)|u(s)|)dqs]+pi=1|Ii(u(ti))|+pi=1|˜Ii(u(ti))|+pi=1|˜Ii(u(ti))||ϖ1|ϖ[2p+2Γq(αβ+1)+3p+1Γq(αβ)]u+|a|ϖ[(2p+2)Iαqμ1(1)+(3p+1)Iα1qμ1(1)]+|a|ϖ[(2p+2)Iαqμ2(1)+(3p+1)Iα1qμ2(1)]u+|b|ϖ[(2p+2)Iα+δqϕ1(1)+(3p+1)Iα+δ1qϕ1(1)]+|b|ϖ[(2p+2)Iα+δqϕ2(1)+(3p+1)Iα+δ1qϕ2(1)]u+p(2Q3+3Q4),

    which implies that u is bounded for any tJ. So, the set Ω is bounded. Thus, by the conclusion of Theorem 3.1, the operator F has at least one fixed point, which shows that (1.1) has at least one solution on J.

    Corollary 3.1. Assume that functions f,g,Iσ,˜Iσ(σ=1,2,3,...) are bounded. Then the nonlinear problem (1.1) has at least one solution J.

    Theorem 3.3. ([42]) Let F:YY be a contraction on a nonempty closed subset of a Banach space X. Then F has a unique solution.

    Theorem 3.4. Let f,g:[0,1]×RR and Iσ,˜Iσ:RR be continuous functions. In addition, the following conditions hold:

    (S2) There exist positive constants Ni(i=1,2,3,4) such that, for each t[0,1] and u,vR,

    |f(t,u)f(t,v)|N1|uv|,|g(t,u)g(t,v)|N2|uv|,
    |Iσ(u)Iσ(v)|N3|uv|,|˜Iσ(u)˜Iσ(v)|N4|uv|,

    for σ=1,2,...,p.

    Then the problem (1.1) has a unique solution on [0,1], provided that

    Ξ=|ϖ1|ϖ[2p+2Γq(αβ+1)+3p+1Γq(αβ)]+|a|ϖ[2p+2Γq(α+1)+3p+1Γq(α)]N1+|b|ϖ[2p+2Γq(α+δ+1)+3p+1Γq(α+δ)]N2+p(2N3+3N4)<1. (3.3)

