The eardrum is one of the most important organs in the body, and disorders such as infection or injury may affect the proper functioning of the eardrum and lead to hearing problems. In this paper, based on a real-world phenomena, we study some mathematical aspects of an abstract fractional $ [\mathtt{p},\mathtt{q}] $-difference equation with initial conditions. Our initial value problem tries to model a vibrating eardrum by using the newly defined fractional Caputo-type $ [\mathtt{p},\mathtt{q}] $-derivatives in two nonlinear single-valued and set-valued structures. We obtain a general form of the solutions in the framework of a $ [\mathtt{p},\mathtt{q}] $-integral equation, and then we investigate the existence and uniqueness properties with the help of fixed points and the end-points of some special $ \mathtt{β} $-$ \mathtt{α} $-contractions and compact mappings. Finally, we simulate this version of the vibrating eardrum model by giving two numerical examples to validate the established theorems.
Citation: Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady. Existence of solutions for $ [\mathtt{p},\mathtt{q}] $-difference initial value problems: application to the $ [\mathtt{p},\mathtt{q}] $-based model of vibrating eardrums[J]. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108
The eardrum is one of the most important organs in the body, and disorders such as infection or injury may affect the proper functioning of the eardrum and lead to hearing problems. In this paper, based on a real-world phenomena, we study some mathematical aspects of an abstract fractional $ [\mathtt{p},\mathtt{q}] $-difference equation with initial conditions. Our initial value problem tries to model a vibrating eardrum by using the newly defined fractional Caputo-type $ [\mathtt{p},\mathtt{q}] $-derivatives in two nonlinear single-valued and set-valued structures. We obtain a general form of the solutions in the framework of a $ [\mathtt{p},\mathtt{q}] $-integral equation, and then we investigate the existence and uniqueness properties with the help of fixed points and the end-points of some special $ \mathtt{β} $-$ \mathtt{α} $-contractions and compact mappings. Finally, we simulate this version of the vibrating eardrum model by giving two numerical examples to validate the established theorems.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[2] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[3] | R. Hilfer, Applications of fractional calculus in physics, River Edge, NJ, Singapore: World Scientific Publishing Co., Inc., 2000. https://doi.org/10.1142/3779 |
[4] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation & Applications, 1 (2015), 73–85. |
[5] |
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[6] |
S. Hussain, E. N. Madi, H. Khan, S. Etemad, S. Rezapour, T. Sitthiwirattham, et al., Investigation of the stochastic modeling of COVID-19 with Environmental noise from the analytical and numerical point of view, Mathematics, 9 (2021), 3122. https://doi.org/10.3390/math9233122 doi: 10.3390/math9233122
![]() |
[7] | F. H. Jackson, $q$-Difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 |
[8] |
W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
![]() |
[9] |
R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge, 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060
![]() |
[10] | M. H. Annaby, Z. S. Mansour, $q$-Fractional calculus and equations, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-30898-7 |
[11] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
![]() |
[12] |
J. Tariboon, S. K. Ntouyas, P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional $q$-difference equations, Adv. Differ. Equ., 2015 (2015), 18. http://doi.org/10.1186/s13662-014-0348-8 doi: 10.1186/s13662-014-0348-8
![]() |
[13] |
S. Rezapour, A. Imran, A. Hussain, F. Martinez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. https://doi.org/10.3390/sym13030469 doi: 10.3390/sym13030469
![]() |
[14] |
T. Abdeljawad, J. Alzabut, D. Baleanu, A generalized $q$-fractional Gronwall inequality and its applications to nonlinear delay $q$-fractional difference systems, J. Inequal. Appl., 2016 (2016), 240. https://doi.org/10.1186/s13660-016-1181-2 doi: 10.1186/s13660-016-1181-2
![]() |
[15] |
J. Alzabut, M. Houas, M. I. Abbas, Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional $q$-derivatives, Demonstrat. Math., 56 (2023), 20220205. https://doi.org/10.1515/dema-2022-0205 doi: 10.1515/dema-2022-0205
![]() |
[16] |
N. D. Phuong, F. M. Sakar, S. Etemad, S. Rezapour, A novel fractional structure of a multi-order quantum multi-integro-differential problem, Adv. Differ. Equ., 2020 (2020), 633. https://doi.org/10.1186/s13662-020-03092-z doi: 10.1186/s13662-020-03092-z
![]() |
[17] |
S. Etemad, I. Stamova, S. K. Ntouyas, J. Tariboon, Quantum Laplace transforms for the Ulam-Hyers stability of certain $q$-difference equations of the Caputo-like type, Fractal Fract., 8 (2024), 443. https://doi.org/10.3390/fractalfract8080443 doi: 10.3390/fractalfract8080443
