In this paper, we aim to study the problem of a sequential fractional Caputo (p,q)-integrodifference equation with three-point fractional Riemann-Liouville (p,q)-difference boundary condition. We use some properties of (p,q)-integral in this study and employ Banach fixed point theorems and Schauder's fixed point theorems to prove existence results of this problem.
Citation: Jarunee Soontharanon, Thanin Sitthiwirattham. On sequential fractional Caputo (p,q)-integrodifference equations via three-point fractional Riemann-Liouville (p,q)-difference boundary condition[J]. AIMS Mathematics, 2022, 7(1): 704-722. doi: 10.3934/math.2022044
[1] | Mohammad Esmael Samei, Lotfollah Karimi, Mohammed K. A. Kaabar . To investigate a class of multi-singular pointwise defined fractional q–integro-differential equation with applications. AIMS Mathematics, 2022, 7(5): 7781-7816. doi: 10.3934/math.2022437 |
[2] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[3] | Reny George, Sina Etemad, Fahad Sameer Alshammari . Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional (p,q)-thermostat system. AIMS Mathematics, 2024, 9(1): 818-846. doi: 10.3934/math.2024042 |
[4] | Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949 |
[5] | Abdelatif Boutiara, Mohamed Rhaima, Lassaad Mchiri, Abdellatif Ben Makhlouf . Cauchy problem for fractional (p,q)-difference equations. AIMS Mathematics, 2023, 8(7): 15773-15788. doi: 10.3934/math.2023805 |
[6] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[7] | Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925 |
[8] | Nichaphat Patanarapeelert, Jiraporn Reunsumrit, Thanin Sitthiwirattham . On nonlinear fractional Hahn integrodifference equations via nonlocal fractional Hahn integral boundary conditions. AIMS Mathematics, 2024, 9(12): 35016-35037. doi: 10.3934/math.20241667 |
[9] | Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady . Existence of solutions for [p,q]-difference initial value problems: application to the [p,q]-based model of vibrating eardrums. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108 |
[10] | Changlong Yu, Jufang Wang, Huode Han, Jing Li . Positive solutions of IBVPs for q-difference equations with p-Laplacian on infinite interval. AIMS Mathematics, 2021, 6(8): 8404-8414. doi: 10.3934/math.2021487 |
In this paper, we aim to study the problem of a sequential fractional Caputo (p,q)-integrodifference equation with three-point fractional Riemann-Liouville (p,q)-difference boundary condition. We use some properties of (p,q)-integral in this study and employ Banach fixed point theorems and Schauder's fixed point theorems to prove existence results of this problem.
The q-calculus is one type of quantum calculus that was proposed by Jackson [1,2] in 1910. This calculus has been employed in several fields of many fields such as engineering, electrical networks, dynamical system, control theory, physical problems, economics, applied sciences and so on [3,4,5,6,7,8,9,10,11,12,13,14].
Later, the development of quantum calculus based on two parameters p and q was proposed by Chakrabarti and Jagannathan [15]. This calculus is called (p,q)-calculus or post quantum calculus. The extension of studies of (p,q)-calculus including with its applications can be found in [16,17,18,19,20,21,22,23,24,25,26,27,28,29]. For instance, the fundamental theorems of (p,q)- calculus and some (p,q)-Taylor formulas were studied in [18]. In [25], the (p,q)-Melin transform and its applications were studied. The Picard and Gauss-Weierstrass singular integral in (p,q)-calculus were studied in [26]. For the boundary value problems for (p,q)-difference equations were introduced in [27,28,29].
For fractional quantum calculus, Agarwal [30] and Al-Salam [31] proposed fractional q-calculus, and Díaz and Osler [32] proposed fractional difference calculus. In 2017, Brikshavana and Sitthiwirattham [33] introduced fractional Hahn difference calculus. In 2019, Patanarapeelert and Sitthiwirattham [34] studied fractional symmetric Hahn difference calculus. For the basic theory and applications of fractional calculus, as well as for some recent developments in the field, we refer to [35,36,37,38,39,40,41] and the references cited therein.
Recently, Soontharanon and Sitthiwirattham [42] introduced the operators of fractional (p,q)-calculus and its properties. However, there are a few literature on the study of the boundary value problems for fractional (p,q)-difference equation since fractional (p,q)-operators have been defined lately. Now, this calculus was used in the inequalities [43,44] and the boundary value problems [45,46,47]. In 2020, the existence results of a fractional (p,q)-integrodifference equation with Robin boundary condition were first introduced [45]. The existence results of solution and positive solution for the boundary value problem of a class of fractional (p,q)-difference equations involving the Riemann–Liouville fractional derivative [46] were studied in 2021. In the same year, the authors investigated the boundary value problem of a class of fractional (p,q)-difference Schr¨odinger equations [47].
Motivated by the above papers, to enrich the work in this new research area, in this paper, we study the boundary value problem for fractional (p,q)-difference of Caputo type involving function F which depends on fractional (p,q)-integral and fractional (p,q)-difference of Riemann-Liouville type, and the boundary condition is nonlocal. Our problem is a sequential fractional Caputo (p,q)-integrodifference equation with three-point fractional Riemann-Liouville (p,q)-difference boundary conditions of the form
CDαp,q[CDβp,q(1+ρ(t))]u(t)=F[t,u(t),(Ψγp,qu)(t),(Υνp,qu)(t)],t∈ITp,q,u(0)=ϕ(u),u(Tp)=Dθp,qg(η)u(η),η∈ITp,q−{0,Tp} | (1.1) |
where α,β,γ,ν,θ∈(0,1];ρ,g∈C(ITp,q,R+) and F∈C(ITp,q×R3,R) are given functions; ϕ is given functional; and for φ,ψ∈C(ITp,q×ITp,q,[0,∞)), we define operators
(Ψγp,qu)(t):=(Iγp,qφu)(t)=1p(γ2)Γp,q(γ)∫t0(t−qs)γ−1_p,qφ(t,spγ−1)u(spγ−1)dp,qs, | (1.2) |
(Υνp,qu)(t):=(Dνp,qψu)(t)=1p(−ν2)Γp,q(−ν)∫t0(t−qs)−ν−1_p,qψ(t,sp−ν−1)u(sp−ν−1)dp,qs. | (1.3) |
We emphasize that our problem contains fractional (p,q)-difference operators of Riemann-Liouville and Caputo types, which is the new idea and different from the previous works. We aim to show the existence and uniqueness of a solution to the problem (1.1) by using the Banach fixed point theorem. The existence of at least one solution by using the Schauder's fixed point theorem. An example will be provide to illustrate our results.
In this section, we recall some basic definitions, notations and lemmas as follows. For 0<q<p≤1
[k]q:={1−qk1−q,k∈N1,k=0,[k]p,q:={pk−qkp−q=pk−1[k]qp,k∈N1,k=0,[k]p,q!:={[k]p,q[k−1]p,q⋅⋅⋅[1]p,q=k∏i=1pi−qip−q,k∈N1,k=0. |
The (p,q)-forward jump and the (p,q)-backward jump operators are defined as
σkp,q(t):=(qp)kt and ρkp,q(t):=(pq)kt, fork∈N,respectively. |
The q-analogue of the power function (a−b)n_q where n∈N0:={0,1,2,...} is given by
(a−b)0_q:=1,(a−b)n_q:=n−1∏i=0(a−bqi),a,b∈R. |
The (p,q)-analogue of the power function (a−b)n_p,q where n∈N0 is given by
(a−b)0_p,q:=1,(a−b)n_p,q:=n−1∏k=0(apk−bqk),a,b∈R. |
Generally, for α∈R,
(a−b)α_q=aα∞∏i=01−(ba)qi1−(ba)qα+i,a≠0. |
(a−b)α_p,q=p(α2)(a−b)α_qp=aα∞∏i=01pα[1−ba(qp)i1−ba(qp)i+α],a≠0, |
and aα_q=aα,aα_p,q=(ap)α and (0)α_q=(0)α_p,q=0 for α>0.
The (p,q)-gamma and (p,q)-beta functions are defined by
Γp,q(x):={(p−q)x−1_p,q(p−q)x−1=(1−qp)x−1_p,q(1−qp)x−1,x∈R∖{0,−1,−2,...}[x−1]p,q!,x∈N,Bp,q(x,y):=∫10tx−1(1−qt)y−1_p,qdp,qt=p12(y−1)(2x+y−2)Γp,q(x)Γqp,q(y)Γp,q(x+y), |
respectively.
We next provide the definitions of the (p,q)-difference and (p,q)-integral as follows.
Definition 2.1. For 0<q<p≤1 and f:[0,T]→R, the (p,q)-difference of f is defined as
Dp,qf(t):={f(pt)−f(qt)(p−q)(t),fort≠0f′(0),fort=0 |
provided that f is differentiable at 0 and f is called (p,q)-differentiable on ITp,q if Dp,qf(t) exists for all t∈ITp,q.
Definition 2.2. Let I be any closed interval of R containing a,b and 0. Assuming that f:I→R is a given function, (p,q)-integral of f from a to b is defined by
∫baf(t)dp,qt:=∫b0f(t)dp,qt−∫a0f(t)dp,qt, |
where
Ip,qf(x)=∫x0f(t)dp,qt=(p−q)x∞∑k=0qkpk+1f(qkpk+1x),x∈I, |
provided that the series converges at x=a and x=b, and f is called (p,q)-integrable on [a,b] if it is (p,q)-integrable on [a,b] for all a,b∈I.
Next, operator INp,q where N∈N is defined as
I0p,qf(x)=f(x)andINp,qf(x)=Ip,qIN−1p,qf(x),N∈N. |
The relations between (p,q)-difference and (p,q)-integral are given by
Dp,qIp,qf(x)=f(x)andIp,qDp,qf(x)=f(x)−f(0). |
The fractioanal (p,q)-integral, fractional (p,q)-difference of Riemann-Liouville type and Caputo type are defined as follows.
Definition 2.3. For α>0,0<q<p≤1 and f defined on ITp,q, the fractional (p,q)-integral is defined by
Iαp,qf(t):=1p(α2)Γp,q(α)∫t0(t−qs)α−1_p,qf(spα−1)dp,qs=(p−q)tp(α2)Γp,q(α)∞∑k=0qkpk+1(t−(qp)k+1t)α−1_p,qf(qkpk+αt), |
and (I0p,qf)(t)=f(t).
Definition 2.4. For α>0,0<q<p≤1 and f defined on ITp,q, the fractional (p,q)-difference operator of Riemann-Liouville type of order α is defined by
Dαp,qf(t):=DNp,qIN−αp,qf(t)=1p(−α2)Γp,q(−α)∫t0(t−qs)−α−1_p,qf(sp−α−1)dp,qs, |
and D0p,qf(t)=f(t), where N−1<α<N,N∈N.
Definition 2.5. For α>0,0<q<p≤1 and f defined on ITp,q, the fractional (p,q)-difference operator of Caputo type of order α is defined by
CDαp,qf(t):=IN−αp,qDNp,qf(t)=1p(N−α2)Γp,q(N−α)∫t0(t−qs)N−α−1_p,qDNp,qf(spN−α−1)dq,ωs, |
and CD0p,qf(t)=f(t), where N−1<α<N,N∈N.
Next, we introduce lemmas that are used in the main results.
Lemma 2.1. [42] Let α∈(N−1,N),N∈N,0<q<p≤1 and f:ITp,q→R. Then,
Iαp,qCDαp,qf(t)=f(t)+C1tN−1+C2tN−2+...+CN, |
for some Ci∈R,i=1,2,...,N.
Lemma 2.2. [42] Let 0<q<p≤1 and f:ITp,q→R be continuous at 0. Then,
∫x0∫s0f(τ)dp,qτdp,qs=∫xp0∫xpqτf(τ)dp,qsdp,qτ. |
Lemma 2.3. [42] Let α,β>0,0<q<p≤1. Then,
(a)∫t0(t−qs)α−1_p,qsβdp,qs=tα+βBp,q(β+1,α),(b)∫t0∫x0(t−qx)α−1_p,q(x−qs)β−1_p,qdp,qsdp,qx=Bp,q(β+1,α)[β]p,qtα+β. |
Lemma 2.4. [45] Let α,β>0,0<q<p≤1 and n∈Z. Then,
(a)∫t0(t−qs)α−1_p,qdp,qs=p(α2)Γp,q(α)Γp,q(α+1)tα,(b)∫t0∫xp−β−10(t−qx)−β−1_p,q(xp−β−1−qs)α−1_p,qdp,qsdp,qx=p(α2)+(−β2)Γp,q(α)Γp,q(α+1)tα+β,(c)∫t0(t−qs)−β−1_p,q(sp−β−1)α−ndp,qs=p(−β2)Γp,q(α−n+1)Γp,q(−β)Γp,q(α−β−n+1)tα−β−n. |
We employ above lemmas to get the new results as follows.
Lemma 2.5. Let α,β,θ>0 and 0<q<p≤1. Then,
∫t0∫yp−θ−10∫xpβ−10(t−qy)−θ−1_p,q(yp−θ−1−qx)−β−1_(xpβ−1−qs)α−1_p,qdp,qsdp,qxdp,qy=p(α2)+(β2)+(−θ2)Γp,q(α)Γp,q(β)Γp,q(−θ)Γp,q(α+β−θ+1)tα+β−θ. |
Proof. Using Lemma 3(a) and definition of the (p,q)-beta function, we obtain
∫t0∫yp−θ−10∫xpβ−10(t−qy)−θ−1_p,q(yp−θ−1−qx)−β−1_(xpβ−1−qs)α−1_p,qdp,qsdp,qxdp,qy=∫t0∫yp−θ−10(t−qy)−θ−1_p,q(yp−θ−1−qx)β−1_p,q[∫xpβ−10(xpβ−1−qs)α−1_p,qdp,qs]dp,qxdp,qy=p(α2)Γp,q(α)Γp,q(α+1)∫t0∫yp−θ−10(t−qy)−θ−1_p,q(yp−θ−1−qx)β−1p,q(xpβ−1)αdp,qxdp,qy=p(α2)+(β2)+(−θ2)Γp,q(α)Γp,q(β)Γp,q(−θ)Γp,q(α+β−θ+1)tα+β−θ. |
The proof is complete.
The following lemma is a solution of the linear variant of problem (1.1), plays an important role in the upcoming analysis.
Lemma 2.6. Let B≠0, 0<q<p≤1, α,β,θ∈(0,1], h∈C(ITp,q,R) and ρ,g∈C(ITp,q,R+) be given functions, ϕ:C(ITp,q,R)→R be given functional. Then the problem
CDαp,q[CDβp,q(1+ρ(t))]u(t)=h(t),t∈ITp,q | (2.1) |
u(0)=ϕ(u) | (2.2) |
u(Tp)=Dθp,qg(η)u(η),η∈ITp,q−{0,Tp} | (2.3) |
has the unique solution:
u(t)=ϕ(u)[1+ρ(0)1+ρ(t)][1−AtβBΓp,q(β+1)]+[Oη[h]−OT[h]1+ρ(t)]tβBΓp,q(β+1)+1(1+ρ(t))p(α2)+(β2)Γp,q(α)Γp,q(β)×∫t0∫xpβ−10(t−qx)β−1_p,q(xpβ−1−qs)α−1_p,qh(spα−1)dp,qsdp,qx, | (2.4) |
where the functionals Oη[h] and OT[h] are defined by
Oη[h]:=1p(α2)+(β2)+(−θ2)Γp,q(α)Γp,q(β)Γp,q(−θ)×∫η0∫yp−θ−10∫xpβ−10(η−qy)−θ−1_p,q(yp−θ−1−qx)β−1_p,q1+ρ(yp−θ−1)(xpβ−1−qs)α−1_p,q×g(xp−θ−1)h(spα−1)dp,qsdp,qxdp,qy, | (2.5) |
OT[h]:=1(1+ρ(Tp))p(α2)+(β2)Γp,q(α)Γp,q(β)×∫Tp0∫xpβ−10(Tp−qx)β−1_p,q(xpβ−1−qs)α−1_p,qh(spα−1)dp,qsdp,qx, | (2.6) |
respectively, and the constants A,B are defined by
A:=11+ρ(Tp)−1p(−θ2)Γp,q(−θ)∫η0(η−qs)−θ−1_p,qg(sp−θ−1)1+ρ(sp−θ−1)dp,qs | (2.7) |
B:=(Tp)β(1+ρ(Tp))Γp,q(β+1)−1p(−θ2)Γp,q(−θ)Γp,q(β+1)×∫η0(η−qs)−θ−1_p,qg(sp−θ−1)1+ρ(sp−θ−1)(sp−θ−1)βdp,qs, | (2.8) |
respectively.
Proof. Take fractional (p,q)-integral of order α for (2.1). Then, we have
[CDβp,q(1+ρ(t))]u(t)=C1+Iαp,qh(t)=C1+1p(α2)Γp,q(α)∫t0(t−qs)α−1_p,qh(spα−1)dp,qs. | (2.9) |
Taking fractional (p,q)-integral of order β for (2.9), we obtain
(1+ρ(t))u(t)=C0+C1Iβp,q(1)+Iβp,qIαp,qh(t), | (2.10) |
Therefore,
u(t)=C01+ρ(t)+C1(1+ρ(t))p(β2)Γp,q(β)∫t0(t−qs)β−1_p,qdp,qs+1(1+ρ(t))p(α2)+(β2)Γp,q(α)Γp,q(β)×∫t0∫xpβ−10(t−qx)β−1_p,q(xpβ−1−qs)α−1_p,qh(spα−1)dp,qsdp,qx. | (2.11) |
Substituting the condition (2.2) to (2.11), we obtain
C0=(1+ρ(0))ϕ(u). | (2.12) |
Taking fractional Riemann-Liouville (p,q)-difference of order θ for (2.11), we get
Dθp,qu(t)=C0p(−θ2)Γp,q(−θ)∫t0(t−qs)−θ−1_p,q11+ρ(sp−θ−1)dp,qs+C1p(−θ2)Γp,q(−θ)Γp,q(β+1)∫t0(t−qs)−θ−1_p,q(sp−θ−1)β1+ρ(sp−θ−1)dp,qs+1p(α2)+(β2)+(−θ2)Γp,q(α)Γp,q(β)Γp,q(−θ)×∫t0∫yp−θ−10∫xpβ−10(t−qy)−θ−1_p,q(yp−θ−1−qx)β−1_p,q1+ρ(yp−θ−1)(xpβ−1−qs)α−1_p,q×h(spα−1)dp,qsdp,qxdp,qy. | (2.13) |
From the condition (2.3) and by (2.12), we obtain
C1=Oη[h]−OT[h]−ϕ(u)(1+ρ(0))AB. | (2.14) |
After substituting C0,C1 into (2.11), we obtain (2.4). The converse can be proved by direct computation. Our proof is complete.
