Mathematical approaches to structure model problems have a significant role in expanding our knowledge in our routine life circumstances. To put them into practice, the right formulation, method, systematic representation, and formulation are needed. The purpose of introducing soft graphs is to discretize these fundamental mathematical ideas, which are inherently continuous, and to provide new tools for applying mathematical analysis technology to real-world applications including imperfect and inexact data or uncertainty. Soft rough covering models $ \left(\text{briefly}, \text{ }\mathcal{SRC}\text{-Models}\right) $, a novel theory that addresses uncertainty. In this present paper, we have introduced two new concepts $ \mathcal{L}\mathfrak{i} $-soft rough covering graphs ($ \mathcal{L}\mathfrak{i} $-$ \mathcal{SRCG} $s) and the concept of fixed point of such graphs. Furthermore, we looked into a some algebras that dealt with the fixed points of $ \mathcal{L}\mathfrak{i} $-$ \mathcal{SRCG} $s. Applications of the algebraic structures available in covering soft sets to soft graphs may reveal new facets of graph theory.
Citation: Imran Shahzad Khan, Nasir Shah, Abdullah Shoaib, Poom Kumam, Kanokwan Sitthithakerngkiet. A new approach to the study of fixed points based on soft rough covering graphs[J]. AIMS Mathematics, 2023, 8(9): 20415-20436. doi: 10.3934/math.20231041
Mathematical approaches to structure model problems have a significant role in expanding our knowledge in our routine life circumstances. To put them into practice, the right formulation, method, systematic representation, and formulation are needed. The purpose of introducing soft graphs is to discretize these fundamental mathematical ideas, which are inherently continuous, and to provide new tools for applying mathematical analysis technology to real-world applications including imperfect and inexact data or uncertainty. Soft rough covering models $ \left(\text{briefly}, \text{ }\mathcal{SRC}\text{-Models}\right) $, a novel theory that addresses uncertainty. In this present paper, we have introduced two new concepts $ \mathcal{L}\mathfrak{i} $-soft rough covering graphs ($ \mathcal{L}\mathfrak{i} $-$ \mathcal{SRCG} $s) and the concept of fixed point of such graphs. Furthermore, we looked into a some algebras that dealt with the fixed points of $ \mathcal{L}\mathfrak{i} $-$ \mathcal{SRCG} $s. Applications of the algebraic structures available in covering soft sets to soft graphs may reveal new facets of graph theory.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956 |
[3] | Z. Bonikowski, E. Bryniariski, V. W. Skardowska, Extension and intensions in the rough set theory, Inform. Sci., 107 (1998), 149–167. https://doi.org/10.1016/S0020-0255(97)10046-9 doi: 10.1016/S0020-0255(97)10046-9 |
[4] | D. G. Chen, W. X. Zhang, D. Yeung, E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inform. Sci., 176 (2006), 1829–1848. https://doi.org/10.1016/j.ins.2005.05.009 doi: 10.1016/j.ins.2005.05.009 |
[5] | T. Y. Lin, Y. Y. Yao, L. A. Zadeh, Rough sets, granular computing and data mining, Heidelberg: Physica-Verlag, 2001. |
[6] | J. Y. Liang, K. S. Chin, C. Y. Dang, R. C. M. Yam, A new method for measuring uncertainty and fuzziness in rough set theory, Int. J. Gen. Syst., 31 (2002), 331–342. https://doi.org/10.1080/0308107021000013635 doi: 10.1080/0308107021000013635 |
[7] | G. L. Liu, Y. Sai, A comparison of two types of rough sets induced by coverings, Int. J. Approx. Reason., 50 (2009), 521–528. https://doi.org/10.1016/j.ijar.2008.11.001 doi: 10.1016/j.ijar.2008.11.001 |
[8] | Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Springer Science Business Media, 1991. |
[9] | Y. F. Liu, W. Zhu, Characteristic of partition-circuit matroid through approximation number, In: 2012 IEEE International conference on granular computing, 2012,314–319. https://doi.org/10.1109/GrC.2012.6468668 |
[10] | Y. Liu, W. Zhu, Y. Zhang, Relationship between partition matroid and rough set through k-rank matroid, J. Inform. Comput. Sci., 8 (2012), 2151–2163. |
[11] | Q. Li, W. Zhu, Lattice structures of fixed points of the lower approximations of two types of covering-based rough sets, arXiv preprint, 2012,109–145. https://doi.org/10.48550/arXiv.1209.5569 |
[12] | S. P. Wang, Q. X. Zhu, W. Zhu, F. Min, Quantitative analysis for covering-based rough sets using the upper approximation number, Inform. Sci., 220 (2012), 483–491. https://doi.org/10.1016/j.ins.2012.07.030 doi: 10.1016/j.ins.2012.07.030 |
[13] | S. Yüksel, Z. G. Ergül, N. Tozlu, Soft covering based rough sets and their application, Sci. World J., 2014 (2014), 970893. https://doi.org/10.1155/2014/970893 doi: 10.1155/2014/970893 |
[14] | J. M. Zhan, M. I. Ali, N. Mehmood, On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods, Appl. Soft Comput., 56 (2017), 446–457. https://doi.org/10.1016/j.asoc.2017.03.038 doi: 10.1016/j.asoc.2017.03.038 |
[15] | H. Zhang, J. M. Zhan, Rough soft lattice implication algebras and corresponding decision making methods, Int. J. Mach. Learn. Cyb., 8 (2017), 1301–1308. https://doi.org/10.1007/s13042-016-0502-6 doi: 10.1007/s13042-016-0502-6 |
[16] | D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[17] | M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009 |
[18] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6 |
[19] | P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. |
[20] | D. Molodtsov, The theory of soft sets (in Russian), Moscow: URSS Publishers, 2004. https://doi.org/10.1016/S0898-1221(99)00056-5 |
[21] | J. M. Zhan, J. C. R Alcantud, A novel type of soft rough covering sets and its application to multicriteria group decision making, Artif. Intell. Rev., 52 (2019), 2381–2410. https://doi.org/10.1007/s10462-018-9617-3 doi: 10.1007/s10462-018-9617-3 |
[22] | J. C. R. Alcantud, J. M. Zhan, Multi-granular soft rough covering sets, Soft Comput., 24 (2020), 9391–9402. https://doi.org/10.1007/s00500-020-04987-5 doi: 10.1007/s00500-020-04987-5 |
[23] | E. Bryniarski, A calculus of rough sets of the first order, Bull. Pol. Acad. Sci. Math., 37 (1989), 71–77. |
[24] | F. Feng, Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inf., 2 (2011), 69–80. |
[25] | M. Atef, A. El F. El Atik, Some extensions of covering-based multigranulation fuzzy rough sets from new perspectives, Soft Comput., 25 (2021), 6633–6651 https://doi.org/10.1007/s00500-021-05659-8. doi: 10.1007/s00500-021-05659-8 |
[26] | G. Birkhoff, Lattice theory, American Mathematical Society, 1940. |
[27] | N. Shah, N. Rehman, M. Shabir, M. I. Ali, Another approach to roughness of soft graphs with applications in decision making, Symmetry, 10 (2018), 145. https://doi.org/10.3390/sym10050145 doi: 10.3390/sym10050145 |
[28] | F. Fatimah, D. Rosadi, R. B. F. Hakim, J. C. R. Alcantud, N-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829–3842. https://doi.org/10.1007/s00500-017-2838-6 doi: 10.1007/s00500-017-2838-6 |
[29] | F. Feng, X. Y. Liu, V. L. Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sci., 181 (2011), 1125–1137. https://doi.org/10.1016/j.ins.2010.11.004 doi: 10.1016/j.ins.2010.11.004 |
[30] | W. Zhu, F. Y. Wang, Reduction and axiomization of covering generalized rough sets, Inform. Sci., 152 (2003), 217–230. https://doi.org/10.1016/S0020-0255(03)00056-2 doi: 10.1016/S0020-0255(03)00056-2 |
[31] | W. Zhu, Relationship among basic concepts in covering-based rough sets, Inform. Sci., 179 (2009), 2478–2486. https://doi.org/10.1016/j.ins.2009.02.013 doi: 10.1016/j.ins.2009.02.013 |
[32] | A. El F. El Atik, A. Nawar, M. Atef, Rough approximation models via graphs based on neighborhood systems, Granular Comput., 6 (2021), 1025–1035. https://doi.org/10.1007/s41066-020-00245-z doi: 10.1007/s41066-020-00245-z |
[33] | M. Akram, S. Nawaz, Operations on soft graphs, Fuzzy Inform. Eng., 7 (2015), 423–449. https://doi.org/10.1016/j.fiae.2015.11.003 doi: 10.1016/j.fiae.2015.11.003 |
[34] | B. Praba, G. Gomathi, M. Aparajitha, A lattice structure on minimal soft rough sets and its applications, New Math. Nat. Comput., 16 (2020), 255–269. https://doi.org/10.1142/S1793005720500155 doi: 10.1142/S1793005720500155 |
[35] | N. Shah, M. I. Ali, M. Shabir, A. Abbas, N. Rehman, Uncertainty measure of Z-soft covering rough models based on a knowledge granulation, J. Intell. Fuzzy Syst., 38 (2020), 1637–1647. https://doi.org/10.3233/JIFS-182708 doi: 10.3233/JIFS-182708 |
[36] | N. Rehman, N. Shah, M. I. Ali, C. Park, Uncertainty measurement for neighborhood based soft covering rough graphs with applications, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, 113 (2019), 2515–2535. https://doi.org/10.1007/s13398-019-00632-5 doi: 10.1007/s13398-019-00632-5 |
[37] | W. H. Bai, J. J. Ding, C. Zhang, Dual hesitant fuzzy graphs with applications to multi-attribute decision making, Int. J. Cognitive Comput. Eng., 1 (2020), 18–26. https://doi.org/10.1016/j.ijcce.2020.09.002 doi: 10.1016/j.ijcce.2020.09.002 |
[38] | Z. He, L. Liang, H. M. Baskonus, W Gao, Remarks on path-factor critical avoidable graphs, Int. J. Cogn. Comput. Eng., 4 (2023), 65–70. https://doi.org/10.1016/j.ijcce.2023.02.004 doi: 10.1016/j.ijcce.2023.02.004 |
[39] | M. Atef, S. I. Nada, On three types of soft fuzzy coverings based rough sets, Math. Comput. Simul., 185 (2021), 452–467. https://doi.org/10.1016/j.matcom.2020.12.023 doi: 10.1016/j.matcom.2020.12.023 |
[40] | M. Atef, S. Nada, A. Gumaei, A. S. Nawar, On three types of soft rough covering-based fuzzy sets, J. Math., 2021 (2021), 6677298. https://doi.org/10.1155/2021/6677298 doi: 10.1155/2021/6677298 |
[41] | A. A. Estaji, M. Vatandoost, R. Pourkhandani, Fixed points of covering upper and lower approximation operators, Soft Comput., 23 (2019), 11447–11460. https://doi.org/10.1007/s00500-019-04113-0 doi: 10.1007/s00500-019-04113-0 |
[42] | J. M. Zhan, K. Y. Zhu, A novel soft rough fuzzy set: Z-soft rough fuzzy ideals of hemirings and corresponding decision making, Soft Comput., 21 (2017), 1923–1936. https://doi.org/10.1007/s00500-016-2119-9 doi: 10.1007/s00500-016-2119-9 |
[43] | M. Atef, S. Nada, A. Nawar, Covering soft rough sets and its topological properties with application, Soft Comput., 271 (2023), 4451–4461. https://doi.org/10.1007/s00500-023-07812-x doi: 10.1007/s00500-023-07812-x |
[44] | Z. Li, N. Xie, G. Wen, Soft coverings and their parameter reductions, Appl. Soft Comput., 31 (2015), 48–60. https://doi.org/10.1016/j.asoc.2015.02.027 doi: 10.1016/j.asoc.2015.02.027 |
[45] | I. S. Khan, C. Park, A. Shoaib, N. Shah, A study of fixed point sets based on Z-soft rough covering models, AIMS Mathematics, 7 (2022), 13278–13291. https://doi.org/10.3934/math.2022733 doi: 10.3934/math.2022733 |