In this paper, some new findings on the uniqueness and existence of positive periodic solutions to first-order functional differential equations are presented. These equations have wide applications in a variety of fields. The most important feature of our argument is that we use the theory of Hilbert's metric to prove the uniqueness of the positive periodic solution when $ q=-1 $ and $ -1 < q < 0 $. In addition, we also investigate the existence results of positive periodic solutions by applying a fixed point theorem for completely continuous maps in a cone. Two examples demonstrate our findings.
Citation: Jiaqi Xu, Chunyan Xue. Uniqueness and existence of positive periodic solutions of functional differential equations[J]. AIMS Mathematics, 2023, 8(1): 676-690. doi: 10.3934/math.2023032
In this paper, some new findings on the uniqueness and existence of positive periodic solutions to first-order functional differential equations are presented. These equations have wide applications in a variety of fields. The most important feature of our argument is that we use the theory of Hilbert's metric to prove the uniqueness of the positive periodic solution when $ q=-1 $ and $ -1 < q < 0 $. In addition, we also investigate the existence results of positive periodic solutions by applying a fixed point theorem for completely continuous maps in a cone. Two examples demonstrate our findings.
[1] | M. C. Mackey, L. Glass, Oscillation theory of differential equations with deviating arguments, Dekker, New York, 1987. |
[2] | Y. Kuang, Delay differential equations: With applications in population dynamics, Boston: Academic Press, 1993. |
[3] | B. S. Lalli, B. G. Zhang, On a periodic delay population model, Quart. Appl. Math. , 52 (1994), 35–42. https://doi.org/10.1090/qam/1262316 doi: 10.1090/qam/1262316 |
[4] | S. H. Saker, S. Agarwal, Oscillation and global attractivity in a periodic Nicholson's blowflies model, Math. Comput. Model. , 35 (2002), 719–731. http://dx.doi.org/10.1016/S0895-7177(02)00043-2 doi: 10.1016/S0895-7177(02)00043-2 |
[5] | S. N. Chow, Remarks on one dimensional delay-differential equations, J. Math. Anal. Appl. , 41 (1973), 426–429. http://dx.doi.org/10.1016/0022-247X(73)90217-5 doi: 10.1016/0022-247X(73)90217-5 |
[6] | H. I. Freedman, J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal. , 23 (1992), 689–701. http://dx.doi.org/10.1137/0523035 doi: 10.1137/0523035 |
[7] | Y. Kuang, H. L. Smith, Periodic solutions of differential delay equations with threshold-type delays, oscillations and dynamics in delay equations, Contemp. Math. , 129 (1992), 153–176. http://dx.doi.org/10.1090/conm/129/1174140 doi: 10.1090/conm/129/1174140 |
[8] | Y. H. Fan, W. T. Li, L. L. Wang, Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional response, Nonlinear Anal. , 129 (1992), 153–176. https://doi.org/10.1016/S1468-1218(03)00036-1 doi: 10.1016/S1468-1218(03)00036-1 |
[9] | D. Q. Jiang, J. J. Wei, B. Zhang, Positive periodic solutions of functional differential equations and population models, Electron. J. Differ. Eq. , 71 (2002), 1–13. |
[10] | L. L. Wang, W. T. Li, Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response, J. Comput. Appl. Math., 162 (2004), 341–357. http://dx.doi.org/10.1016/j.cam.2003.06.005 doi: 10.1016/j.cam.2003.06.005 |
[11] | Y. S. Liu, Periodic boundary value problems for first order functional differential equations with impulse, J. Comput. Appl. Math., 223 (2009), 27–39. http://dx.doi.org/10.1016/j.cam.2007.12.015 doi: 10.1016/j.cam.2007.12.015 |
[12] | J. L. Li, J. H. Shen, New comparison results for impulsive functional differential equations, Appl. Math. Lett., 23 (2010), 487–493. http://dx.doi.org/10.1016/j.aml.2009.12.010 doi: 10.1016/j.aml.2009.12.010 |
[13] | J. R. Graef, L. J. Kong, Existence of multiple periodic solutions for first order functional differential equations, Math. Comput. Mod., 54 (2011), 2962–2968. http://dx.doi.org/10.1016/j.mcm.2011.07.018 doi: 10.1016/j.mcm.2011.07.018 |
[14] | X. M. Zhang, M. Q. Feng, Multi-parameter, impulsive effects and positive periodic solutions of first-order functional differential equations, Bound. Value Probl., 2015 (2015), 137. http://dx.doi.org/10.1186/s13661-015-0401-x doi: 10.1186/s13661-015-0401-x |
[15] | S. S. Cheng, G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differ. Eq., 59 (2001), 1–8. http://dx.doi.org/10.1111/1468-0262.00185 doi: 10.1111/1468-0262.00185 |
[16] | H. Y. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations, 202 (2004), 354–366. http://dx.doi.org/10.1016/j.jde.2004.02.018 doi: 10.1016/j.jde.2004.02.018 |
[17] | W. X. Liu, W. T. Li, Existence and uniqueness of positive periodic solutions of functional differential equations, J. Math. Anal. Appl., 293 (2004), 28–39. http://dx.doi.org/10.1016/j.jmaa.2003.12.012 doi: 10.1016/j.jmaa.2003.12.012 |
[18] | D. Hilbert, Ueber die gerade Linie als k$\ddot{u}$rzeste Verbindung zweier Punkte, Math. Ann., 46 (1970), 91–96. http://dx.doi.org/10.1007/BF02096204 doi: 10.1007/BF02096204 |
[19] | G. Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc., 85 (1957), 219–227. http://dx.doi.org/10.2307/1992971 doi: 10.2307/1992971 |
[20] | F. Klein, Ueber die sogenannte nicht-euklidische geometrie, J. Math. Ann., 4 (1871), 573–625. http://dx.doi.org/10.1007/BF02100583 doi: 10.1007/BF02100583 |
[21] | P. J. Bushell, The Cayley-Hilbert metric and positive operators, Linear Algebra Appl., 84 (1986), 271–280. https://doi.org/10.1016/0024-3795(86)90319-8 doi: 10.1016/0024-3795(86)90319-8 |
[22] | M. J. Huang, C. Y. Huang, T. M. Tsai, Applications of Hilbert's projective metric to a class of positive nonlinear operators, Linear Algebra Appl., 413 (2006), 202–211. http://dx.doi.org/10.1016/j.laa.2005.08.024 doi: 10.1016/j.laa.2005.08.024 |
[23] | K. Koufany, Application of Hilbert's projective metric on symmetric cones, Acta Math. Sin., 22 (2006), 1467–1472. http://dx.doi.org/10.1007/s10114-005-0755-6 doi: 10.1007/s10114-005-0755-6 |
[24] | D. J. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, New York: Academic Press, 1988. https://doi.org/10.1016/C2013-0-10750-7 |
[25] | P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Ration. Mech. Anal., 52 (1973), 330–338. http://dx.doi.org/10.1007/BF00247467 doi: 10.1007/BF00247467 |
[26] | P. J. Bushell, On a class of Volterra and Fredholm nonlinear integral equations, Math. Proc. Camb. Phil. Soc., 79 (1976), 329–335. http://dx.doi.org/10.1017/s0305004100052324 doi: 10.1017/s0305004100052324 |
[27] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620–709. http://dx.doi.org/10.1137/1018114 doi: 10.1137/1018114 |
[28] | A. J. B. Potter, Existence theorem for a non-linear integral equation, J. London Math. Soc., 1 (1975), 7–10. http://dx.doi.org/10.1112/jlms/s2-11.1.7 doi: 10.1112/jlms/s2-11.1.7 |
[29] | A. Meir, E. B. Keller, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. http://dx.doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6 |