Research article

Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities

  • Received: 31 August 2022 Revised: 30 September 2022 Accepted: 12 October 2022 Published: 17 October 2022
  • MSC : 34B16, 34B25, 35J57

  • In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.

    Citation: Limin Guo, Jiafa Xu, Donal O'Regan. Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities[J]. AIMS Mathematics, 2023, 8(1): 1072-1089. doi: 10.3934/math.2023053

    Related Papers:

    [1] Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz . New double-sum expansions for certain Mock theta functions. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948
    [2] Suxia Wang, Tiehong Zhao . New refinements of Becker-Stark inequality. AIMS Mathematics, 2024, 9(7): 19677-19691. doi: 10.3934/math.2024960
    [3] Zhenhua Su, Zikai Tang, Hanyuan Deng . Higher-order Randić index and isomorphism of double starlike trees. AIMS Mathematics, 2023, 8(12): 31186-31197. doi: 10.3934/math.20231596
    [4] Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830
    [5] Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu . On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Mathematics, 2020, 5(6): 6479-6495. doi: 10.3934/math.2020418
    [6] Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu . New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432
    [7] Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ . A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics, 2024, 9(11): 30922-30938. doi: 10.3934/math.20241492
    [8] Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta . Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34567-34587. doi: 10.3934/math.20241646
    [9] Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025
    [10] Bai-Ni Guo, Dongkyu Lim, Feng Qi . Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438
  • In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.



    In [18] Ramanujan showed a total of 17 series for 1/π but he did not indicate how he arrived at these series. The Borwein brothers [5] gave rigorous proofs of Ramanujan's series for the first time and also obtained many new series for 1/π. Till now, many new Ramanujan's-type series for 1/π have been published, (see, for example, [4,6,8]). Chu [7], Liu [15,16] and Wei et al. [21,22] gave many π-formula with free parameters by means of gamma functions and hypergeometric series. Guillera [10] proved a kind of bilateral semi-terminating series related to Ramanujan-like series for negative powers of π. Moreover, Guillera and Zudilin [11] outlined an elementary method for proving numerical hypergeometric identities, in particular, Ramanujan-type identities for 1/π. Recently, q-analogues of Ramanujan-type series for 1/π have caught the interests of many authors (see, for example, [9,12,13,14,20,21]).

    Although various definitions for gamma functions are used in the literature, we adopt the following definition [23, p.76]

    1Γ(z)=zeγzn=1(1+zn)ezn

    where γ is the Euler constant defined as

    γ=limn(1+12++1nlogn).

    It is easy to verify that Γ(1)=1,Γ(12)=π and Γ(z+1)=zΓ(z). It follows that for every positive integer n, Γ(n)=(n1)!.

    For any complex α, we define the general rising shifted factorial by

    (z)α=Γ(z+α)/Γ(z). (1.1)

    Obviously, (z)0=1. For every positive integer n, we have

    (z)n=Γ(z+n)/Γ(z)=z(z+1)(z+n1)

    and

    (z)n=Γ(zn)/Γ(z)=1(z1)(z2)(zn).

    For convenience, we use the following compact notations

    (a1,a2,,am)n=(a1)n(a2)n(am)n

    and

    (a)(n1,n2,,nm)=(a)n1(a)n2(a)nm.

    Following [1,3], the hypergeometric series is defined by

    r+1Fs[a0,a1,,arb1,,bs;z]=k=0(a0,a1,,ar)k(b1,,bs)kzkk!,

    where ai,bj(i=0,1,,r,j=1,2,,s) are complex numbers such that no zero factors appear in the denominators of the summand on the right hand side.

    We let Fp:r;uq:s;v (p,q,r,s,u,vN0={0,1,2,}) denote a general (Kampé de Fériet's) double hypergeometric function defined by (see [2,19])

    Fp:r;uq:s;v[α1,,αp:a1,,ar;c1,,cu;β1,,βq:b1,,bs;d1,,dv;x,y]=m,n=0(α1,,αp)m+n(a1,,ar)m(c1,,cu)n(β1,,βq)m+n(b1,,bs)m(d1,,dv)nxmm!ynn!,

    where, for convergence of the double hypergeometric series,

    p+rq+s+1andp+uq+v+1,

    with equality only when |x| and |y| are appropriately constrained (see, for details, [19,Eq 1.3(29),p.27]).

    There exist numerous identities for such series. For example, we have

    Theorem 1.1 (See [17,(30)] ) If Re(ed)>0 and Re(d+eabc)>0, then

    F0:3;31:1;1[:a,b,c;da,db,dc;d:e;d+eabc;1,1]=Γ(e)Γ(e+dabc)Γ(ed)Γ(ea)Γ(eb)Γ(ec).

    In [15], Liu used the general rising shifted factorial and the Gauss summation formula to prove the following four-parameter series expansions formula, which implies infinitely many Ramanujan type series for 1/π and π.

    Theorem 1.2 For any complex α and Re(cab)>0, we have

    n=0(α)a+n(1α)b+nn!Γ(c+n+1)=(α)a(1α)bΓ(cab)(α)cb(1α)casinπαπ.

    Motivated by Liu's work, in this paper we derive the following result from Theorem 1.1 which enables us to give many double series expansions for 1/π and  π. To the best of our knowledge, most of the results in this paper have not previously appeared.

    Theorem 1.3 If dN0,Re(ed+σδ)>0 and Re(d+eabc+δ+σαβγ)>0, then

    m,n=0(α)a+m(β)b+m(γ)c+m(δα)da+n(δβ)db+n(δγ)dc+nm!n!(δ+d)m+n(σ)e+m(δ+σαβγ)d+eabc+n=(α)a(β)b(γ)c(δα)da(δβ)db(δγ)dc(σδ)ed(σα)ea(σβ)eb(σγ)ecΓ(σ)Γ(σδ)Γ(δ+σαβγ)Γ(σα)Γ(σβ)Γ(σγ).

    Several examples of such formulae are

    m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π,
    m,n=0(12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π,

    and

    m,n=0(23)2m(13)3nm!n!(n+1)!(23m)(13)m+n=3π3.

    The remainder of the paper is organized as follows. In section 2 we give the proof of Theorem 1.3. Sections 3 and 4 are devoted to the double series expansions for 1/π and π, respectively.

    First of all, by making use of (1.1), Theorem 1.3 can be restated as follows:

    m,n=0Γ(a+m)Γ(b+m)Γ(c+m)Γ(da+n)Γ(db+n)Γ(dc+n)m!n!Γ(d+m+n)Γ(e+m)Γ(d+eabc+n)=Γ(a)Γ(b)Γ(c)Γ(da)Γ(db)Γ(dc)Γ(ed)Γ(d)Γ(ea)Γ(eb)Γ(ec). (2.1)

    From (1.1) it is easy to see that

    Γ(a+α+m)=(α)a+mΓ(α), Γ(b+β+m)=(β)b+mΓ(β), Γ(c+γ+m)=(γ)c+mΓ(γ),Γ(da+δα+n)=(δα)da+nΓ(δα), Γ(db+δβ+n)=(δβ)db+nΓ(δβ),Γ(dc+δγ+n)=(δγ)dc+nΓ(δγ), Γ(d+δ+m+n)=(δ)d+m+nΓ(δ)Γ(e+m+σ)=(σ)e+mΓ(σ), Γ(a+α)=(α)aΓ(α), Γ(b+β)=(β)bΓ(β), Γ(c+γ)=(γ)cΓ(γ),Γ(da+δα)=(δα)daΓ(δα), Γ(db+δβ)=(δβ)dbΓ(δβ),Γ(dc+δγ)=(δγ)dcΓ(δγ), Γ(ed+σδ)=(σδ)edΓ(σδ),Γ(d+δ)=(δ)dΓ(δ),Γ(ea+σα)=(σα)eaΓ(σα),Γ(eb+σβ)=(σβ)ebΓ(σβ), Γ(ec+σγ)=(σγ)ecΓ(σγ),Γ(d+eabc+δ+σαβγ)=(δ+σαβγ)d+eabcΓ(δ+σαβγ).

    and we realize that (δ)d+m+n=(δ)d(δ+d)m+n when dN0. Replacing(a,b,c,d,e) by (a+α,b+β,c+γ,d+δ,e+σ) in (2.1) and substituting above identities into the resulting equation, we get the desired result.

    In this section we will use Theorem 1.3 to prove the following double series expansion formula for 1/π.

    Theorem 3.1 If dN0,Re(ed+1)>0 and Re(d+eabc+32)>0, then

    m,n=0(12)(a+m,b+m,c+m,da+n,db+n,dc+n)m!n!(d+1)m+n(2)e+m(32)d+eabc+n=(12)(a,b,c,da,db,dc)(1)ed(32)(ea,eb,ec)4π.

    Proof. Let (α,β,γ,δ,σ)=(12,12,12,1,2) in Theorem 1.3. We find that

    m,n=0(12)(a+m,b+m,c+m,da+n,db+n,dc+n)m!n!(d+1)m+n(2)e+m(32)d+eabc+n=(12)(a,b,c,da,db,dc)(1)ed(32)(ea,eb,ec)Γ(2)Γ(1)Γ(32)Γ3(32). (3.1)

    Substituting Γ(32)=π2 into (3.1) we obtain the result immediately. Putting (a,b,c)=(0,0,0) in Theorem 3.1 we get the following general double summation formula for 1/π with two free parameters.

    Corollary 3.2 If dN0,Re(ed+1)>0 and Re(d+e+32)>0, then

    m,n=0(12)3(m,d+n)m!n!(d+1)m+n(2)e+m(32)d+e+n=4(12)3d(1)edπ(32)3e.

    Setting d=0 and e=kN0 in Corallary 3.2 we have the following result.

    Proposition 3.3 Let k be a nonnegative integer. Then

    m,n=0(12)3(m,n)m!n!(m+n)!(m+k+1)!(32+k)n=4k!π(32)2k.

    Example 3.1 (k=0 in Proposition 3.3).

    m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π.

    If d=e=kN0 in Corollary 3.2 we achieve

    Proposition 3.4 Let k be a nonnegative integer. Then

    m,n=0(12)3(m,n+k)m!n!(k+1)m+n(m+k+1)!(32)n+2k=4π(2k+1)3.

    If we put k=0 into Proposition 3.4, then we can also get Example 3.1.

    In this section we will prove the following theorem, which allows us to derive infinitely double series expansions for π.

    Theorem 4.1 If dN0,Re(edσ+1)>0 and Re(d+eabc+2)>0, then

    m,n=0(σ1)(a+m,b+m,c+m)(σ)(da+n,db+n,dc+n)m!n!(2σ+d1)m+n(σ)e+m(2)d+eabc+n=(σ1)(a,b,c)(σ)(da,db,dc)(1σ)ed(1)(ea,eb,ec)πsinσπ.

    Proof. Let (α,β,γ,δ)=(σ1,σ1,σ1,2σ1) in Theorem 1.3. We obtain that

    m,n=0(σ1)(a+m,b+m,c+m)(σ)(da+n,db+n,dc+n)m!n!(2σ+d1)m+n(σ)e+m(2)d+eabc+n=(σ1)(a,b,c)(σ)(da,db,dc)(1σ)ed(1)(ea,eb,ec)Γ(σ)Γ(1σ)Γ(2)Γ3(1). (4.1)

    Combining Γ(σ)Γ(1σ)=πsinσπ with (4.1) we get the desired result immediately. Putting a=b=c=0 in Theorem 4.1 we obtain the following equation.

    Corollary 4.2 If dN0,Re(edσ+1)>0 and Re(d+e+2)>0, then

    m,n=0(σ1)3m(σ)3d+nm!n!(2σ+d1)m+n(σ)e+m(2)d+e+n=(σ)3d(1σ)ed(1)3eπsinσπ.

    Letting σ=12 in Corollary 4.2, we get the following proposition.

    Proposition 4.3 If dN0,Re(ed+12)>0 and Re(d+e+2)>0, then

    m,n=0(12)3m(12)3d+nm!n!(d)m+n(12)e+m(2)d+e+n=(12)3d(12)ed(1)3eπ.

    When we set d=1 and e=kN={1,2,3} in Proposition 4.3 we obtain

    Proposition 4.4 If k is a positive integer, then

    m,n=0(12)3m(32)3nm!n!(m+n)!(n+k+2)!(12)m+k=π(12)k1(k!)3.

    Example 4.1 (k=1 in Proposition 4.4).

    m,n=0(12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π.

    Putting σ=13 in Corollary 4.2, we get the following proposition.

    Proposition 4.5 If dN0,Re(ed+23)>0 and Re(d+e+2)>0, then

    m,n=0(23)3m(13)3d+nm!n!(d13)m+n(13)e+m(2)d+e+n=23π(13)3d(23)ed3(1)3e.

    When we set d=0 and e=kN0 in Proposition 4.5 we obtain

    Proposition 4.6 If k is a nonnegative integer, then

    m,n=0(23)3m(13)3nm!n!(13)m+n(13)m+k(n+k+1)!=23π(23)k3k!3.

    Example 4.2 (k=0 in Proposition 4.6).

    m,n=0(23)2m(13)3nm!n!(n+1)!(23m)(13)m+n=3π3.

    Setting d=e=kN0 in Proposition 4.5, we get

    Proposition 4.7 If k is a nonnegative integer, then

    m,n=0(23)3m(13+k)3nm!n!(n+2k+1)!(k13)m+n(13)m+k=23π3k!3.

    Therefore, Example 4.2 can also be deduced by fixing k=0 in the above equation.

    Example 4.3 (k=1 in Proposition 4.7).

    m,n=0(23)3m(43)3nm!n!(n+3)!(23)m+n(43)m=23π9.

    Double series expansions for 1/π and π with several free parameters are established and many interesting formulas are obtained. A point that should be stressed is that there is an important connection between the summation formulas for double hypergeometric functions and double series expansions for the powers of π.

    The author was partially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant 19KJB110006).

    The author declares that there is no conflict of interest in this paper.



    [1] R. Ma, Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl., 201 (1996), 375–386. http://dx.doi.org/10.1006/jmaa.1996.0261 doi: 10.1006/jmaa.1996.0261
    [2] Y. Li, Positive radial solutions for elliptic equations with nonlinear gradient terms on the unit ball, Mediterr. J. Math., 17 (2020), 176. http://dx.doi.org/10.1007/s00009-020-01615-2 doi: 10.1007/s00009-020-01615-2
    [3] J. Liouville, Surl'équation aux différences partielles d2logλdudv±λ2a2=0, J. Math. Pure. Appl., 18 (1853), 71–72.
    [4] D. Dunninger, H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal.-Theor., 42 (2000), 803–811. http://dx.doi.org/10.1016/S0362-546X(99)00125-X doi: 10.1016/S0362-546X(99)00125-X
    [5] Z. Zhang, Existence of positive radial solutions for quasilinear elliptic equations and systems, Electron. J. Diff. Equ., 50 (2016), 1–9.
    [6] D. Hai, R. Shivaji, Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball, J. Differ. Equations, 266 (2019), 2232–2243. http://dx.doi.org/10.1016/j.jde.2018.08.027 doi: 10.1016/j.jde.2018.08.027
    [7] K. Chu, D. Hai, R. Shivaji, Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains, J. Math. Anal. Appl., 472 (2019), 510–525. http://dx.doi.org/10.1016/j.jmaa.2018.11.037 doi: 10.1016/j.jmaa.2018.11.037
    [8] X. Dong, Y. Wei, Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains, Nonlinear Anal., 187 (2019), 93–109. http://dx.doi.org/10.1016/j.na.2019.03.024 doi: 10.1016/j.na.2019.03.024
    [9] F. Cianciaruso, G. Infante, P. Pietramala, Non-zero radial solutions for elliptic systems with coupled functional BCs in exterior domains, P. Edinburgh Math. Soc., 62 (2019), 747–769. http://dx.doi.org/10.1017/S0013091518000706 doi: 10.1017/S0013091518000706
    [10] S. Hasegawa, Stability and separation property of radial solutions to semilinear elliptic equations, Discrete Contin. Dyn., 39 (2019), 4127–4136. http://dx.doi.org/10.3934/dcds.2019166 doi: 10.3934/dcds.2019166
    [11] Y. Deng, Y. Li, F. Yang, On the positive radial solutions of a class of singular semilinear elliptic equations, J. Differ. Equations, 253 (2012), 481–501. http://dx.doi.org/10.1016/j.jde.2012.02.017 doi: 10.1016/j.jde.2012.02.017
    [12] M. Ehrnstrom, On radial solutions of certain semi-linear elliptic equations, Nonlinear Anal.-Theor., 64 (2006), 1578–1586. http://dx.doi.org/10.1016/j.na.2005.07.008 doi: 10.1016/j.na.2005.07.008
    [13] R. Demarque, O. Miyagaki, Radial solutions of inhomogeneous fourth order elliptic equations and weighted Sobolev embeddings, Adv. Nonlinear Anal., 4 (2015), 135–151. http://dx.doi.org/10.1515/anona-2014-0041 doi: 10.1515/anona-2014-0041
    [14] S. Zhou, Existence of entire radial solutions to a class of quasilinear elliptic equations and systems, Electron. J. Qual. Theory Differ. Equ., 38 (2016), 1–10. http://dx.doi.org/10.14232/ejqtde.2016.1.38 doi: 10.14232/ejqtde.2016.1.38
    [15] R. Kajikiya, E. Ko, Existence of positive radial solutions for a semipositone elliptic equation, J. Math. Anal. Appl., 484 (2020), 123735. http://dx.doi.org/10.1016/j.jmaa.2019.123735 doi: 10.1016/j.jmaa.2019.123735
    [16] Y. Li, H. Zhang, Existence of positive radial solutions for the elliptic equations on an exterior domain, Ann. Pol. Math., 116 (2016), 67–78. http://dx.doi.org/10.4064/ap3633-12-2015 doi: 10.4064/ap3633-12-2015
    [17] A. Bouzelmate, A. Gmira, On the radial solutions of a nonlinear singular elliptic equation, International Journal of Mathematical Analysis, 9 (2015), 1279–1297. http://dx.doi.org/10.12988/ijma.2015.412413 doi: 10.12988/ijma.2015.412413
    [18] D. Butler, E. Ko, E. Lee, R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pur. Appl. Anal., 13 (2014), 2713–2731. http://dx.doi.org/10.3934/cpaa.2014.13.2713 doi: 10.3934/cpaa.2014.13.2713
    [19] Y. Wang, L. Liu, X. Zhang, Y. Wu, Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Appl. Math. Comput., 258 (2015), 312–324. http://dx.doi.org/10.1016/j.amc.2015.01.080 doi: 10.1016/j.amc.2015.01.080
    [20] Z. Zhao, Positive solutions of semi-positone Hammerstein integral equations and applications, Appl. Math. Comput., 219 (2012), 2789–2797. http://dx.doi.org/10.1016/j.amc.2012.09.009 doi: 10.1016/j.amc.2012.09.009
    [21] K. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal.-Theor., 71 (2009), 5979–5993. http://dx.doi.org/10.1016/j.na.2009.05.022 doi: 10.1016/j.na.2009.05.022
    [22] C. Goodrich, On semipositone discrete fractional boundary value problems with non-local boundary conditions, J. Differ. Equ. Appl., 19 (2013), 1758–1780. http://dx.doi.org/10.1080/10236198.2013.775259 doi: 10.1080/10236198.2013.775259
    [23] C. Goodrich, On semipositone non-local boundary-value problems with nonlinear or affine boundary conditions, P. Edinburgh Math. Soc., 60 (2017), 635–649. http://dx.doi.org/10.1017/S0013091516000146 doi: 10.1017/S0013091516000146
    [24] J. Webb, G. Infante, Semi-positone nonlocal boundary value problems of arbitrary order, Commun. Pur. Appl. Anal., 9 (2010), 563–581. http://dx.doi.org/10.3934/cpaa.2010.9.563 doi: 10.3934/cpaa.2010.9.563
    [25] L. Lin, Y. Liu, D. Zhao, Multiple solutions for singular semipositone boundary value problems of fourth-order differential systems with parameters, Bound. Value Probl., 2021 (2021), 79. http://dx.doi.org/10.1186/s13661-021-01554-1 doi: 10.1186/s13661-021-01554-1
    [26] H. Lu, L. Sun, Positive solutions to a semipositone superlinear elastic beam equation, AIMS Mathematics, 6 (2021), 4227–4237. http://dx.doi.org/10.3934/math.2021250 doi: 10.3934/math.2021250
    [27] D. Hai, A. Muthunayake, R. Shivaji, A uniqueness result for a class of infinite semipositone problems with nonlinear boundary conditions, Positivity, 25 (2021), 1357–1371. http://dx.doi.org/10.1007/s11117-021-00820-x doi: 10.1007/s11117-021-00820-x
    [28] C. Yuan, Two positive solutions for (n1,1)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 930–942. http://dx.doi.org/10.1016/j.cnsns.2011.06.008 doi: 10.1016/j.cnsns.2011.06.008
    [29] J. Henderson, R. Luca, Existence of positive solutions for a system of semipositone fractional boundary value problems, Electron. J. Qual. Theory Differ. Equ., 22 (2016), 1–28. http://dx.doi.org/10.14232/ejqtde.2016.1.22 doi: 10.14232/ejqtde.2016.1.22
    [30] R. Dahal, D. Duncan, C. Goodrich, Systems of semipositone discrete fractional boundary value problems, J. Differ. Equ. Appl., 20 (2014), 473–491. http://dx.doi.org/10.1080/10236198.2013.856073 doi: 10.1080/10236198.2013.856073
    [31] J. Xu, C. Goodrich, Y. Cui, Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities, RACSAM, 113 (2019), 1343–1358. http://dx.doi.org/10.1007/s13398-018-0551-7 doi: 10.1007/s13398-018-0551-7
    [32] C. Chen, J. Xu, D. O'Regan, Z. Fu, Positive solutions for a system of boundary value problems of fractional difference equations involving semipositone nonlinearities, J. Funct. Space., 2018 (2018), 6835028. http://dx.doi.org/10.1155/2018/6835028 doi: 10.1155/2018/6835028
    [33] J. Xu, Z. Yang, Positive solutions of boundary value problem for system of nonlinear nth-order ordinary differential equations, Journal of Systems Science and Mathematical Sciences, 30 (2010), 633–641.
    [34] J. Xu, Z. Yang, Positive solutions for a system of nth-order nonlinear boundary value problems, Electron. J. Qual. Theory Differ. Equ., 4 (2011), 1–16. http://dx.doi.org/10.14232/ejqtde.2011.1.4 doi: 10.14232/ejqtde.2011.1.4
    [35] J. Sun, Nonlinear functional analysis and its application (Chinese), Beijing: Science Press, 2008.
    [36] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Orlando: Academic Press, 1988.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1599) PDF downloads(116) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog