Research article Special Issues

Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions

  • Received: 12 May 2023 Revised: 13 June 2023 Accepted: 14 June 2023 Published: 25 June 2023
  • MSC : 26A33, 33E12, 34A37, 34B10, 34D20

  • This paper investigates a class of nonlinear impulsive fractional integro-differential equations with mixed nonlocal boundary conditions (multi-point and multi-term) that involves $ (\rho_{k}, \psi_{k}) $-Hilfer fractional derivative. The main objective is to prove the existence and uniqueness of the solution for the considered problem by means of fixed point theory of Banach's and O'Regan's types, respectively. In this contribution, the transformation of the considered problem into an equivalent integral equation is necessary for our main results. Furthermore, the nonlinear functional analysis technique is used to investigate various types of Ulam's stability results. The applications of main results are guaranteed with three numerical examples.

    Citation: Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson. Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions[J]. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042

    Related Papers:

  • This paper investigates a class of nonlinear impulsive fractional integro-differential equations with mixed nonlocal boundary conditions (multi-point and multi-term) that involves $ (\rho_{k}, \psi_{k}) $-Hilfer fractional derivative. The main objective is to prove the existence and uniqueness of the solution for the considered problem by means of fixed point theory of Banach's and O'Regan's types, respectively. In this contribution, the transformation of the considered problem into an equivalent integral equation is necessary for our main results. Furthermore, the nonlinear functional analysis technique is used to investigate various types of Ulam's stability results. The applications of main results are guaranteed with three numerical examples.



    加载中


    [1] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, New York: Oxford University Press, 2005.
    [2] R. L. Magin, Fractional calculus in bioengineering, 2006.
    [3] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, Imperial College Press, 2010.
    [4] T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with application in mechanics: Vibrations and diffusion processes, Wiley, 2014.
    [5] R. Herrmann, Fractional calculus: An introduction for physicsts, World Scientific, 2014.
    [6] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [7] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, Elsevier, 2017.
    [8] S. G. Samko, A. Kilbas, O. Marichev, Fractional integrals and drivatives, Gordon and Breach Science Publishers, 1993.
    [9] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [10] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, 2009.
    [11] K. Diethelm, The analysis of fractional differential equations, In: Lecture notes in mathematics, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [12] Y. Zhou, Basic theory of fractional differential equations, World Scientific, 2014.
    [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [14] G. A. Dorrego, An alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481–491. https://doi.org/10.12988/ams.2015.411893 doi: 10.12988/ams.2015.411893
    [15] J. V. C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [16] K. D. Kucche, A. D. Mali, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
    [17] A. Bitsadze, A. Samarskii, On some simple generalizations of linear elliptic boundary problems, Sov. Math. Dokl., 10 (1969), 398–400.
    [18] M. Picone, Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1908.
    [19] W. M. Whyburn, Differential equations with general boundary conditions, Bull. Amer. Math. Soc., 48 (1942), 692–704.
    [20] Y. Jalilian, M. Ghasmi, On the solutions of a nonlinear fractional integro-differential equation of Pantograph type, Mediterr. J. Math., 14 (2017), 194. https://doi.org/10.1007/s00009-017-0993-8 doi: 10.1007/s00009-017-0993-8
    [21] B. Khaminsou, C. Thaiprayoon, J. Alzabut, W. Sudsutad, Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative, Bound. Value. Probl., 2020 (2020), 176. https://doi.org/10.1186/s13661-020-01473-7 doi: 10.1186/s13661-020-01473-7
    [22] W. Sudsutad, C. Thaiprayoon, S. K. Ntouyas, Existence and stability results for $\psi$-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Math., 6 (2021), 4119–4141. https://doi.org/10.3934/math.2021244 doi: 10.3934/math.2021244
    [23] C. Thaiprayoon, W. Sudsutad, S. K. Ntouyas, Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via $\psi$-Hilfer fractional derivative, Adv. Differ. Equ., 2021 (2021), 50. https://doi.org/10.1186/s13662-021-03214-1 doi: 10.1186/s13662-021-03214-1
    [24] S. Sitho, S.K. Ntouyas, C. Sudprasert, J. Tariboon. Integro-differential boundary conditions to the sequential $\psi_1$-Hilfer and $\psi_2$-Caputo fractional differential equations, Mathematics, 11 (2023), 867. https://doi.org/10.3390/math11040867 doi: 10.3390/math11040867
    [25] D. Foukrach, S. Bouriah, S. Abbas, M. Benchohra, Periodic solutions of nonlinear fractional pantograph integro-differential equations with $\psi$-Caputo derivative, Ann. Univ. Ferrara., 69 (2023), 1–22. https://doi.org/10.1007/s11565-022-00396-8 doi: 10.1007/s11565-022-00396-8
    [26] H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ. Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
    [27] M. A. Almalahi, S. K. Panchal, Existence results of $\psi$-Hilfer integro-differential equations with fractional order in Banach space, Ann. U. Paedag. St. Math., 19 (2020), 171–192. https://doi.org/10.2478/aupcsm-2020-0013 doi: 10.2478/aupcsm-2020-0013
    [28] H. Vu, N. V. Hoa, Ulam-Hyers stability for a nonlinear Volterra integro-differential equation, Hacet. J. Math. Stat., 49 (2020), 1261–1269. https://doi.org/10.15672/hujms.483606 doi: 10.15672/hujms.483606
    [29] K. Liu, M. Fečkan, D. O'Regan, J. R. Wang, Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative, Mathematics, 7 (2019), 333. https://doi.org/10.3390/math7040333 doi: 10.3390/math7040333
    [30] A. Zada, S. O. Shah. Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205.
    [31] D. Bainov, P. Simeonov, Impulsive differential equations: Periodic solutions and applications, CRC Press, 1993.
    [32] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, 1995.
    [33] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Publishing Corporation, 2006.
    [34] K. D. Kucche, J. P. Kharade, J. V. C de Sousa, On the nonlinear impulsive $\psi$-Hilfer fractional differential equations, Math. Model. Anal., 25 (2020), 642–660. https://doi.org/10.3846/mma.2020.11445 doi: 10.3846/mma.2020.11445
    [35] A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, On $k$-generalized $\psi$-Hilfer boundary value problems with retardation and anticipation, Adv. Theor. Nonlinear Anal. Appl., 6 (2022), 173–190. https://doi.org/10.31197/atnaa.973992 doi: 10.31197/atnaa.973992
    [36] M. Kaewsuwan, R. Phuwapathanapun, W. Sudsutad, J. Alzabut, C. Thaiprayoon, J. Kongson, Nonlocal impulsive fractional integral boundary value problem for ($\rho_k, \psi_k$)-Hilfer fractional integro-differential equations, Mathematics, 10 (2022), 3874. https://doi.org/10.3390/math10203874 doi: 10.3390/math10203874
    [37] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
    [38] T. L. Guo, W. Jiang, Impulsive functional differential equations, Comput. Math. Appl., 64 (2012), 3414–3424. https://doi.org/10.1016/j.camwa.2011.12.054 doi: 10.1016/j.camwa.2011.12.054
    [39] M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 161. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
    [40] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
    [41] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulgaciones Mat., 15 (2007), 179–192.
    [42] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003.
    [43] D. O'Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett., 9 (1966), 1–8.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1147) PDF downloads(150) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog