In this manuscript, we give strong convergence results for a fixed point of a subfamily of an evolution family on a convex and closed subset $ \mathcal{D} $ of a Banach space $ \mathsf{B} $. An example is also provided which shows the applications of evolution families and our main results. At the end, an open problem is given.
Citation: Gul Rahmat, Tariq Shah, Muhammad Sarwar, Saber Mansour, Hassen Aydi. Strong convergence to fixed points of an evolution subfamily[J]. AIMS Mathematics, 2023, 8(9): 20380-20394. doi: 10.3934/math.20231039
In this manuscript, we give strong convergence results for a fixed point of a subfamily of an evolution family on a convex and closed subset $ \mathcal{D} $ of a Banach space $ \mathsf{B} $. An example is also provided which shows the applications of evolution families and our main results. At the end, an open problem is given.
[1] | R. B. Kellogg, Uniqueness in the Schauder fixed point theorem, Proc. Am. Math. Soc., 60 (1976), 207–210. |
[2] | F. Echenique, A short and constructive proof of Tarski fixed-point theorem, Int. J. Game Theory, 33 (2005), 215–218. https://doi.org/10.1007/s001820400192 doi: 10.1007/s001820400192 |
[3] | S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math., 27 (1999), 187–222. |
[4] | M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise contractions in modular function spaces, Nonlinear Anal., 73 (2010), 2957–2967. https://doi.org/10.1016/j.na.2010.06.061 doi: 10.1016/j.na.2010.06.061 |
[5] | M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J. Math. Anal. Appl., 380 (2011), 697–708. https://doi.org/10.1016/j.jmaa.2011.03.031 doi: 10.1016/j.jmaa.2011.03.031 |
[6] | Y. Zhang, D. V. Lukyanenko, A. G. Yagola, Using Lagrange principle for solving two-dimensional integral equation with a positive kernel, Inverse Probl. Sci. Eng., 24 (2016), 811–831. https://doi.org/10.1080/17415977.2015.1077445 doi: 10.1080/17415977.2015.1077445 |
[7] | Y. Zhang, D. V. Lukyanenko, A. G. Yagola, An optimal regularization method for convolution equations on the sourcewise represented set, J. Inverse Ill-Posed Probl., 23 (2016), 465–475. https://doi.org/10.1515/jiip-2014-0047 doi: 10.1515/jiip-2014-0047 |
[8] | M. Shoaib, M. Sarwar, K. Shah, P. Kumum, Fixed point results and its applications to the systems of non-linear integral and differential equations of arbitrary order, J. Nonlinear Sci. Appl., 9 (2016), 4949–4962. https://doi.org/10.22436/jnsa.009.06.128 doi: 10.22436/jnsa.009.06.128 |
[9] | M. B. Zada, M. Sarwar, C. Tunc, Fixed point theorems in $b$-metric spaces and their applications to non-linear fractional differential and integral equations, J. Fixed Point Theory Appl., 20 (2018), 25. https://doi.org/10.1007/s11784-018-0510-0 doi: 10.1007/s11784-018-0510-0 |
[10] | S. Atsushiba, W. Takahashi, Strong convergence theorems for one-parameter nonexpansive semigroups with compact domains, Fixed Point Theory Appl., 3 (2002), 15–31. |
[11] | W. Sintunavarat, M. B. Zada, M. Sarwar, Common solution of Urysohn integral equations with the help of common fixed point results in complex valued metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat., 111 (2017), 531–545. https://doi.org/10.1007/s13398-016-0309-z doi: 10.1007/s13398-016-0309-z |
[12] | J. P. Gossez, E. J. L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pac. J. Math., 40 (1972), 565–573. https://doi.org/10.2140/pjm.1972.40.565 doi: 10.2140/pjm.1972.40.565 |
[13] | A. Baklouti, M. Mabrouk, Essential numerical ranges of operators in semi-Hilbertian spaces, Ann. Funct. Anal., 13 (2022), 16. https://doi.org/10.1007/s43034-021-00161-6 doi: 10.1007/s43034-021-00161-6 |
[14] | A. Baklouti, J. Schutz, S. Dellagi, A. Chelbi, Selling or leasing used vehicles considering their energetic type, the potential demand for leasing, and the expected maintenance costs, Energy Rep., 8 (2022), 1125–1135. https://doi.org/10.1016/j.egyr.2022.07.074 doi: 10.1016/j.egyr.2022.07.074 |
[15] | T. Shimizu, W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert space, Nonlinear Anal., 34 (1998), 87–99. |
[16] | N. Shioji, W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Jpn., 50 (1999), 57–66. |
[17] | G. Rahmat, M. Khan, M. Sarwar, H. Aydi, E. Ameer, A strong convergence to a common fixed point of a subfamily of a nonexpansive evolution family of bounded linear operators on a Hilbert space, J. Math., 2021 (2021), 2392088. https://doi.org/10.1155/2021/2392088 doi: 10.1155/2021/2392088 |
[18] | M. A. Khamsi, W. M. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935–953. https://doi.org/10.1016/0362-546X(90)90111-S doi: 10.1016/0362-546X(90)90111-S |
[19] | K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel Dekker, 1984. |
[20] | S. Reich, D. Shoikhet, Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces, Imperial College Press, 2005. |
[21] | F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci., 53 (1965), 1272–1276. https://doi.org/10.1073/pnas.53.6.1272 doi: 10.1073/pnas.53.6.1272 |
[22] | S. Reich, The fixed point property for nonexpansive mappings, Am. Math. Mon., 83 (1976), 266–268. https://doi.org/10.1080/00029890.1976.11994096 doi: 10.1080/00029890.1976.11994096 |
[23] | K. J. Engel, R. Nagel, One-parameter semi-groups for linear evolution equations, Springer Verlag, 2000. |
[24] | F. E. Browder, Nonexpansive non-linear operators in a Banach space, Proc. Nat. Acad. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041 |
[25] | T. Suzuki, On strong convergence to common fixed points of nonexpensive simegroup in Hilbert spaces, Proc. Am. Math. Soc., 131 (2002), 2133–2136. |
[26] | S. Reich, Weak convergence theorems for nonexpansive mappings in Banach space, J. Math. Anal. Appl., 67 (1979), 274–276. https://doi.org/10.1016/0022-247X(79)90024-6 doi: 10.1016/0022-247X(79)90024-6 |
[27] | S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Am. Math. Soc., 59 (1976), 65–71. |
[28] | O. Nevanlinna, S. Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, Isr. J. Math., 32 (1979), 44–58. https://doi.org/10.1007/BF02761184 doi: 10.1007/BF02761184 |
[29] | T. Suzuki, W. Takahashi, Strong convergence of Manns type sequences for one-parameter nonexpansive semigroups in general Banach spaces, J. Nonlinear Convex Anal., 5 (2004), 209–216. |
[30] | G. Rahmat, T. Shah, M. Sarwar, H. Aydi, H. Alsamir, Common fixed points of a subfamily of nonexpansive periodic evolution family in strictly convex Banach space, J. Math., 2021 (2021), 6668305. https://doi.org/10.1155/2021/6668305 doi: 10.1155/2021/6668305 |
[31] | M. Shah, G. Rahmat, S. I. A. Shah, E. Bonyah, Z. Shah, M. Shutaywi, Convergence for a fixed point of evolution families in Banach space via iterative process, J. Math., 2022 (2022), 4907226. https://doi.org/10.1155/2022/4907226 doi: 10.1155/2022/4907226 |
[32] | S. Fuan, R. Ullah, G. Rahmat, M. Numan, S. I. Butt, X. Ge, Approximate fixed point sequences of an evolution family on a metric space, J. Math., 2021 (2021), 6764280. https://doi.org/10.1155/2020/1647193 doi: 10.1155/2020/1647193 |
[33] | D. V. Thong, An implicit iteration process for nonexpansive semigroups, Nonlinear Anal., 74 (2011), 6116–6120. https://doi.org/10.1016/j.na.2011.05.090 doi: 10.1016/j.na.2011.05.090 |
[34] | S. Saejung, Strong convergence theorem for nonexpansive semigroups without Bochner integrals, Fixed Point Theory Appl., 2008 (2008), 745010. https://doi.org/10.1155/2008/745010 doi: 10.1155/2008/745010 |
[35] | D. Daners, P. K. Medina, Abstract evolution equations, periodic problems and applications, CRC Press, 1992. |
[36] | C. Buse, A. Khan, G. Rahmat, A. Tabassum, A new estimation of the growth bound of a periodic evolution family on Banach spaces, J. Funct. Spaces, 2013 (2013), 260920. https://doi.org/10.1155/2013/260920 doi: 10.1155/2013/260920 |