    Proof. For u,vPC(J,R) and tJ, we get

    |(Fu)(t)(Fv)(t)||ϖ1|ϖttσ(tqs)(αβ1)Γq(αβ)|u(s)v(s)|dqs+|a|ϖttσ(tqs)(α1)Γq(α)|f(s,u(s))f(s,v(s))|dqs+|b|ϖttσ(tqs)(α+δ1)Γq(α+δ)|g(s,u(s))g(s,v(s))|dqs+σi=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)|f(s,u(s))f(s,v(s))|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)|g(s,u(s))g(s,v(s))|dqs]+σi=1|tti|[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))f(s,v(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))g(s,v(s))|dqs]+σi=1|Ii(u(ti))Ii(v(ti))|+σi=1|tti||˜Ii(u(ti))˜Ii(v(ti))|+|1t|{p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)|f(s,u(s))f(s,v(s))|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)|g(s,u(s))g(s,v(s))|dqs]+pi=1|1ti|[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))f(s,v(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))g(s,v(s))|dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖηtm(ηqs)(α2)Γq(α1)|f(s,u(s))f(s,v(s))|dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)|g(s,u(s))g(s,v(s))|dqs+mi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)|f(s,u(s))f(s,v(s))|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)|g(s,u(s))g(s,v(s))|dqs]+pi=1|Ii(u(ti))Ii(v(ti))|+pi=1|1ti||˜Ii(u(ti))˜Ii(v(ti))|+mi=1|˜Ii(u(ti))˜Ii(v(ti))|}
    |ϖ1|ϖttσ(tqs)(αβ1)Γq(αβ)|u(s)v(s)|dqs+|a|ϖttσ(tqs)(α1)Γq(α)N1|u(s)v(s)|dqs+|b|ϖttσ(tqs)(α+δ1)Γq(α+δ)N2|u(s)v(s)|dqs+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)N1|u(s)v(s)|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)N2|u(s)v(s)|dqs]+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)N1|u(s)v(s)|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)N2|u(s)v(s)|dqs]+pi=1N3|u(s)v(s)|+pi=1N4|u(s)v(s)|+p+1i=1[|ϖ1|ϖtiti1(tiqs)(αβ1)Γq(αβ)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α1)Γq(α)N1|u(s)v(s)|dqs+|b|ϖtiti1(tiqs)(α+δ1)Γq(α+δ)N2|u(s)v(s)|dqs]+pi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)N1|u(s)v(s)|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)N2|u(s)v(s)|dqs]+|ϖ1|ϖηtm(ηqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖηtm(ηqs)(α2)Γq(α1)N1|u(s)v(s)|dqs+|b|ϖηtm(ηqs)(α+δ2)Γq(α+δ1)N2|u(s)v(s)|dqs+mi=1[|ϖ1|ϖtiti1(tiqs)(αβ2)Γq(αβ1)|u(s)v(s)|dqs+|a|ϖtiti1(tiqs)(α2)Γq(α1)N1|u(s)v(s)|dqs+|b|ϖtiti1(tiqs)(α+δ2)Γq(α+δ1)N2|u(s)v(s)|dqs]+pi=1N3|u(s)v(s)|+pi=1N4|u(s)v(s)|+pi=1N4|u(s)v(s)|{|ϖ1|ϖ[2p+2Γq(αβ+1)+3p+1Γq(αβ)]+|a|ϖ[2p+2Γq(α+1)+3p+1Γq(α)]N1+|b|ϖ[2p+2Γq(α+δ+1)+3p+1Γq(α+δ)]N2+p(2N3+3N4)}|u(s)v(s)|.

    Thus, in view of the condition (3.3), the above inequality takes the form:

    FuFvΞuv.

    As Ξ<1 (by the condition (3.3)), therefore F is a contraction. So, by Theorem 3.3, the operator F has a unique fixed point. Hence, the problem (1.1) has a unique solution on J.

    In this section, we demonstrate the application of the results obtained in the last section.

    Example 4.1. (Illustration of Theorem 3.1). Consider the following boundary value problem of multi-term impulsive fractional q-integro-difference equations:

    {0.88cD1.950.5u(t)+(10.88)cD0.020.5u(t)=0.30f(t,u(t))+0.90I0.250.5g(t,u(t)),tt1=13,Δu(13)=4u21+u2,Δu(13)=3+2u2u2+1,u(0)+u(0)=0,u(1)+u(0.4)=0, (4.1)

    where α=1.95, q=0.5, β=0.02, ϖ=0.88, δ=0.25, η=0.4, a=0.30, b=0.90, p=1 and

    f(t,u(t))=e4tcos2(u(t))+sin(t)|u|,g(t,u(t))=29(t3+3)+3cos(t)|u|.

    Clearly, μ1(t)=e4tcos2(u(t)),μ2(t)=sin(t),ϕ1(t)=29(t3+3),ϕ2(t)=3cos(t),Q3=4,Q4=3, and the hypothesis of Theorem 3.1 holds true. Thus, the conclusion of Theorem 3.1 applies to the problem (4.1).

    Example 4.2. (Illustration of Theorem 3.4). Consider the boundary value problem given by

    {0.88cD1.950.5u(t)+(10.88)cD0.020.5u(t)=0.30f(t,u(t))+0.90I0.250.5g(t,u(t)),tt1=13,Δu(13)=|u(13)|115(|u(13)|+1),Δu(13)=1900sin(u(13)),u(0)+u(0)=0,u(1)+u(0.4)=0, (4.2)

    where α=1.95, q=0.5, β=0.02, ϖ=0.88, δ=0.25, η=0.4, a=0.30, b=0.90, p=1 and

    f(t,u(t))=1360+t2(cost+|u(t)|(|u(t)|+1)+|u(t)|),g(t,u(t))=1500tan1u(t)+t4.

    It is easy to verify that

    N1=1180,N2=1500,N3=1115,N4=1900.

    Moreover, Ξ0.978211<1 (Ξ is given by (3.3)). Thus, all the assumptions of Theorem 3.4 are satisfied. So, by the conclusion of Theorem 3.4, the problem (4.2) has a unique solution [0,1].

    We have investigated a new class of nonlinear nonlocal impulsive boundary value problems of multi-term Caputo fractional q-difference equations involving both usual and Riemann-Liouville fractional q-integral type nonlinearities. The classical fixed point theorems are employed to derive the existence and uniqueness results for the given problem. Our results are indeed new and enrich the related literature on the topic. Moreover, some new results can be recorded as special cases of the present ones by fixing the parameters involved in the governing equation in the problem (1.1). For example, our results reduce to the new ones for the following equations subject to impulsive and nonlocal boundary data:

    cDαqu(t)=af(t,u(t))+bIδqg(t,u(t)) for λ=1;

    λcDαqu(t)+(1λ)cDβqu(t)=f(t,u(t)) for a=1,b=0;

    λcDαqu(t)+(1λ)cDβqu(t)=Iδqg(t,u(t)) for a=0,b=1.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research work was funded by Institutional Fund Projects under Grant No. (IFPIP: 1444-130-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia. The authors also thank the reviewers for their constructive remarks on their work.

    All authors declare no conflicts of interest in this paper.