In this section, we aim to prove the existence and uniqueness result for problem (1.1) by using the Banach fixed point theorem. Let C=C(ITp,q,R) be a Banach space of all function u. The norm defined by
‖u‖C=‖u‖+‖Dνp,qu‖, |
where ‖u‖=max and \|D_{p, q}^\nu u\| = \max_{t\in I_{p, q}^T}\Big\{ \left| D_{p, q}^\nu u(t)\right| \Big\} .
By Lemma 2.6, replacing h(t) by F\left[ t, u(t), \left(\Psi^\gamma_{p, q}u\right)(t), \left(\Upsilon^\nu_{p, q}u\right) (t)\right] , we define an operator {\mathcal{F}}:{\mathcal{C}}\rightarrow {\mathcal{C}} is defined by
\begin{align} ({\mathcal{F}}u)(t)\,: = \,\,&\phi(u)\left[ \frac{1+\rho(0)}{1+\rho(t)}\right] \left[ 1-\frac{\textbf{A} t^\beta}{ \textbf{B}\Gamma_{p,q}(\beta+1) } \right] + \left[ \frac{\mathbb{O}_{\eta}^*[F,u]-\mathbb{O}_{T}^*[F,u]}{1+\rho(t)} \right] \frac{ t^\beta}{ \textbf{B}\Gamma_{p,q}(\beta+1) }\\ &+\frac{1}{ \left( 1+\rho(t) \right) p^{ {\alpha \choose 2} + {\beta \choose 2} } \Gamma_{p,q} (\alpha) \Gamma_{p,q} (\beta) } \int_{0}^{t} \int_{0}^{\frac{x}{p^{\beta-1}}} \left(t-qx\right)_{p,q}^{\underline{\beta-1}} \left(\frac{x}{p^{\beta-1}}-qs\right)_{p,q}^{\underline{\alpha-1}} \\ & \times F\left[ \frac{s}{p^{\alpha-1}},u\left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Psi^\gamma_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Upsilon^\nu_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) \right] \,d_{p,q}s \,d_{p,q}x \end{align} | (3.1) |
where the functionals \; \mathbb{O}_{\eta}^*[F, u] \; and \; \mathbb{O}_{T}^*[F, u] \; are defined by
\begin{align} {\mathbb{O}_{\eta}^*[F,u]}\,: = \; &\frac{1}{p^{ {\alpha \choose 2} +{\beta \choose 2}+{-\theta \choose 2}} \Gamma_{p,q}(\alpha)\Gamma_{p,q}(\beta) \Gamma_{p,q}(-\theta) } \end{align} | (3.2) |
\begin{align} &\times \int_{0}^\eta \int_{0}^{\frac{y}{p^{-\theta-1}}} \int_{0}^{\frac{x}{p^{\beta-1}}} (\eta-qy)_{p,q}^{\underline{-\theta-1}} \frac{ \left( \frac{y}{p^{-\theta-1}} -qx \right)_{p,q}^{\underline{\beta-1}} }{1+\rho \left( \frac{y}{p^{-\theta-1}} \right)} \left( \frac{x}{p^{\beta-1}} -qs \right)_{p,q}^{\underline{\alpha-1}} g\left( \frac{x}{p^{\beta-1}}\right) \\ &\times F\left[ \frac{s}{p^{\alpha-1}},u\left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Psi^\gamma_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Upsilon^\nu_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) \right] \,d_{p,q}s\,d_{p,q}x\,d_{p,q}y \\ {\mathbb{O}_{T}^*[F,u]}: = \,&\frac{1}{ \left(1+\rho\left(\frac{T}{p}\right) \right) p^{ {\alpha \choose 2} +{\beta \choose 2}} \Gamma_{p,q}(\alpha)\Gamma_{p,q}(\beta) } \end{align} | (3.3) |
\begin{align} &\times \int_{0}^{\frac{T}{p}} \int_{0}^{\frac{x}{p^{\beta-1}}} \left(\frac{T}{p}-qx \right)_{p,q}^{\underline{\beta-1}} \left(\frac{x}{p^{\beta-1}}-qs \right)_{p,q}^{\underline{\alpha-1}}\\ &\times F\left[ \frac{s}{p^{\alpha-1}},u\left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Psi^\gamma_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Upsilon^\nu_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) \right] \,d_{p,q}s \,d_{p,q}x \nonumber \end{align} |
and \textbf{A} and \textbf{B} are defined by (2.7) and (2.8), respectively.
Since the problem (1.1) has solution if and only if the operator \mathcal{F} has fixed point, we next prove that {\mathcal{F}} has fixed point as shawn in the following theorem.
Theorem 3.1. Assume that F:I_{p, q}^T\times {\mathbb{R}}^3\rightarrow {\mathbb{R}} and \rho, g : I_{p, q}^T\rightarrow {\mathbb{R}^+} are continuous, \varphi, \psi : I_{p, q}^T\times I_{p, q}^T\rightarrow [0, \infty) are continuous with \varphi_0 = \max\bigg\{\varphi(t, s):(t, s)\in I_{p, q}^T\times I_{p, q}^T\bigg\} and \psi_0 = \max\bigg\{\psi(t, s):(t, s)\in I_{p, q}^T\times I_{p, q}^T\bigg\} . Suppose that the following conditions hold:
(H_1) There exist positive constants L_i such that for each t\in I^T_{p, q} and u_i, v_i\in {\mathbb{R}}, \; i = 1, 2, 3
\begin{eqnarray*} \Big|F\left[t,u_1,u_2,u_3\right]-F\left[ t,v_1,v_2,v_3\right]\Big| &\leq &L_1\big|u_1-v_1\big|+L_2\big|u_2-v_2\big| +L_3\big|u_3-v_3\big|. \end{eqnarray*} |
(H_2) There exists a positive constant \; \omega such that for each u, v\in {\mathcal{C}}
|\phi(u)-\phi(v)| \leq \omega\|u-v\|_{\mathcal{C}}. |
(H_3) For each \; t\in I^T_{p, q} , \; 0 < \rho < \rho(t) < P.
(H_4) For each \; t\in I^T_{p, q} , \; 0 < g < g(t) < G.
(H_5) \; \mathcal{X} : = \left[ \omega \mathcal{P}+\mathcal{L}\mathcal{Q} \right]\left(1 +\frac{\left(\frac{T}{p}\right)^{-\nu }}{\Gamma_{p, q}(1-\nu)}\right) +\mathcal{L}\left(\frac{\left(\frac{T}{p}\right)^{\alpha+\beta} }{\Gamma_{p, q}(\alpha+\beta+1)} +\frac{\left(\frac{T}{p}\right)^{\alpha+\beta-\nu}}{\Gamma_{p, q}(\alpha+\beta-\nu+1)} \right) \, < \, 1
where
\begin{align} {\mathcal{L}}\,: = \; &L_1+L_2\frac{\varphi_0\left( \frac{T}{p}\right)^\gamma }{\Gamma_{p,q}(\gamma+1)} +L_3\frac{\varphi_0\left( \frac{T}{p}\right)^{-\nu}}{\Gamma_{p,q}(1-\gamma)}, \end{align} | (3.4) |
\begin{align} \mathcal{P}: = \; &\left[ \frac{1+P}{1+\rho} \right] \left[ 1+\frac{\max \left|\boldsymbol{A} \right|\left( \frac{T}{p}\right)^\beta }{\min \left|\boldsymbol{B}\right|\Gamma_{p,q}(\beta+1)} \right], \end{align} | (3.5) |
\begin{align} \mathcal{Q}: = \; & \frac{\left( \frac{T}{p}\right)^\beta }{ (1+\rho)\min\left|\boldsymbol{B}\right|\Gamma_{p,q}(\beta+1)} \\ &\times \left[ \frac{G \eta^{\alpha+\beta-\theta}}{(1+\rho)\Gamma_{p,q}(\alpha+\beta-\theta+1)} +\frac{\left( \frac{T}{p}\right)^{\alpha+\beta }}{(1+\rho) \Gamma_{p,q}(\alpha+\beta+1)} \right]. \end{align} | (3.6) |
Then, problem (1.1) has a unique solution in I^T_{p, q} .
