Power-barrier option is a typical exotic option formed by attaching some restrictions to the power option, where the power option evolves from standard European option with the strike price and underlying good price attached to some power. Compared with the ordinary options, power-barrier option can provide investors with stable leverage and premium income. Therefore, power-barrier option is more favored by investors. This paper mainly discusses the pricing problems of power-barrier option in uncertain financial market. The fluctuation of stock price is regarded as an uncertain process and the interest rate is floating. The uncertain differential equation is invoked to simulate this fluctuation in an uncertain environment. Then, the clear pricing formulas of power-barrier option are given. Finally, the corresponding numerical examples and a real data example are put forward to illustrate the method.
Citation: Hua Zhao, Yue Xin, Jinwu Gao, Yin Gao. Power-barrier option pricing formulas in uncertain financial market with floating interest rate[J]. AIMS Mathematics, 2023, 8(9): 20395-20414. doi: 10.3934/math.20231040
Power-barrier option is a typical exotic option formed by attaching some restrictions to the power option, where the power option evolves from standard European option with the strike price and underlying good price attached to some power. Compared with the ordinary options, power-barrier option can provide investors with stable leverage and premium income. Therefore, power-barrier option is more favored by investors. This paper mainly discusses the pricing problems of power-barrier option in uncertain financial market. The fluctuation of stock price is regarded as an uncertain process and the interest rate is floating. The uncertain differential equation is invoked to simulate this fluctuation in an uncertain environment. Then, the clear pricing formulas of power-barrier option are given. Finally, the corresponding numerical examples and a real data example are put forward to illustrate the method.
[1] | S. Macovschi, F. Quittard-Pinon, On the pricing of power and other polynomial options, J. Deriv., 13 (2006), 61–71. https://doi.org/10.3905/jod.2006.635421 doi: 10.3905/jod.2006.635421 |
[2] | R. C. Heynen, H. M. Kat, Pricing and hedging power options, Financ. Eng. Jpn. Mark., 3 (1996), 253–261. https://doi.org/10.1007/BF02425804 doi: 10.1007/BF02425804 |
[3] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062 |
[4] | W. Margrabe, The value of an option to exchange one asset for another, J. Finance, 33 (1978), 177–186. https://doi.org/10.2307/2326358 doi: 10.2307/2326358 |
[5] | J. Kim, B. Kim, K. S. Moon, I. S. Wee, Valuation of power options under Heston's stochastic volatility model, J. Econ. Dyn. Control, 36 (2012), 1796–1813. https://doi.org/10.1016/j.jedc.2012.05.005 doi: 10.1016/j.jedc.2012.05.005 |
[6] | P. Pasricha, A. Goel, Pricing vulnerable power exchange options in an intensity based framework, J. Comput. Appl. Math., 355 (2019), 106–115. https://doi.org/10.1016/j.cam.2019.01.019 doi: 10.1016/j.cam.2019.01.019 |
[7] | D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47 (1979), 263–292. https://doi.org/10.2307/1914185 doi: 10.2307/1914185 |
[8] | B. Liu, Toward uncertain finance theory, J. Uncertainty Anal. Appl., 1 (2013), 1. https://doi.org/10.1186/2195-5468-1-1 doi: 10.1186/2195-5468-1-1 |
[9] | B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10. |
[10] | X. Chen, American option pricing formula for uncertain financial market, Int. J. Oper. Res., 8 (2011), 27–32. |
[11] | Z. Zhang, W. Liu, Y. Sheng, Valuation of power option for uncertain financial market, Appl. Math. Comput., 286 (2016), 257–264. https://doi.org/10.1016/j.amc.2016.04.032 doi: 10.1016/j.amc.2016.04.032 |
[12] | Z. Zhang, W. Liu, Geometric average asian option pricing for uncertain financial market, J. Uncertain Syst., 8 (2014), 317–320. |
[13] | Y. Gao, X. Yang, Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Comput., 22 (2018), 5647–5654. https://doi.org/10.1007/s00500-017-2558-y doi: 10.1007/s00500-017-2558-y |
[14] | K. Yao, Z. Qin, Barrier option pricing formulas of an uncertain stock model, Fuzzy Optim. Decis. Making, 20 (2021), 81–100. https://doi.org/10.1007/s10700-020-09333-w doi: 10.1007/s10700-020-09333-w |
[15] | R. Gao, K. Liu, Z. Li, R. Lv, American barrier option pricing formulas for stock model in uncertain environment, IEEE Access, 7 (2019), 97846–97856. https://doi.org/10.1109/ACCESS.2019.2928029 doi: 10.1109/ACCESS.2019.2928029 |
[16] | R. Gao, K. Liu, Z. Li, L. Lang, American barrier option pricing formulas for currency model in uncertain environment, J. Syst. Sci. Complexity, 35 (2022), 283–312. https://doi.org/10.1007/s11424-021-0039-y doi: 10.1007/s11424-021-0039-y |
[17] | X. Yang, Z. Zhang, X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Solition Fract., 123 (2019), 79–86. https://doi.org/10.1016/j.chaos.2019.03.037 doi: 10.1016/j.chaos.2019.03.037 |
[18] | Y. Gao, L. Jia, Pricing formulas of barrier-lookback option in uncertain financial markets, Chaos Solitons Fract., 147 (2021), 110896. https://doi.org/10.1016/j.chaos.2021.110986 doi: 10.1016/j.chaos.2021.110986 |
[19] | Y. Liu, B. Liu, Residual analysis and parameter estimation of uncertain different equations, Fuzzy Optim. Decis. Making, 21 (2022), 513–530. https://doi.org/10.1007/s10700-021-09379-4 doi: 10.1007/s10700-021-09379-4 |
[20] | T. Ye, B. Liu, Uncertain hypothesis test for uncertain differential equations, Fuzzy Optim. Decis. Making, 22 (2023), 195–211. https://doi.org/10.1007/s10700-022-09389-w doi: 10.1007/s10700-022-09389-w |
[21] | K. Yao, B. Liu, Parameter estimation in uncertain differential equations, Fuzzy Optim. Decis. Making, 19 (2020), 1–12. https://doi.org/10.1007/s10700-019-09310-y doi: 10.1007/s10700-019-09310-y |
[22] | B. Liu, Uncertainty theory, 2 Eds., Springer Berlin, 2007. https://doi.org/10.1007/978-3-540-73165-8 |
[23] | K. Yao, X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Syst., 25 (2013), 825–832. https://doi.org/10.3233/IFS-120688 doi: 10.3233/IFS-120688 |