![]() |
[18] |
R. Chakrabarti, R. Jagannathan, A $(p,q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), 5683–5701. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002
![]() |
[19] |
K. Khan, D. K. Lobiyal, Bézier curves based on Lupas $(p,q)$-analogue of Bernstein functions in CAGD, J. Comput. Appl. Math., 317 (2017), 458–477. https://doi.org/10.1016/j.cam.2016.12.016 doi: 10.1016/j.cam.2016.12.016
![]() |
[20] |
M. Mursaleen, K. J. Ansari, A. Khan, Some approximation results by $(p,q)$-analogue of Bernstein–Stancu operators, Appl. Math. Comput., 264 (2015), 392–402. https://doi.org/10.1016/j.amc.2015.03.135 doi: 10.1016/j.amc.2015.03.135
![]() |
[21] |
M. Mursaleen, M. Nasiruzzaman, A. Khan, K. J. Ansari, Some approximation results on Bleimann-Butzer-Hahn operators defined by $(p,q)$-integers, Filomat, 30 (2016), 639–648. https://doi.org/10.2298/FIL1603639M doi: 10.2298/FIL1603639M
![]() |
[22] |
H. B. Jebreen, M. Mursaleen, M. Ahasan, On the convergence of Lupas $(p,q)$-Bernstein operators via contraction principle, J. Inequal. Appl., 2019 (2019), 34. https://doi.org/10.1186/s13660-019-1985-y doi: 10.1186/s13660-019-1985-y
![]() |
[23] |
J. Soontharanon, T. Sitthiwirattham, On fractional $(p,q)$-calculus, Adv. Differ. Equ., 2020 (2020), 35. https://doi.org/10.1186/s13662-020-2512-7 doi: 10.1186/s13662-020-2512-7
![]() |
[24] |
P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Nonlocal boundary value problems of nonlinear fractional $(p,q)$-difference equations, Fractal Fract., 5 (2021), 270. https://doi.org/10.3390/fractalfract5040270 doi: 10.3390/fractalfract5040270
![]() |
[25] |
R. P. Agarwal, H. Al-Hutami, B. Ahmad, On solvability of fractional $(p,q)$-difference equations with $(p,q)$-difference anti-periodic boundary conditions, Mathematics, 10 (2022), 4419. https://doi.org/10.3390/math10234419 doi: 10.3390/math10234419
![]() |
[26] |
A. Boutiara, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional $(p,q)$-differential equation with Lipschitzian matrix in generalized metric space, AIMS Math., 8 (2023), 1566–1591. https://doi.org/10.3934/math.2023079 doi: 10.3934/math.2023079
![]() |
[27] |
R. George, S. Etemad, F. S. Alshammari, Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional $(p,q)$-thermostat system, AIMS Math., 9 (2024), 818–846. https://doi.org/10.3934/math.2024042 doi: 10.3934/math.2024042
![]() |
[28] |
J. Soontharanon, T. Sitthiwirattham, Existence results of nonlocal Robin boundary value problems for fractional $(p,q)$-integrodifference equations, Adv. Differ. Equ., 2020 (2020), 342. https://doi.org/10.1186/s13662-020-02806-7 doi: 10.1186/s13662-020-02806-7
![]() |
[29] |
P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Existence and uniqueness results for fractional $(p,q)$-difference equations with separated boundary conditions, Mathematics, 10 (2022), 767. https://doi.org/10.3390/math10050767 doi: 10.3390/math10050767
![]() |
[30] |
S. Etemad, S. K. Ntouyas, I. Stamova, J. Tariboon, On solutions of two post-quantum fractional generalized sequential Navier problems: an application on the elastic beam, Fractal Fract., 8 (2024), 236. https://doi.org/10.3390/fractalfract8040236 doi: 10.3390/fractalfract8040236
![]() |
[31] |
S. Etemad, I. Stamova, S. K. Ntouyas, J. Tariboon, On the generalized $(p,q)$-$\phi$-calculus with respect to another function, Mathematics, 12 (2024), 3290. https://doi.org/10.3390/math12203290 doi: 10.3390/math12203290
![]() |
[32] |
P. M. Rajkovic, S. D. Marinkovic, M. S. Stankovic, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discr. Math., 1 (2007), 311–323. https://doi.org/10.2298/AADM0701311R doi: 10.2298/AADM0701311R
![]() |
[33] |
C. R. Adams, The general theory of a class of linear partial $q$-difference equations, Trans. Amer. Math. Soc., 26 (1924), 283–312. https://doi.org/10.2307/1989141 doi: 10.2307/1989141
![]() |
[34] |
R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367–373. https://doi.org/10.1016/j.camwa.2010.11.012 doi: 10.1016/j.camwa.2010.11.012
![]() |
[35] |
B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\check{g}$-$\psi$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
![]() |
[36] | D. R. Smart, Fixed point theorems, New York: Cambridge University Press, 1980. |
[37] |
B. Mohammadi, S. Rezapour, N. Shahzad, Some results on fixed points of $\check{g}$-$\psi$-Ciric generalized multifunctions, Fixed Point Theory Appl., 2013 (2013), 24. https://doi.org/10.1186/1687-1812-2013-24 doi: 10.1186/1687-1812-2013-24
![]() |
[38] |
A. Amini-Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal. Theor., 72 (2010), 132–134. https://doi.org/10.1016/j.na.2009.06.074 doi: 10.1016/j.na.2009.06.074
![]() |
[39] | R. H. Enns, G. C. Mcguire, Nonlinear physics with mathematica for scientists and engineers, Boston: Birkhauser, 2001. https://doi.org/10.1007/978-1-4612-0211-0 |