Proof. For each t\in I_{p, q}^T and u, v\in {\mathcal{C}} , we have
\begin{align*} \Big|\left( \Psi^\gamma_{p,q}u\right) (t)-\left( \Psi^\gamma_{p,q}v\right) (t)\Big| \leq\; & \frac{\varphi_0}{p^{\gamma \choose 2}\Gamma_{p,q}(\gamma)} \int_{0}^t \left( t-qs\right) ^{\underline{\gamma-1}}_{p,q}\,\left| u\left( \frac{s}{p^{\gamma-1}}\right) - v\left( \frac{s}{p^{\gamma-1}}\right)\right| \,d_{p,q}s \\ \leq\; & \frac{\varphi_0}{p^{\gamma \choose 2}\Gamma_{p,q}(\gamma)} \big\|u-v\big\| \int_{0}^{\frac{T}{p}} \left( \frac{T}{p}-qs\right) ^{\underline{\gamma-1}}_{p,q}\, \,d_{p,q}s\\ = \; &\frac{ \varphi_0\left( \frac{T}{p}\right)^{\gamma}}{\Gamma_{p,q}(\gamma+1)} \big\|u-v\big\|,\\ \text{and }\; \Big|\left( \Upsilon^\nu_{p,q}u\right) (t)-\left( \Upsilon^\nu_{p,q}v\right) (t)\Big| \leq\; &\frac{ \psi_0\left( \frac{T}{p}\right)^{-\nu}}{\Gamma_{p,q}(1-\nu)} \big\|u-v\big\|. \end{align*} |
Denote that
{\mathcal{H}}|u-v|(t): = \Big|F\left[ t,u(t),\left( \Psi^\gamma_{p,q}\right) (t),\left( \Upsilon^\nu_{p,q}u\right) (t)\right]-F\left[ t,v(t),\left( \Psi^\gamma_{p,q}v\right) (t),\left( \Upsilon^\nu_{p,q}v\right) (t)\right]\Big|. |
Then, we have
\begin{align*} &\Big|{{\mathbb{O}}_{\eta}^*[F,u]} -{{\mathbb{O}}_{\eta}^*[F,v]} \Big|\\ \leq\; & \frac{1}{p^{ {\alpha \choose 2} +{\beta \choose 2}+{-\theta \choose 2}} \Gamma_{p,q}(\alpha)\Gamma_{p,q}(\beta) \Gamma_{p,q}(-\theta) }\nonumber\\ &\times \int_{0}^\eta \int_{0}^{\frac{y}{p^{-\theta-1}}} \int_{0}^{\frac{x}{p^{\beta-1}}} (\eta-qy)_{p,q}^{\underline{-\theta-1}} \frac{ \left( \frac{y}{p^{-\theta-1}} -qx \right)_{p,q}^{\underline{\beta-1}} }{1+\rho \left( \frac{y}{p^{-\theta-1}} \right)} \left( \frac{x}{p^{\beta-1}} -qs \right)_{p,q}^{\underline{\alpha-1}} g\left( \frac{x}{p^{\beta-1}}\right) \nonumber\\ &\times {\mathcal{H}}|u-v|\left( \frac{s}{p^{\alpha-1}}\right) \,d_{p,q}s\,d_{p,q}x\,d_{p,q}y \nonumber\\ \leq\; & \frac{G \left[ L_1\big|u-v\big|+L_2\Big| \Psi^\gamma_{p,q}u- \Psi^\gamma_{p,q}v\Big| +L_3\Big| \Upsilon^\nu_{p,q}u-\Upsilon^\nu_{p,q}v\Big| \right] } {(1+\rho)p^{ {\alpha \choose 2} +{\beta \choose 2}+{-\theta \choose 2}} \Gamma_{p,q}(\alpha)\Gamma_{p,q}(\beta) \Gamma_{p,q}(-\theta) }\nonumber\\ &\times \int_{0}^\eta \int_{0}^{\frac{y}{p^{-\theta-1}}} \int_{0}^{\frac{x}{p^{\beta-1}}} (\eta-qy)_{p,q}^{\underline{-\theta-1}} \frac{ \left( \frac{y}{p^{-\theta-1}} -qx \right)_{p,q}^{\underline{\beta-1}} }{1+\rho \left( \frac{y}{p^{-\theta-1}} \right)} \left( \frac{x}{p^{\beta-1}} -qs \right)_{p,q}^{\underline{\alpha-1}} \,d_{p,q}s\,d_{p,q}x\,d_{p,q}y \nonumber\\ \leq\; &\frac{ G\eta^{\alpha+\beta-\theta} }{(1+\rho)\Gamma_{p,q}(\alpha+\beta-\theta+1)} \left[ L_1+L_2 \frac{ \varphi_0 \left( \frac{T}{p}\right)^{\gamma} }{\Gamma_{p,q}(\gamma+1)} +L_3\frac{ \psi_0 \left( \frac{T}{p}\right)^{-\nu} }{\Gamma_{p,q}(1-\nu)} \right] \|u-v\|_{\mathcal{C}} \nonumber\\ = \; & \frac{ G\eta^{\alpha+\beta-\theta} {\mathcal{L}} } {(1+\rho) \Gamma_{p,q}(\alpha+\beta-\theta+1)} \|u-v\|_{\mathcal{C}}. \end{align*} |
Similary,
\begin{align*} &\Big| {\mathbb{O}_{T}^*[F,u]} -{\mathbb{O}_{T}^*[F,v]} \Big| \\ \leq \; & \frac{1}{ \left(1+\rho\left( \frac{T}{p} \right) \right) p^{ {\alpha \choose 2} +{\beta \choose 2}} \Gamma_{p,q}(\alpha)\Gamma_{p,q}(\beta) } \nonumber \\ \; & \times \int_{0}^{\frac{T}{p}} \int_{0}^{\frac{x} { p^{\beta-1} } } \left(\frac{T}{p}-qx\right)_{p,q}^{\underline{\beta-1}} \left(\frac{x}{p^{\beta-1}}-qs\right)_{p,q}^{\underline{\alpha-1}}\,{\mathcal{H}}|u-v|\left( \frac{s}{p^{\alpha-1}}\right)\,d_{p,q}s \,d_{p,q}x \\ \leq\; & \frac{ \left[ L_1\big|u-v\big|+L_2\Big| \Psi^\gamma_{p,q}u- \Psi^\gamma_{p,q}v\Big| +L_3\Big|\Upsilon^\nu_{p,q}u-\Upsilon^\nu_{p,q}v\Big| \right] } {(1+\rho)p^{ {\alpha \choose 2} +{\beta \choose 2}} \Gamma_{p,q}(\alpha)\Gamma_{p,q}(\beta) }\nonumber\\ &\times \int_{0}^{\frac{T}{p}} \int_{0}^{\frac{x} { p^{\beta-1} } } \left(\frac{T}{p}-qx\right)_{p,q}^{\underline{\beta-1}} \left(\frac{x}{p^{\beta-1}}-qs\right)_{p,q}^{\underline{\alpha-1}}\,d_{p,q}s \,d_{p,q}x \nonumber\\ \leq\; & \frac{ \left( \frac{T}{p}\right)^{\alpha+\beta} {\mathcal{L}} } {(1+\rho) \Gamma_{p,q}(\alpha+\beta+1)} \|u-v\|_{\mathcal{C}}. \end{align*} |
Consider
\begin{align} &\big| ({\mathcal{F}}u)(t)-({\mathcal{F}}v)(t) \big|\\ \leq\; &\left[ \frac{1+\rho(0)}{1+\rho} \right] \left[ 1+\frac{\max \left|\textbf{A} \right|\left( \frac{T}{p}\right)^\beta }{\min \left|\textbf{B}\right|\Gamma_{p,q}(\beta+1)} \right] \left| \phi(u)-\phi(v) \right| \\ +&\frac{ \left( \frac{T}{p}\right)^\beta}{ (1+\rho) \min\left|\textbf{B}\right| \Gamma_{p,q}(\beta+1) } \left[ \Big| {\mathbb{O}_{\eta}^*[F,u]} -{\mathbb{O}_{\eta}^*[F,v]} \Big| +\Big| {\mathbb{O}_{T}^*[F,u]} -{\mathbb{O}_{T}^*[F,v]} \Big| \right] \\ +& \frac{ \left[ L_1+L_2 \frac{ \varphi_0 \left( \frac{T}{p}\right)^{\gamma} }{\Gamma_{p,q}(\gamma+1)} +L_3\frac{ \psi_0 \left( \frac{T}{p}\right)^{-\nu} }{\Gamma_{p,q}(1-\nu)} \right] \,\|u-v\|_{\mathcal{C}} } { {(1+\rho)p^{ {\alpha \choose 2} +{\beta \choose 2}} \Gamma_{p,q}(\alpha)\Gamma_{p,q}(\beta) } } \\ &\times \int_{0}^{\frac{T}{p}} \int_{0}^{\frac{x} { p^{\beta-1} } } \left(\frac{T}{p}-qx\right)_{p,q}^{\underline{\beta-1}} \left(\frac{x}{p^{\beta-1}}-qs\right)_{p,q}^{\underline{\alpha-1}}\,d_{p,q}s \,d_{p,q}x \\ \leq\; &\left[ \frac{1+P}{1+\rho} \right] \left[ 1+\frac{\max \left|\textbf{A} \right|\left( \frac{T}{p}\right)^\beta }{\min \left|\textbf{B}\right|\Gamma_{p,q}(\beta+1)} \right] \omega \|u-v\|_{\mathcal{C}} \\ +& \left\lbrace \frac{\left( \frac{T}{p}\right)^\beta }{ (1+\rho)\min\left|\textbf{B}\right|\Gamma_{p,q}(\beta+1)}\left[ \frac{G \eta^{\alpha+\beta-\theta}}{(1+\rho)\Gamma_{p,q}(\alpha+\beta-\theta+1)} +\frac{\left( \frac{T}{p}\right)^{\alpha+\beta }}{(1+\rho) \Gamma_{p,q}(\alpha+\beta+1)} \right] \right. \\ &\left.+ \frac{\left( \frac{T}{p}\right)^{\alpha+\beta} } { (1+\rho) \Gamma_{p,q}(\alpha+\beta+1)}\right\rbrace \left[ L_1+L_2 \frac{ \varphi_0 \left( \frac{T}{p}\right)^{\gamma} }{\Gamma_{p,q}(\gamma+1)} +L_3\frac{ \psi_0 \left( \frac{T}{p}\right)^{-\nu} }{\Gamma_{p,q}(1-\nu)} \right] \,\|u-v\|_{\mathcal{C}} \\ = \; & \left\{ \mathcal{P}\omega+\mathcal{L} \left[ \mathcal{Q }+\frac{\left( \frac{T}{p}\right)^{\alpha+\beta} } { (1+\rho) \Gamma_{p,q}(\alpha+\beta+1)} \right] \right\} \,\|u-v\|_{\mathcal{C}}. \end{align} | (3.7) |
Next, we provide (D_{p, q}^\nu{\mathcal{F}}u) as
\begin{align} &(D_{p,q}^\nu{\mathcal{F}}u)(t)\\ = \,\,&\frac{\left(1+\rho(0)\right)\phi(u)}{p^ {-\nu \choose 2}\Gamma_{p,q}(-\nu) } \left[ \int_{0}^{t}\left(t-qs\right)_{p,q}^{\underline{-\nu-1}} \frac{1}{1+\rho \left( \frac{s}{p^{-\nu-1}} \right) } \left( 1-\frac{\textbf{A} \left( \frac{s}{p^{-\nu-1}} \right)^\beta}{ \textbf{B}\Gamma_{p,q}(\beta+1) } \right) \,d_{p,q}s \right] \\ &+ \frac{\mathbb{O}_{\eta}^*[F,u]-\mathbb{O}_{T}^*[F,u]}{\textbf{B}\Gamma_{p,q}(\beta+1)p^{-\nu \choose 2}\Gamma_{p,q}(-\nu) } \int_{0}^{t}\left(t-qs\right)_{p,q}^{\underline{-\nu-1}} \frac{\left( \frac{s}{p^{-\nu-1}} \right)^\beta}{1+\rho \left( \frac{s}{p^{-\nu-1}} \right) } \,d_{p,q}s \\ &+\frac{1}{ p^{ {\alpha \choose 2} + {\beta \choose 2} +{-\nu\choose 2}} \Gamma_{p,q} (\alpha) \Gamma_{p,q} (\beta) \Gamma_{p,q} (-\nu) } \\ &\times \int_{0}^{t} \int_{0}^{\frac{y}{p^{-\nu-1}}} \int_{0}^{\frac{x}{p^{\beta-1}}} \left(t-qy\right)_{p,q}^{\underline{-\nu-1}} \frac{ \left( \frac{y}{p^{-\nu-1}} -qx\right)_{p,q}^{\underline{\beta-1}} }{ 1+\rho \left( \frac{y}{p^{-\nu-1}} \right) } \left(\frac{x}{p^{\beta-1}}-qs\right)_{p,q}^{\underline{\alpha-1}} \\ &\times F\left[ \frac{s}{p^{\alpha-1}},u\left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Psi^\gamma_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) ,\left( \Upsilon^\nu_{p,q}u\right) \left( \frac{s}{p^{\alpha-1}}\right) \right] \,d_{p,q}s \,d_{p,q}x\,d_{p,q}y, \end{align} | (3.8) |
and
\begin{align} &\big|(D_{p,q}^\nu{\mathcal{F}}u)(t) -(D_{p,q}^\nu{\mathcal{F}}v)(t) \big| \\ \leq \,& \frac{ |\phi(u)-\phi(v)|}{p^ {-\nu \choose 2}\Gamma_{p,q}(-\nu) } \left[ \frac{1+\rho(0)}{1+\rho} \right] \left[ 1+\frac{\max |\textbf{A}| \left( \frac{T}{p} \right)^\beta}{ \min |\textbf{B}|\Gamma_{p,q}(\beta+1) } \right] \int_{0}^{ \frac{T}{p} }\left(\frac{T}{p}-qs\right)_{p,q}^{\underline{-\nu-1}} \,d_{p,q}s \\ &+ \frac{ | \mathbb{O}_{\eta}^*[F,u]-\mathbb{O}_{\eta}^*[F,v] | +| \mathbb{O}_{T}^*[F,u]-\mathbb{O}_{T}^*[F,v] | } { \min |\textbf{B}|p^ {-\nu \choose 2}\Gamma_{p,q}(\beta+1)\Gamma_{p,q}(-\nu) } \frac{ \left( \frac{T}{p} \right)^\beta}{ \left(1+\rho \right)} \int_{0}^{ \frac{T}{p} }\left(\frac{T}{p}-qs\right)_{p,q}^{\underline{-\nu-1}} \,d_{p,q}s \\ &+\frac{ \left[ L_1+L_2 \frac{ \varphi_0 \left( \frac{T}{p}\right)^{\gamma} }{\Gamma_{p,q}(\gamma+1)} +L_3\frac{ \psi_0 \left( \frac{T}{p}\right)^{-\nu} }{\Gamma_{p,q}(-\nu)} \right] } { \left(1+\rho \right)p^{ {\alpha \choose 2} + {\beta \choose 2} +{-\nu \choose 2}} \Gamma_{p,q} (\alpha) \Gamma_{p,q} (\beta) \Gamma_{p,q} (-\nu) } \\ &\times \int_{0}^{\frac{T}{p}} \int_{0}^{\frac{y}{p^{-\nu-1}}} \int_{0}^{\frac{x}{p^{\beta-1}}} \left(\frac{T}{p}-qy\right)_{p,q}^{\underline{-\nu-1}} \left(\frac{y}{p^{-\nu-1}}-qx\right)_{p,q}^{\underline{\beta-1}} \left(\frac{x}{p^{\beta-1}}-qs\right)_{p,q}^{\underline{\alpha-1}}\,d_{p,q}s \,d_{p,q}x\,d_{p,q}y \\ \leq \,&\left\lbrace \mathcal{P}\omega \frac{ \left(\frac{T}{p}\right)^{-\nu} }{ \Gamma_{p,q}(1-\nu) } +\mathcal{L} \left[ \mathcal{Q}\frac{ \left(\frac{T}{p}\right)^{-\nu} }{ \Gamma_{p,q}(1-\nu) } +\frac{ \left(\frac{T}{p}\right)^{\alpha+\beta-\nu} }{ (1+\rho) \Gamma_{p,q}(\alpha+\beta-\nu+1) } \right]\right\rbrace \,\|u-v\|_{\mathcal{C}}. \end{align} | (3.9) |
From (3.7) and (3.9), we get
\begin{align*} \|{ (\mathcal{F}}&u)(t)-({\mathcal{F}}v)(t)\|_{\mathcal{C}}\nonumber \\ \leq \, &\left[ \omega \mathcal{P}+\mathcal{L}\mathcal{Q} \right]\left( 1 +\frac{\left( \frac{T}{p}\right)^{-\nu }}{\Gamma_{p,q}(1-\nu)}\right) +\mathcal{L}\left(\frac{\left( \frac{T}{p}\right)^{\alpha+\beta} }{\Gamma_{p,q}(\alpha+\beta+1)} +\frac{\left( \frac{T}{p}\right)^{\alpha+\beta-\nu}}{\Gamma_{p,q}(\alpha+\beta-\nu+1)} \right) \nonumber \\ = \,& \mathcal{X} \,\|u-v\|_{\mathcal{C}}. \end{align*} |
Thus, from (H_5) , {\mathcal{F}} is a contraction. Therefore, by using Banach fixed point theorem, {\mathcal{F}} has a fixed point which is a unique solution of problem (1.1) on I^T_{p, q} .
In this section, we first introduce Schauder's fixed point theorem that is used to study a solution of (1.1).
Lemma 4.1. [48] (Arzelá-Ascoli theorem) A collection of functions in C[a, b] with the sup norm, is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b] .
Lemma 4.2. [48] If a set is closed and relatively compact then it is compact.
Lemma 4.3. [49] (Schauder's fixed point theorem) Let (D, d) be a complete metric space, U be a closed convex subset of D , and T: D\rightarrow D be the map such that the set Tu:u\in U is relatively compact in D . Then the operator T has at least one fixed point u^*\in U : Tu^* = u^*.
Next, we prove that (1.1) has at least one solution by using above lemmas as follows.
Theorem 4.1. Suppose that (H_1) and (H_3)-(H_5) hold. Then problem (1.1) has at least one solution on I^T_{p, q} .
Proof. The proof is organized as follows.
Step I. Verify {\mathcal{F}} maps bounded sets into bounded sets in B_R = \{u \in \mathcal{C}: \|u\|_{\mathcal{C}} \leq R\} . Let \; \max\limits_{t\in I^T_{p, q}}|F(t, 0, 0, 0)| = F, \; \sup\limits_{u\in {\mathcal{C}}} |\phi(u)| = \phi . We choose a constant
\begin{equation} R\geq \frac{ [\phi \mathcal{P}+F] \left( 1 +\frac{\left( \frac{T}{p}\right)^{-\nu }}{\Gamma_{p,q}(1-\nu)}\right)+F\left(\frac{\left( \frac{T}{p}\right)^{\alpha+\beta} }{\Gamma_{p,q}(\alpha+\beta+1)} +\frac{\left( \frac{T}{p}\right)^{\alpha+\beta-\nu}}{\Gamma_{p,q}(\alpha+\beta-\nu+1)} \right) }{ 1-\mathcal{L}\left[ \mathcal{Q}\left( 1 +\frac{\left( \frac{T}{p}\right)^{-\nu }}{\Gamma_{p,q}(1-\nu)}\right)+\left(\frac{\left( \frac{T}{p}\right)^{\alpha+\beta} }{\Gamma_{p,q}(\alpha+\beta+1)} +\frac{\left( \frac{T}{p}\right)^{\alpha+\beta-\nu}}{\Gamma_{p,q}(\alpha+\beta-\nu+1)} \right) \right] }. \end{equation} | (4.1) |
Denote that \; \big|\mathcal{T}(t, u, 0)\big| = \bigg|F\big[t, u(t), \left(\Psi_{p, q}^\gamma u\right) (t), \left(\Upsilon_{p, q}^\nu u\right) (t) \big]-F\big[t, 0, 0, 0\big]\bigg|+\big|F[t, 0, 0, 0]\big|. For each t\in I_{p, q}^T and u\in B_{R} , we have
\begin{align} &\Big|\mathbb{O}_{\eta}^*[F,u] \Big|\\ \leq\; & \frac{G}{p^{{\alpha \choose 2} +{\beta \choose 2} +{-\theta \choose 2}}(1+\rho)} \int_{0}^\eta \int_{0}^{\frac{y}{p^{-\theta-1}}} \int_{0}^{\frac{x}{p^{\beta-1}}} (\eta-qy)_{p,q}^{\underline{-\theta-1}} \left( \frac{y}{p^{-\theta-1}} -yx \right)_{p,q}^{\underline{\beta-1}} \left( \frac{x}{p^{\beta-1}} -qs \right)_{p,q}^{\underline{\alpha-1}} \\ &\times\Big |\mathcal{T}\left( \frac{s}{p^{\alpha-1}},u,0\right) \Big| \,d_{p,q}s\,d_{p,q}x\,d_{p,q}y \\ \leq\; &\frac{G}{(1+\rho)} \left( \left[ L_1+L_2\varphi_0\frac{\left( \frac{T}{p}\right)^{\gamma}}{\Gamma_{p,q}(\gamma+1)}+L_3\psi_0\frac{\left( \frac{T}{p}\right)^{-\nu}}{\Gamma_{p,q}(1-\nu)} \right]\|u\|_\mathcal{C} +F\right) \,\frac{\eta^{\alpha+\beta-\theta}}{\Gamma_{p,q}(\alpha+\beta-\theta+1)}, \end{align} | (4.2) |
and
\begin{align} &\Big|\mathbb{O}_{T}^*[F,u] \Big| \\ \leq\; &\frac{1}{(1+\rho)} \left( \left[ L_1+L_2\varphi_0\frac{\left( \frac{T}{p}\right)^{\gamma}}{\Gamma_{p,q}(\gamma+1)}+L_3\psi_0\frac{\left( \frac{T}{p}\right)^{-\nu}}{\Gamma_{p,q}(1-\nu)} \right]\|u\|_\mathcal{C} +F\right) \,\frac{ {\left(\frac{T}{p}\right)^{\alpha+\beta}}}{\Gamma_{p,q}(\alpha+\beta+1)}. \end{align} | (4.3) |
From (4.2) and (4.3), we find that
\begin{align} \big| ({\mathcal{F}}u)(t)\big| \leq\; &\phi\left[ \frac{1+\rho (0)}{1+\rho}\right] \left[1+\frac{\max|\textbf{A}|\left(\frac{T}{p}\right)^\beta}{\min|\textbf{B}|\; \Gamma_{p,q}(\beta+1)}\right]\\ &+ \left[\frac{\mathbb{O}_{\eta}^*[F,u]+\mathbb{O}_{T}^*[F,u]}{1+\rho}\right]. \frac{\left(\frac{T}{p}\right)^\beta}{\min|\textbf{B}|\; \Gamma_{p,q}(\beta+1)} \\ & +\frac{ 1 } { \left(1+\rho \right)p^{ {\alpha \choose 2} + {\beta \choose 2}} \Gamma_{p,q} (\alpha) \Gamma_{p,q} (\beta) } \int_{0}^{\frac{T}{p}} \int_{0}^{\frac{x} { p^{\beta-1} } } \left(\frac{T}{p}-qx\right)_{p,q}^{\underline{\beta-1}} \left(\frac{x}{p^{\beta-1}}-qs\right)_{p,q}^{\underline{\alpha-1}}\\ &\times \Big |\mathcal{T}\left( \frac{s}{p^{\alpha-1}},u,0\right) \Big| \,d_{p,q}s \,d_{p,q}x \\ \leq\; & \phi \mathcal{P}+\left[ \mathcal{L}\|u\|_{\mathcal{C}}+F\right] \left[\mathcal{Q}+\frac{\left(\frac{T}{p}\right)^{\alpha+\beta}}{(1+\rho)\; \Gamma_{p,q}(\alpha+\beta+1)}\right]. \end{align} | (4.4) |
Similarly as above, we have
\begin{align} &\big|\left( \mathcal{D}^\nu_{p,q}{\mathcal{F}}u\right) (t)\big| \\ &\leq \phi \mathcal{P}\frac{ {\left(\frac{T}{p}\right)^{-\nu}}}{\Gamma_{p,q}(1-\nu)}+ \left[ \mathcal{L}\|u\|_{\mathcal{C}}+F\right] \left[ \mathcal{Q}\frac{ \left(\frac{T}{p}\right)^{-\nu} }{ \Gamma_{p,q}(1-\nu) } +\frac{ \left(\frac{T}{p}\right)^{\alpha+\beta-\nu} }{ (1+\rho) \Gamma_{p,q}(\alpha+\beta-\nu+1) } \right]. \end{align} | (4.5) |
Using (4.4) and (4.5), we get
\begin{align} \|{\mathcal{F}}u\|\leq \,& \mathcal{L}\|u\|_{\mathcal{C}}\; \left\lbrace \mathcal{Q}\left( 1 +\frac{\left( \frac{T}{p}\right)^{-\nu }}{\Gamma_{p,q}(1-\nu)}\right)+\left(\frac{\left( \frac{T}{p}\right)^{\alpha+\beta} }{\Gamma_{p,q}(\alpha+\beta+1)} +\frac{\left( \frac{T}{p}\right)^{\alpha+\beta-\nu}}{\Gamma_{p,q}(\alpha+\beta-\nu+1)} \right) \right\rbrace \\ &+[\phi \mathcal{P} +F]\left( 1 +\frac{\left( \frac{T}{p}\right)^{-\nu }}{\Gamma_{p,q}(1-\nu)}\right)+F\left(\frac{\left( \frac{T}{p}\right)^{\alpha+\beta} }{\Gamma_{p,q}(\alpha+\beta+1)} +\frac{\left( \frac{T}{p}\right)^{\alpha+\beta-\nu}}{\Gamma_{p,q}(\alpha+\beta-\nu+1)} \right) \\ &\leq R . \end{align} | (4.6) |
We find that \|{\mathcal{F}}u\|\leq R . Thus, {\mathcal{F}} is uniformly bounded.
Step II. Since F is continuous, the operator {\mathcal{F}} is continuous on B_R .
Step III. We examine that {\mathcal{F}} is equicontinuous on B_R . For any t_1, t_2\in I^T_{p, q} with t_1 < t_2 , we find that
\begin{align} \big| ({\mathcal{F}}u)(t_2)- ({\mathcal{F}}u)(t_1) \big|\, \leq\; &\phi \left(\frac{1+P}{1+\rho}\right) \left[1+\frac{|\textbf{A}|\; \Big|t_2^{\beta}-t_1^{\beta}\Big|}{|\textbf{B}|\; \Gamma_{p,q}(\beta+1)}\right] \\ &+\frac{ \Big|t_2^{\beta}-t_1^{\beta}\Big|}{(1+\rho)|\textbf{B}|\; \Gamma_{p,q}(\beta+1)}\left[\mathbb{O}_{\eta}^*[F,u]+\mathbb{O}_T^*[F,u] \right]\\ &+\frac{\|F\|}{(1+\rho)}\frac{ \Big|t_2^{\alpha+\beta}-t_1^{\alpha+\beta}\Big|}{\Gamma_{p,q}(\alpha+\beta+1)}, \end{align} | (4.7) |
and
\begin{align} \big|(D_{p,q}^\nu{\mathcal{F}}u)(t_2) -(D_{p,q}^\nu{\mathcal{F}}u)(t_1) \big| \leq\,&\phi \left(\frac{1+P}{1+\rho}\right) \left[1+\frac{|\textbf{A}|\left( \frac{T}{p}\right)^{\beta}} {|\textbf{B}|\; \Gamma_{p,q}(\beta+1)}\right] \frac{ \Big|t_2^{-\nu}-t_1^{-\nu}\Big|}{\Gamma_{p,q}(1-\nu)}\\ &+\frac{ \Big|t_2^{-\nu}-t_1^{-\nu}\Big|\left(\frac{T}{p}\right)^\beta}{(1+\rho)\; |\textbf{B}|\; \Gamma_{p,q}(\beta+1)\Gamma_{p,q}(1-\nu)}\left[\mathbb{O}_{\eta}^*[F,u]+\mathbb{O}_T^*[F,u] \right] \\ &+\frac{\|F\|}{1+\rho} \; \frac{ \Big|t_2^{\alpha+\beta-\nu}-t_1^{\alpha+\beta-\nu}\Big|}{\Gamma_{p,q}(\alpha+\beta+-\nu+1)}. \end{align} | (4.8) |
When |t_2-t_1|\rightarrow 0 , the right-hand side of (4.7) and (4.8) tends to be zero. Thus, {\mathcal{F}} is relatively compact on B_R .
Then, {\mathcal{F}}(B_R) is an equicontinuous set. From Steps I to III together with the Arzelá-Ascoli theorem, \mathcal{F}:{\mathcal{C}}\rightarrow {\mathcal{C}} is completely continuous. Therefore, by Schauder fixed point theorem, we can conclude that problem (1.1) has at least one solution.
In this section, we provide an example to show our results. We let \; \alpha = \frac{3}{4}, \; \beta = \frac{1}{2}, \; \gamma = \frac{1}{3}, \; \nu = \frac{1}{4}, \; \theta = \frac{2}{3}, \; p = \frac{2}{3}, \; q = \frac{1}{2}, \; T = 10, \; \eta = \sigma^4_{\frac{2}{3}, \frac{1}{2}}(10) = \frac{1215}{256} , g(t) = \left(10 \pi+\cos t\right)^2, \; \rho (t) = e^{\cos 2\pi t}, \; \phi (u) = \sum_{i = 1}^{\infty} C_i u(t_i) and \; F\left[ t, u(t), \; \left(\Psi^\gamma_{p, q}u\right) (t), \left(\Upsilon^\nu_{p, q}u\right) (t)\right]\, = \, \frac{e^{\cos^2 2\pi t}}{\left(100+e^{sin2\pi t}\right)(1+|u(t)|)} \Bigg[ e^{-(\pi + t^2) }\left(u^2+2|u|\right) + e^{-(10t+\frac{\pi}{2})}\left|\left(\Psi_{\frac{2}{3}, \frac{1}{2}}^{\frac{1}{3}}u\right) (t) \right| e^{-(2 \pi+\cos \pi t)}\left|\left(\Upsilon ^{\frac{1}{4}}_{\frac{2}{3}, \frac{1}{2}}u\right) (t) \right| \Bigg] which are satisfied with the conditions of the problem (1.1). Therefore the problem (1.1) is represented by
\begin{eqnarray*} {^C}D^{\frac{3}{4}}_{\frac{2}{3},\frac{1}{2}}\left[{^C}D^{\frac{1}{2}}_{\frac{2}{3},\frac{1}{2}}\left( 1+e^{\cos 2\pi t}\right) \right]u(t) & = &\frac{e^{\cos^2 2\pi t}}{\left( 100+e^{\sin 2\pi t}\right)(1+|u(t)|)}\Bigg[ e^{-(\pi + t^2) }\left( u^2+2|u|\right) \\ &&+ e^{-(10t+\frac{\pi}{2})}\left|\left( \Psi_{\frac{2}{3},\frac{1}{2}}^{\frac{1}{3}}u\right) (t) \right| + e^{-(2 \pi+\cos \pi t)}\left|\left( \Upsilon^{\frac{1}{4}}_{\frac{2}{3},\frac{1}{2}}u\right) (t) \right| \Bigg], \end{eqnarray*} |
where t\in I^{10}_{\frac{2}{3}, \frac{1}{2}} = \left\lbrace \frac{10\left(\frac{1}{2}\right)^k}{\left(\frac{2}{3}\right)^{k+1}}:k \in {\mathbb{N}}_0\right\rbrace \cup \{0\} , with three-point fractional (p, q) -difference boundary condition
\begin{eqnarray*} u(0)& = & \sum\limits_{i = 1}^{\infty}\frac{C_i|u(t_i)|}{1+|u(t_i)|},\; \; t_i \in \sigma ^i_{\frac{2}{3},\frac{1}{2}}(10),\nonumber\\ u(15)& = & D_{\frac{2}{3},\frac{1}{2}}^{\frac{2}{3}}\left(10 \pi+\cos \left(\frac{1215}{256}\right)\right)^2 u\left(\frac{1215}{256}\right) \end{eqnarray*} |
where \; C_i are given positive constants with \frac{1}{e} < \sum_{i = 1}^{\infty}C_i < \frac{1}{e^5} , \; \varphi(t, s) = \frac{e^{-|t-s|}}{(t+10)^3}\; and \; \psi(t, s) = \frac{e^{-2|t-s|}}{(t+20)^2} .
To investigate the values of L_1, L_1, L_3, \mathcal{L}, \omega, g, G, \rho, P, \mathcal{X}, \mathcal{P} and \mathcal{Q} , we employ the assumptions (H_1)-(H_5) to get the results as follows. For all \; t\in I^{10}_{\frac{2}{3}, \frac{11}{2}}\; and \; u, v\in {\mathbb{R}} , we find that
\begin{align*} &\left| F\left[ t,u,\Psi^\gamma_{p,q}u,\Upsilon^\nu_{p,q}u\right]- F\left[ t,v,\Psi^\gamma_{p,q}v,\Upsilon^\nu_{p,q}v\right]\right| \\ \leq\; & \frac{1}{(100+\frac{1}{e})e^ {\pi -1} }|u-v| +\frac{1}{(100+\frac{1}{e})e^ {\frac{\pi}{2} -1} }\left| \Psi^\gamma_{p,q}u-\Psi^\gamma_{p,q}v\right| +\frac{1}{(100+\frac{1}{e})e^ {2\pi -2}} \left|\Upsilon^\nu_{p,q}u-\Upsilon^\nu_{p,q}v \right|. \end{align*} |
Thus, (H_1) holds with \; L_1 = 0.00117, \; L_2 = 0.00563\; and \; L_3 = 0.000137 . So \mathcal{L} = 0.001185. \\ For all \; u, v\in {\mathcal{C}} ,
\begin{align*} |\phi_1(u)-\phi_1(v)|\, = \, \Big| \sum\limits_{i = 1}^{\infty} C_i u(t_i)-\sum\limits_{i = 1}^{\infty} C_i v(t_i)\Big| \leq \sum\limits_{i = 1}^{\infty} C_i \|u-v\|_\mathcal{C} \leq \frac{1}{e^5}\|u-v\|_\mathcal{C}. \end{align*} |
Thus, (H_2) holds with \; \omega = \frac{1}{e^5} = 0.00674\; .
For all \; t\in I^{10}_{\frac{2}{3}, \frac{11}{2}} , (H_3) and (H_4) hold with \; \; 925.129 = g\leq g(t) \leq G = 1050.792\; \; and \; \; \frac{1}{e} = \rho\leq \rho(t) \leq P = e.
We calculate and find that
|\textbf{A}| \leq 138.177,\; \; |\textbf{B}| \geq 243.229,\; \; \varphi_0 = 0.001\; \; and \; \; \psi_0 = 0.0025. |
Next, we get
\mathcal{P} = 9.02715\; \; and \; \; \mathcal{Q} = 0.84825. |
Therefore (H_5) holds with
\mathcal{X} = 0.35757 < 1. |
Hence, by Theorem 3.1 , this problem has a unique solution. In addition, by Theorem 4.1 it has at least one solution.
A sequential fractional Caputo (p, q) -integrodifference equation with three-point fractional Riemann-Liouville (p, q) -difference boundary condition (1.1) is studied. Our problem contains two fractional Caputo (p, q) -difference operators, two fractional Riemann-Liouville (p, q) -difference operators, and one fractional (p, q) -integral operator. After proving an auxiliary result concerning a linear variant of the considered problem, the problem at hand is transformed into a fixed point problem related to (1.1) . We establish the conditions for the existence and uniqueness of solution for problem (1.1) by using the Banach fixed point theorem, and the conditions of at least one solution by using the Schauder's fixed point theorem. Some properties of fractional (p, q) -integral needed in our study are also discussed. The results of the paper are new and enrich the subject of boundary value problems for fractional (p, q) - integrodifference equations. In the future work, we may extend this work by considering new boundary value problems.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract no.KMUTNB-62-KNOW-22.
The authors declare no conflict of interest.
[1] | F. H. Jackson, On q-difference equations, Am. J. Math., 32 (1910), 305–314. |
[2] | F. H. Jackson, On q-difference integrals, Q. J. Pure. Appl. Math., 41 (1910), 193–203. |
[3] |
R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math., 34 (1912), 147–168. doi: 10.2307/2369887. doi: 10.2307/2369887
![]() |
[4] |
T. E. Mason, On properties of the solutions of linear q-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. doi: 10.2307/2370216. doi: 10.2307/2370216
![]() |
[5] |
W. J. Trjitzinsky, Analytic theory of linear q-differece equations, Acta Math., 62 (1933), 167–226. doi: 10.1007/BF02547785. doi: 10.1007/BF02547785
![]() |
[6] | V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002. doi: 10.2307/3647765. |
[7] | T. Ernst, A new notation for q-calculus and a new q-Taylor formula, Department of Mathematics, Uppsala University, 1999. |
[8] |
R. Floreanini, L. Vinet, q-gamma and q-beta functions in quantum algebra representation theory, J. Comput. Appl. Math., 68 (1996), 57–68. doi: 10.1016/0377-0427(95)00253-7. doi: 10.1016/0377-0427(95)00253-7
![]() |
[9] |
K. N. Ilinski, G. V. Kalinin, A. S. Stepanenko, q-functional field theory for particles with exotic statistics, Phys. Lett. A, 232 (1997), 399–408. doi: 10.1016/S0375-9601(97)00402-7. doi: 10.1016/S0375-9601(97)00402-7
![]() |
[10] |
R. J. Finkelstein, q-field theory, Lett. Math. Phys., 34 (1995), 169–176. doi: 10.1007/BF00739095. doi: 10.1007/BF00739095
![]() |
[11] |
R. J. Finkelstein, The q-Coulomb problem, J. Math. Phys., 37 (1996), 2628–2636. doi: 10.1063/1.531532. doi: 10.1063/1.531532
![]() |
[12] |
J. Feigenbaum, P. G. Freund, A q-deformation of the Coulomb problem, J. Math. Phys., 37 (1996), 1602–1616. doi: 10.1063/1.531471. doi: 10.1063/1.531471
![]() |
[13] |
R. J. Finkelstein, q-Gravity, Lett. Math. Phys., 38 (1996), 53–62. doi: 10.1007/BF00398298. doi: 10.1007/BF00398298
![]() |
[14] |
L. P. Marinova, P. P. Raychev, J. Maruani, Molecular backbending in AgH and its description in terms of q-algebras, Mol. Phys., 82 (1994), 1115–1129. doi: 10.1080/00268979400100794. doi: 10.1080/00268979400100794
![]() |
[15] |
R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), 5683–5701. doi: 10.1088/0305-4470/24/13/002. doi: 10.1088/0305-4470/24/13/002
![]() |
[16] |
V. Sahai, S. Yadav, Representations of two parameter quantum algebras and (p, q)-special functions, J. Math. Anal. Appl., 335 (2007), 268–279. doi: 10.1016/j.jmaa.2007.01.072. doi: 10.1016/j.jmaa.2007.01.072
![]() |
[17] |
I. Burban, Two-parameter deformation of the oscillator algebra and (p, q)-analog of two-dimensional conformal field theory, J. Nonlinear Math. Phy., 2 (1995), 384–391. doi: 10.2991/jnmp.1995.2.3-4.18. doi: 10.2991/jnmp.1995.2.3-4.18
![]() |
[18] |
P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math., 73 (2018). doi: 10.1007/s00025-018-0783-z. doi: 10.1007/s00025-018-0783-z
![]() |
[19] |
M. Mursaleen, K. J. Ansari, A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput., 266 (2015), 874–882. doi: 10.1016/j.amc.2015.04.090. doi: 10.1016/j.amc.2015.04.090
![]() |
[20] | A. Khan, V. Sharma, Statistical approximation by (p, q)-analogue of Bernstein-Stancu operators, Azerbaijan J. Math., 8 (2018), 100–121. |
[21] |
K. Khan, D. K. Lobiyal, Bezier curves based on Lupas (p, q)-analogue of Bernstein functions in CAGD, J. Comput. Appl. Math., 317 (2017), 458–477. doi: 10.1016/j.cam.2016.12.016. doi: 10.1016/j.cam.2016.12.016
![]() |
[22] |
G. V. Milovanovic, V. Gupta, N. Malik, (p, q)-Beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237. doi: 10.1007/s40590-016-0139-1. doi: 10.1007/s40590-016-0139-1
![]() |
[23] |
W. T. Cheng, W. H. Zhang, Q. B. Cai, (p, q)-gamma operators which preserve x^2, J. Inequal. Appl., 2019 (2019), 108. doi: 10.1186/s13660-019-2053-3. doi: 10.1186/s13660-019-2053-3
![]() |
[24] |
M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some Opial-type integral inequalities via (p, q)-calculus, J. Inequal. Appl., 2019 (2019), 295. doi: 10.1186/s13660-019-2247-8. doi: 10.1186/s13660-019-2247-8
![]() |
[25] |
P. Jain, C. Basu, V. Panwar, On the (p, q)-Melin transform and its applications, Acta Math. Sci., 41 (2021), 1719–1732. doi:10.1007/s10473-021-0519-0. doi: 10.1007/s10473-021-0519-0
![]() |
[26] |
A. Aral, E. Deniz, H. Erbay, The Picard and Gauss-Weierstrass singular integral in (p, q)-calculus, B. Malays. Math. Sci. So., 43 (2020), 1569–1583. doi: 10.1007/s40840-019-00759-z. doi: 10.1007/s40840-019-00759-z
![]() |
[27] |
N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for (p, q)-difference equations, Differ. Equat. Appl., 10 (2018), 183–195. doi: 10.7153/dea-2018-10-11. doi: 10.7153/dea-2018-10-11
![]() |
[28] | C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum (p, q)-difference equations with separated boundary conditions, Adv. Math. Phys., 2018, Article ID 9089865, 9 pages. doi: 10.1155/2018/9089865. |
[29] |
T. Nuntigrangjana, S. Putjuso, S. K. Ntouyas, J. Tariboon, Impulsive quantum (p, q)-difference equations, Adv. Differ. Equ., 2020 (2020), 98. doi: 10.1186/s13662-020-02555-7. doi: 10.1186/s13662-020-02555-7
![]() |
[30] |
R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Cambridge. Philos. Soc., 66 (1969), 365–370. doi: 10.1017/S0305004100045060. doi: 10.1017/S0305004100045060
![]() |
[31] |
W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. doi: 10.1017/S0013091500011469. doi: 10.1017/S0013091500011469
![]() |
[32] |
J. B. Díaz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185–202. doi: 10.1090/S0025-5718-1974-0346352-5. doi: 10.1090/S0025-5718-1974-0346352-5
![]() |
[33] |
T. Brikshavana, T. Sitthiwirattham, On fractional Hahn calculus, Adv. Differ. Equ., 2017 (2017), 354. doi: 10.1186/s13662-017-1412-y. doi: 10.1186/s13662-017-1412-y
![]() |
[34] |
N. Patanarapeelert, T. Sitthiwirattham, On fractional symmetric Hahn calculus, Mathematics, 7 (2019), 873. doi: 10.3390/math7100873. doi: 10.3390/math7100873
![]() |
[35] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, 1999. |
[36] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[37] | J. Sabatier, O. P. Agrawal, J. A. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. |
[38] | D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Boston, 2012. |
[39] |
M. Tariq, H. Ahmad, S. K. Sahoo, The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type, Math. Model. Num. Simu. Appl., 1 (2021), 32–43. doi: 10.53391/mmnsa.2021.01.004. doi: 10.53391/mmnsa.2021.01.004
![]() |
[40] |
A. Keten, M. Yavuz, D. Baleanu, Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces, Fractal Fract., 3 (2019), 27. doi: 10.3390/fractalfract3020027. doi: 10.3390/fractalfract3020027
![]() |
[41] |
Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Num. Simu. Appl., 1 (2021), 11–23. doi: 10.53391/mmnsa.2021.01.002. doi: 10.53391/mmnsa.2021.01.002
![]() |
[42] |
J. Soontharanon, T. Sitthiwirattham, On fractional (p, q)-calculus, Adv. Differ. Equ., 2020 (2020), 35. doi: 10.1186/s13662-020-2512-7. doi: 10.1186/s13662-020-2512-7
![]() |
[43] |
N. Pheak, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Fractional (p, q)-calculus on finite intervals and some integral inequalities, Symmetry, 13 (2021), 504. doi: 10.3390/sym13030504. doi: 10.3390/sym13030504
![]() |
[44] |
N. Pheak, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Praveen Agarwal, Some trapezoid and midpoint type inequalities via fractional (p, q)-calculus, Adv. Differ. Equ., 2021 (2021), 333. doi: 10.1186/s13662-021-03487-6. doi: 10.1186/s13662-021-03487-6
![]() |
[45] |
J. Soontharanon, T. Sitthiwirattham, Existence results of nonlocal Robin boundary value problems for fractional (p, q)-integrodifference equations, Adv. Differ. Equ., 2020 (2020), 342. doi: 10.1186/s13662-020-02806-7. doi: 10.1186/s13662-020-02806-7
![]() |
[46] |
Z. Qin, S. Sun, Positive solutions for fractional (p, q)-difference boundary value problems, J. Appl. Math. Comput., 2021. doi: 10.1007/s12190-021-01630-w. doi: 10.1007/s12190-021-01630-w
![]() |
[47] |
Z. Qin, S. Sun, On a nonlinear fractional (p, q)-difference Schr\ddot{o}dinger equation, J. Appl. Math. Comput., 2021. doi: 10.1007/s12190-021-01586-x. doi: 10.1007/s12190-021-01586-x
![]() |
[48] | D. H. Griffel, Applied Functional Analysis, Ellis Horwood Publishers, Chichester, 1981. |
[49] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone, Academic Press, Orlando, 1988. |
1. | Sina Etemad, Iram Iqbal, Mohammad Esmael Samei, Shahram Rezapour, Jehad Alzabut, Weerawat Sudsutad, Izzet Goksel, Some inequalities on multi-functions for applying in the fractional Caputo–Hadamard jerk inclusion system, 2022, 2022, 1029-242X, 10.1186/s13660-022-02819-8 | |
2. | Nihan Turan, Metin Başarır, Aynur Şahin, On the solutions of the second-order (p, q) -difference equation with an application to the fixed-point theory, 2024, 9, 2473-6988, 10679, 10.3934/math.2024521 | |
3. | Ravi P. Agarwal, Hana Al-Hutami, Bashir Ahmad, On Solvability of Fractional (p,q)-Difference Equations with (p,q)-Difference Anti-Periodic Boundary Conditions, 2022, 10, 2227-7390, 4419, 10.3390/math10234419 | |
4. | Reny George, Sina Etemad, Fahad Sameer Alshammari, Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional (p, q) -thermostat system, 2024, 9, 2473-6988, 818, 10.3934/math.2024042 | |
5. | Sina Etemad, Sotiris K. Ntouyas, Ivanka Stamova, Jessada Tariboon, On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam, 2024, 8, 2504-3110, 236, 10.3390/fractalfract8040236 |