In this paper, we aim to study the problem of a sequential fractional Caputo $ (p, q) $-integrodifference equation with three-point fractional Riemann-Liouville $ (p, q) $-difference boundary condition. We use some properties of $ (p, q) $-integral in this study and employ Banach fixed point theorems and Schauder's fixed point theorems to prove existence results of this problem.
Citation: Jarunee Soontharanon, Thanin Sitthiwirattham. On sequential fractional Caputo $ (p, q) $-integrodifference equations via three-point fractional Riemann-Liouville $ (p, q) $-difference boundary condition[J]. AIMS Mathematics, 2022, 7(1): 704-722. doi: 10.3934/math.2022044
In this paper, we aim to study the problem of a sequential fractional Caputo $ (p, q) $-integrodifference equation with three-point fractional Riemann-Liouville $ (p, q) $-difference boundary condition. We use some properties of $ (p, q) $-integral in this study and employ Banach fixed point theorems and Schauder's fixed point theorems to prove existence results of this problem.
[1] | F. H. Jackson, On $q$-difference equations, Am. J. Math., 32 (1910), 305–314. |
[2] | F. H. Jackson, On $q$-difference integrals, Q. J. Pure. Appl. Math., 41 (1910), 193–203. |
[3] | R. D. Carmichael, The general theory of linear $q$-difference equations, Am. J. Math., 34 (1912), 147–168. doi: 10.2307/2369887. doi: 10.2307/2369887 |
[4] | T. E. Mason, On properties of the solutions of linear $q$-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. doi: 10.2307/2370216. doi: 10.2307/2370216 |
[5] | W. J. Trjitzinsky, Analytic theory of linear $q$-differece equations, Acta Math., 62 (1933), 167–226. doi: 10.1007/BF02547785. doi: 10.1007/BF02547785 |
[6] | V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002. doi: 10.2307/3647765. |
[7] | T. Ernst, A new notation for $q$-calculus and a new $q$-Taylor formula, Department of Mathematics, Uppsala University, 1999. |
[8] | R. Floreanini, L. Vinet, $q$-gamma and $q$-beta functions in quantum algebra representation theory, J. Comput. Appl. Math., 68 (1996), 57–68. doi: 10.1016/0377-0427(95)00253-7. doi: 10.1016/0377-0427(95)00253-7 |
[9] | K. N. Ilinski, G. V. Kalinin, A. S. Stepanenko, $q$-functional field theory for particles with exotic statistics, Phys. Lett. A, 232 (1997), 399–408. doi: 10.1016/S0375-9601(97)00402-7. doi: 10.1016/S0375-9601(97)00402-7 |
[10] | R. J. Finkelstein, $q$-field theory, Lett. Math. Phys., 34 (1995), 169–176. doi: 10.1007/BF00739095. doi: 10.1007/BF00739095 |
[11] | R. J. Finkelstein, The $q$-Coulomb problem, J. Math. Phys., 37 (1996), 2628–2636. doi: 10.1063/1.531532. doi: 10.1063/1.531532 |
[12] | J. Feigenbaum, P. G. Freund, A $q$-deformation of the Coulomb problem, J. Math. Phys., 37 (1996), 1602–1616. doi: 10.1063/1.531471. doi: 10.1063/1.531471 |
[13] | R. J. Finkelstein, $q$-Gravity, Lett. Math. Phys., 38 (1996), 53–62. doi: 10.1007/BF00398298. doi: 10.1007/BF00398298 |
[14] | L. P. Marinova, P. P. Raychev, J. Maruani, Molecular backbending in AgH and its description in terms of $q$-algebras, Mol. Phys., 82 (1994), 1115–1129. doi: 10.1080/00268979400100794. doi: 10.1080/00268979400100794 |
[15] | R. Chakrabarti, R. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), 5683–5701. doi: 10.1088/0305-4470/24/13/002. doi: 10.1088/0305-4470/24/13/002 |
[16] | V. Sahai, S. Yadav, Representations of two parameter quantum algebras and $(p, q)$-special functions, J. Math. Anal. Appl., 335 (2007), 268–279. doi: 10.1016/j.jmaa.2007.01.072. doi: 10.1016/j.jmaa.2007.01.072 |
[17] | I. Burban, Two-parameter deformation of the oscillator algebra and $(p, q)$-analog of two-dimensional conformal field theory, J. Nonlinear Math. Phy., 2 (1995), 384–391. doi: 10.2991/jnmp.1995.2.3-4.18. doi: 10.2991/jnmp.1995.2.3-4.18 |
[18] | P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-Taylor formulas, Results Math., 73 (2018). doi: 10.1007/s00025-018-0783-z. doi: 10.1007/s00025-018-0783-z |
[19] | M. Mursaleen, K. J. Ansari, A. Khan, On $(p, q)$-analogue of Bernstein operators, Appl. Math. Comput., 266 (2015), 874–882. doi: 10.1016/j.amc.2015.04.090. doi: 10.1016/j.amc.2015.04.090 |
[20] | A. Khan, V. Sharma, Statistical approximation by $(p, q)$-analogue of Bernstein-Stancu operators, Azerbaijan J. Math., 8 (2018), 100–121. |
[21] | K. Khan, D. K. Lobiyal, Bezier curves based on Lupas $(p, q)$-analogue of Bernstein functions in CAGD, J. Comput. Appl. Math., 317 (2017), 458–477. doi: 10.1016/j.cam.2016.12.016. doi: 10.1016/j.cam.2016.12.016 |
[22] | G. V. Milovanovic, V. Gupta, N. Malik, $(p, q)$-Beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237. doi: 10.1007/s40590-016-0139-1. doi: 10.1007/s40590-016-0139-1 |
[23] | W. T. Cheng, W. H. Zhang, Q. B. Cai, $(p, q)$-gamma operators which preserve $x^2$, J. Inequal. Appl., 2019 (2019), 108. doi: 10.1186/s13660-019-2053-3. doi: 10.1186/s13660-019-2053-3 |
[24] | M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some Opial-type integral inequalities via $(p, q)$-calculus, J. Inequal. Appl., 2019 (2019), 295. doi: 10.1186/s13660-019-2247-8. doi: 10.1186/s13660-019-2247-8 |
[25] | P. Jain, C. Basu, V. Panwar, On the $(p, q)$-Melin transform and its applications, Acta Math. Sci., 41 (2021), 1719–1732. doi:10.1007/s10473-021-0519-0. doi: 10.1007/s10473-021-0519-0 |
[26] | A. Aral, E. Deniz, H. Erbay, The Picard and Gauss-Weierstrass singular integral in $(p, q)$-calculus, B. Malays. Math. Sci. So., 43 (2020), 1569–1583. doi: 10.1007/s40840-019-00759-z. doi: 10.1007/s40840-019-00759-z |
[27] | N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for $(p, q)$-difference equations, Differ. Equat. Appl., 10 (2018), 183–195. doi: 10.7153/dea-2018-10-11. doi: 10.7153/dea-2018-10-11 |
[28] | C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum $(p, q)$-difference equations with separated boundary conditions, Adv. Math. Phys., 2018, Article ID 9089865, 9 pages. doi: 10.1155/2018/9089865. |
[29] | T. Nuntigrangjana, S. Putjuso, S. K. Ntouyas, J. Tariboon, Impulsive quantum $(p, q)$-difference equations, Adv. Differ. Equ., 2020 (2020), 98. doi: 10.1186/s13662-020-02555-7. doi: 10.1186/s13662-020-02555-7 |
[30] | R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge. Philos. Soc., 66 (1969), 365–370. doi: 10.1017/S0305004100045060. doi: 10.1017/S0305004100045060 |
[31] | W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. doi: 10.1017/S0013091500011469. doi: 10.1017/S0013091500011469 |
[32] | J. B. Díaz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185–202. doi: 10.1090/S0025-5718-1974-0346352-5. doi: 10.1090/S0025-5718-1974-0346352-5 |
[33] | T. Brikshavana, T. Sitthiwirattham, On fractional Hahn calculus, Adv. Differ. Equ., 2017 (2017), 354. doi: 10.1186/s13662-017-1412-y. doi: 10.1186/s13662-017-1412-y |
[34] | N. Patanarapeelert, T. Sitthiwirattham, On fractional symmetric Hahn calculus, Mathematics, 7 (2019), 873. doi: 10.3390/math7100873. doi: 10.3390/math7100873 |
[35] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, 1999. |
[36] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[37] | J. Sabatier, O. P. Agrawal, J. A. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. |
[38] | D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Boston, 2012. |
[39] | M. Tariq, H. Ahmad, S. K. Sahoo, The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type, Math. Model. Num. Simu. Appl., 1 (2021), 32–43. doi: 10.53391/mmnsa.2021.01.004. doi: 10.53391/mmnsa.2021.01.004 |
[40] | A. Keten, M. Yavuz, D. Baleanu, Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces, Fractal Fract., 3 (2019), 27. doi: 10.3390/fractalfract3020027. doi: 10.3390/fractalfract3020027 |
[41] | Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Num. Simu. Appl., 1 (2021), 11–23. doi: 10.53391/mmnsa.2021.01.002. doi: 10.53391/mmnsa.2021.01.002 |
[42] | J. Soontharanon, T. Sitthiwirattham, On fractional $(p, q)$-calculus, Adv. Differ. Equ., 2020 (2020), 35. doi: 10.1186/s13662-020-2512-7. doi: 10.1186/s13662-020-2512-7 |
[43] | N. Pheak, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Fractional $(p, q)$-calculus on finite intervals and some integral inequalities, Symmetry, 13 (2021), 504. doi: 10.3390/sym13030504. doi: 10.3390/sym13030504 |
[44] | N. Pheak, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Praveen Agarwal, Some trapezoid and midpoint type inequalities via fractional $(p, q)$-calculus, Adv. Differ. Equ., 2021 (2021), 333. doi: 10.1186/s13662-021-03487-6. doi: 10.1186/s13662-021-03487-6 |
[45] | J. Soontharanon, T. Sitthiwirattham, Existence results of nonlocal Robin boundary value problems for fractional $(p, q)$-integrodifference equations, Adv. Differ. Equ., 2020 (2020), 342. doi: 10.1186/s13662-020-02806-7. doi: 10.1186/s13662-020-02806-7 |
[46] | Z. Qin, S. Sun, Positive solutions for fractional $(p, q)$-difference boundary value problems, J. Appl. Math. Comput., 2021. doi: 10.1007/s12190-021-01630-w. doi: 10.1007/s12190-021-01630-w |
[47] | Z. Qin, S. Sun, On a nonlinear fractional $(p, q)$-difference Schr$\ddot{o}$dinger equation, J. Appl. Math. Comput., 2021. doi: 10.1007/s12190-021-01586-x. doi: 10.1007/s12190-021-01586-x |
[48] | D. H. Griffel, Applied Functional Analysis, Ellis Horwood Publishers, Chichester, 1981. |
[49] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone, Academic Press, Orlando, 1988. |