    [1] J. Lee, J. Kim, J. Lim, Y. Yun, Y. Kim, J. Ryu, et al., Unsteady flow of shear-thickening fluids around an impulsively moving circular cylinder, J. Non-Newton. Fluid, 272 (2019), 104163. https://doi.org/10.1016/j.jnnfm.2019.104163 doi: 10.1016/j.jnnfm.2019.104163
    [2] K. F. Chen, Q. Zhang, On the impulse response of a vibrator with a band-limited hysteretic damper, Appl. Math. Model., 35 (2011), 189–201. https://doi.org/10.1016/j.apm.2010.05.017 doi: 10.1016/j.apm.2010.05.017
    [3] I. M. Stamova, T. Stamov, N. Simeonova, Impulsive control on global exponential stability for cellular neural networks with supremums, J. Vib. Control, 19 (2013), 483–490. https://doi.org/10.1177/1077546312441042 doi: 10.1177/1077546312441042
    [4] C. He, Z. Wen, K. Huang, X. Ji, Sudden shock and stock market network structure characteristics: A comparison of past crisis events, Technol. Forecast. Soc., 180 (2022), 121732. https://doi.org/10.1016/j.techfore.2022.121732 doi: 10.1016/j.techfore.2022.121732
    [5] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, 1989. https://doi.org/10.1142/0906
    [6] T. Cardinali, P. Rubbioni, Hereditary evolution processes under impulsive effects, Mediterr. J. Math., 18 (2021), 91. https://doi.org/10.1007/s00009-021-01730-8 doi: 10.1007/s00009-021-01730-8
    [7] X. B. Rao, X. P. Zhao, Y. D. Chu, J. G. Zhang, J. S. Gao, The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees, Chaos Soliton. Fract., 139 (2020), 110031. https://doi.org/10.1016/j.chaos.2020.110031 doi: 10.1016/j.chaos.2020.110031
    [8] R. E. Miron, R. J. Smith, Resistance to protease inhibitors in a model of HIV-1 infection with impulsive drug effects, Bull. Math. Biol., 76 (2014), 59–97. https://doi.org/10.1007/s11538-013-9903-9 doi: 10.1007/s11538-013-9903-9
    [9] S. Deswal, S. Choudhary, Impulsive effect on an elastic solid with generalized thermodiffusion, J. Eng. Math., 63 (2009), 79–94. https://doi.org/10.1007/s10665-008-9249-8 doi: 10.1007/s10665-008-9249-8
    [10] G. Stamov, T. Stamova, C. Spirova, Impulsive reaction-diffusion delayed models in biology: Integral manifolds approach, Entropy, 23 (2021), 1631. https://doi.org/10.3390/e23121631 doi: 10.3390/e23121631
    [11] P. Savoini, M. Scholer, M. Fujimoto, Two-dimensional hybrid simulations of impulsive plasma penetration through a tangential discontinuity, J. Geophys. Res. Space, 99 (1994), 19377–19391. https://doi.org/10.1029/94JA01512 doi: 10.1029/94JA01512
    [12] B. Wang, X. Xia, Z. Cheng, L. Liu, H. Fan, An impulsive and switched system based maintenance plan optimization in building energy retrofitting project, Appl. Math. Model., 117 (2023), 479–493. https://doi.org/10.1016/j.apm.2022.12.030 doi: 10.1016/j.apm.2022.12.030
    [13] Y. Xu, W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems, Phys. A, 549 (2020), 123903. https://doi.org/10.1016/j.physa.2019.123903 doi: 10.1016/j.physa.2019.123903
    [14] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE T. Contr. Syst. T., 20 (2012), 763–769. https://doi.org/10.1109/TCST.2011.2153203 doi: 10.1109/TCST.2011.2153203
    [15] M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci., 83 (2020), 105088. https://doi.org/10.1016/j.cnsns.2019.105088 doi: 10.1016/j.cnsns.2019.105088
    [16] X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. https://doi.org/10.1137/20M132420X doi: 10.1137/20M132420X
    [17] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
    [18] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [19] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, Singapore: World Scientific, 2021. https://doi.org/10.1142/12102
    [20] H. Alsulami, M. Kirane, S. Alhodily, T. Saeed, N. Nyamoradi, Existence and multiplicity of solutions to fractional p-Laplacian systems with concave-convex nonlinearities, Bull. Math. Sci., 10 (2020), 2050007. https://doi.org/10.1142/S1664360720500071 doi: 10.1142/S1664360720500071
    [21] A. Ebrahimzadeh, R. Khanduzi, A. Beik, P. Samaneh, D. Baleanu, Research on a collocation approach and three metaheuristic techniques based on MVO, MFO, and WOA for optimal control of fractional differential equation, J. Vib. Control, 29 (2023), 661–674. https://doi.org/10.1177/10775463211051447 doi: 10.1177/10775463211051447
    [22] R. Agarwal, S. Hristova, D. O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, AIMS Math., 7 (2022), 2973–2988. https://doi.org/10.3934/math.2022164 doi: 10.3934/math.2022164
    [23] J. J. Nieto, Fractional Euler numbers and generalized proportional fractional logistic differential equation, Fract. Calc. Appl. Anal., 25 (2022), 876–886. https://doi.org/10.1007/s13540-022-00044-0 doi: 10.1007/s13540-022-00044-0
    [24] K. D. Kucche, A. D. Mali, On the nonlinear (k,ψ)-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
    [25] C. Kiataramkul, S. K. Ntouyas, J. Tariboon, Existence results for ψ-Hilfer fractional integro-differential hybrid boundary value problems for differential equations and inclusions, Adv. Math. Phys., 2021 (2021), 9044313. https://doi.org/10.1155/2021/9044313 doi: 10.1155/2021/9044313
    [26] Z. Laadjal, F. Jarad, Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions, AIMS Math., 8 (2023), 1172–1194. https://doi.org/10.3934/math.2023059 doi: 10.3934/math.2023059
    [27] J. R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput., 218 (2012), 9682–9689. https://doi.org/10.1016/j.amc.2012.03.006 doi: 10.1016/j.amc.2012.03.006
    [28] B. Ahmad, S. K. Ntouyas, J. Tariboon, Quantum calculus: New concepts, impulsive IVPs and BVPs, inequalities, World Scientific, 2016. https://doi.org/10.1142/10075
    [29] M. Jiang, R. Huang, Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral condition, AIMS Math., 5 (2020), 6537–6551. https://doi.org/10.3934/math.2020421 doi: 10.3934/math.2020421
    [30] S. Liang, M. E. Samei, New approach to solutions of a class of singular fractional q-differential problem via quantum calculus, Adv. Differ. Equ., 2020 (2020), 14. https://doi.org/10.1186/s13662-019-2489-2 doi: 10.1186/s13662-019-2489-2
    [31] C. Bai, D. Yang, The iterative positive solution for a system of fractional q-difference equations with four-point boundary conditions, Discrete Dyn. Nat. Soc., 2020 (2020), 3970903. https://doi.org/10.1155/2020/3970903 doi: 10.1155/2020/3970903
    [32] A. Wongcharoen, A. Thatsatian, S. K. Ntouyas, J. Tariboon, Nonlinear fractional q-difference equation with fractional Hadamard and quantum integral nonlocal conditions, J. Funct. Space., 2020 (2020), 9831752. https://doi.org/10.1155/2020/9831752 doi: 10.1155/2020/9831752
    [33] A. Alsaedi, H. Al-Hutami, B. Ahmad, R. P. Agarwal, Existence results for a coupled system of nonlinear fractional q-integro-difference equations with q-integral coupled boundary conditions, Fractals, 30 (2022), 2240042. https://doi.org/10.1142/S0218348X22400424 doi: 10.1142/S0218348X22400424
    [34] W. Yukunthorn, B. Ahmad, S. K. Ntouyas, J. Tariboon, On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions, Nonlinear Anal. Hybri., 19 (2016), 77–92. https://doi.org/10.1016/j.nahs.2015.08.001 doi: 10.1016/j.nahs.2015.08.001
    [35] B. Ahmad, S. K. Ntouyas, J. Tariboon, A. Alsaedi, H. H. Alsulami, Impulsive fractional q-integro-difference equations with separated boundary conditions, Appl. Math. Comput., 281 (2016), 199–213. https://doi.org/10.1016/j.amc.2016.01.051 doi: 10.1016/j.amc.2016.01.051
    [36] S. Abbas, M. Benchohra, A. Alsaedi, Y. Zhou, Some stability concepts for abstract fractional differential equations with not instantaneous impulses, Fixed Point Theor., 18 (2017), 3–16. https://doi.org/10.24193/fpt-ro.2017.1.01 doi: 10.24193/fpt-ro.2017.1.01
    [37] D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence of solutions for impulsive fractional q-difference equations with nonlocal condition, J. Appl. Nonlinear Dyn., 6 (2017), 479–486. https://doi.org/10.5890/JAND.2017.12.004 doi: 10.5890/JAND.2017.12.004
    [38] M. Zuo, X. Hao, Existence results for impulsive fractional q-difference equation with antiperiodic boundary conditions, J. Funct. Space., 2018 (2018), 3798342. https://doi.org/10.1155/2018/3798342 doi: 10.1155/2018/3798342
    [39] R. P. Agarwal, S. Hristova, D. O'Regan, Exact solutions of linear Riemann-Liouville fractional differential equations with impulses, Rocky Mountain J. Math., 50 (2020), 779–791. https://doi.org/10.1216/rmj.2020.50.779 doi: 10.1216/rmj.2020.50.779
    [40] M. H. Annaby, Z. S. Mansour, q-Fractional calculus and equations, Berlin: Springer-Verlag, 2012. https://doi.org/10.1007/978-3-642-30898-7
    [41] P. M. Rajkovic, S. D. Marinkovic, M. S. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359–373.
    [42] H. Schaefer, Über die Methode der a priori-Schranken, Math. Ann., 129 (1955), 415–416.
  • This article has been cited by:

    1. Nihan Turan, Metin Başarır, Aynur Şahin, On the solutions of the second-order (p,q)-difference equation with an application to the fixed-point theory, 2024, 9, 2473-6988, 10679, 10.3934/math.2024521
    2. Boshra Alharbi, Ahmed Alsaedi, Ravi P. Agarwal, Bashir Ahmad, Existence results for a nonlocal q-integro multipoint boundary value problem involving a fractional q-difference equation with dual hybrid terms, 2024, 32, 1844-0835, 5, 10.2478/auom-2024-0026
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1423) PDF downloads(62) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog