In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.
Citation: Limin Guo, Jiafa Xu, Donal O'Regan. Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities[J]. AIMS Mathematics, 2023, 8(1): 1072-1089. doi: 10.3934/math.2023053
In this paper we use the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations. Some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities.
[1] | R. Ma, Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl., 201 (1996), 375–386. http://dx.doi.org/10.1006/jmaa.1996.0261 doi: 10.1006/jmaa.1996.0261 |
[2] | Y. Li, Positive radial solutions for elliptic equations with nonlinear gradient terms on the unit ball, Mediterr. J. Math., 17 (2020), 176. http://dx.doi.org/10.1007/s00009-020-01615-2 doi: 10.1007/s00009-020-01615-2 |
[3] | J. Liouville, Surl'équation aux différences partielles $\frac{d^{2} \log \lambda}{d u d v} \pm \frac{\lambda}{2 a^{2}} = 0$, J. Math. Pure. Appl., 18 (1853), 71–72. |
[4] | D. Dunninger, H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal.-Theor., 42 (2000), 803–811. http://dx.doi.org/10.1016/S0362-546X(99)00125-X doi: 10.1016/S0362-546X(99)00125-X |
[5] | Z. Zhang, Existence of positive radial solutions for quasilinear elliptic equations and systems, Electron. J. Diff. Equ., 50 (2016), 1–9. |
[6] | D. Hai, R. Shivaji, Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball, J. Differ. Equations, 266 (2019), 2232–2243. http://dx.doi.org/10.1016/j.jde.2018.08.027 doi: 10.1016/j.jde.2018.08.027 |
[7] | K. Chu, D. Hai, R. Shivaji, Uniqueness of positive radial solutions for infinite semipositone $p$-Laplacian problems in exterior domains, J. Math. Anal. Appl., 472 (2019), 510–525. http://dx.doi.org/10.1016/j.jmaa.2018.11.037 doi: 10.1016/j.jmaa.2018.11.037 |
[8] | X. Dong, Y. Wei, Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains, Nonlinear Anal., 187 (2019), 93–109. http://dx.doi.org/10.1016/j.na.2019.03.024 doi: 10.1016/j.na.2019.03.024 |
[9] | F. Cianciaruso, G. Infante, P. Pietramala, Non-zero radial solutions for elliptic systems with coupled functional BCs in exterior domains, P. Edinburgh Math. Soc., 62 (2019), 747–769. http://dx.doi.org/10.1017/S0013091518000706 doi: 10.1017/S0013091518000706 |
[10] | S. Hasegawa, Stability and separation property of radial solutions to semilinear elliptic equations, Discrete Contin. Dyn., 39 (2019), 4127–4136. http://dx.doi.org/10.3934/dcds.2019166 doi: 10.3934/dcds.2019166 |
[11] | Y. Deng, Y. Li, F. Yang, On the positive radial solutions of a class of singular semilinear elliptic equations, J. Differ. Equations, 253 (2012), 481–501. http://dx.doi.org/10.1016/j.jde.2012.02.017 doi: 10.1016/j.jde.2012.02.017 |
[12] | M. Ehrnstrom, On radial solutions of certain semi-linear elliptic equations, Nonlinear Anal.-Theor., 64 (2006), 1578–1586. http://dx.doi.org/10.1016/j.na.2005.07.008 doi: 10.1016/j.na.2005.07.008 |
[13] | R. Demarque, O. Miyagaki, Radial solutions of inhomogeneous fourth order elliptic equations and weighted Sobolev embeddings, Adv. Nonlinear Anal., 4 (2015), 135–151. http://dx.doi.org/10.1515/anona-2014-0041 doi: 10.1515/anona-2014-0041 |
[14] | S. Zhou, Existence of entire radial solutions to a class of quasilinear elliptic equations and systems, Electron. J. Qual. Theory Differ. Equ., 38 (2016), 1–10. http://dx.doi.org/10.14232/ejqtde.2016.1.38 doi: 10.14232/ejqtde.2016.1.38 |
[15] | R. Kajikiya, E. Ko, Existence of positive radial solutions for a semipositone elliptic equation, J. Math. Anal. Appl., 484 (2020), 123735. http://dx.doi.org/10.1016/j.jmaa.2019.123735 doi: 10.1016/j.jmaa.2019.123735 |
[16] | Y. Li, H. Zhang, Existence of positive radial solutions for the elliptic equations on an exterior domain, Ann. Pol. Math., 116 (2016), 67–78. http://dx.doi.org/10.4064/ap3633-12-2015 doi: 10.4064/ap3633-12-2015 |
[17] | A. Bouzelmate, A. Gmira, On the radial solutions of a nonlinear singular elliptic equation, International Journal of Mathematical Analysis, 9 (2015), 1279–1297. http://dx.doi.org/10.12988/ijma.2015.412413 doi: 10.12988/ijma.2015.412413 |
[18] | D. Butler, E. Ko, E. Lee, R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pur. Appl. Anal., 13 (2014), 2713–2731. http://dx.doi.org/10.3934/cpaa.2014.13.2713 doi: 10.3934/cpaa.2014.13.2713 |
[19] | Y. Wang, L. Liu, X. Zhang, Y. Wu, Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Appl. Math. Comput., 258 (2015), 312–324. http://dx.doi.org/10.1016/j.amc.2015.01.080 doi: 10.1016/j.amc.2015.01.080 |
[20] | Z. Zhao, Positive solutions of semi-positone Hammerstein integral equations and applications, Appl. Math. Comput., 219 (2012), 2789–2797. http://dx.doi.org/10.1016/j.amc.2012.09.009 doi: 10.1016/j.amc.2012.09.009 |
[21] | K. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal.-Theor., 71 (2009), 5979–5993. http://dx.doi.org/10.1016/j.na.2009.05.022 doi: 10.1016/j.na.2009.05.022 |
[22] | C. Goodrich, On semipositone discrete fractional boundary value problems with non-local boundary conditions, J. Differ. Equ. Appl., 19 (2013), 1758–1780. http://dx.doi.org/10.1080/10236198.2013.775259 doi: 10.1080/10236198.2013.775259 |
[23] | C. Goodrich, On semipositone non-local boundary-value problems with nonlinear or affine boundary conditions, P. Edinburgh Math. Soc., 60 (2017), 635–649. http://dx.doi.org/10.1017/S0013091516000146 doi: 10.1017/S0013091516000146 |
[24] | J. Webb, G. Infante, Semi-positone nonlocal boundary value problems of arbitrary order, Commun. Pur. Appl. Anal., 9 (2010), 563–581. http://dx.doi.org/10.3934/cpaa.2010.9.563 doi: 10.3934/cpaa.2010.9.563 |
[25] | L. Lin, Y. Liu, D. Zhao, Multiple solutions for singular semipositone boundary value problems of fourth-order differential systems with parameters, Bound. Value Probl., 2021 (2021), 79. http://dx.doi.org/10.1186/s13661-021-01554-1 doi: 10.1186/s13661-021-01554-1 |
[26] | H. Lu, L. Sun, Positive solutions to a semipositone superlinear elastic beam equation, AIMS Mathematics, 6 (2021), 4227–4237. http://dx.doi.org/10.3934/math.2021250 doi: 10.3934/math.2021250 |
[27] | D. Hai, A. Muthunayake, R. Shivaji, A uniqueness result for a class of infinite semipositone problems with nonlinear boundary conditions, Positivity, 25 (2021), 1357–1371. http://dx.doi.org/10.1007/s11117-021-00820-x doi: 10.1007/s11117-021-00820-x |
[28] | C. Yuan, Two positive solutions for $(n -1, 1)$-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 930–942. http://dx.doi.org/10.1016/j.cnsns.2011.06.008 doi: 10.1016/j.cnsns.2011.06.008 |
[29] | J. Henderson, R. Luca, Existence of positive solutions for a system of semipositone fractional boundary value problems, Electron. J. Qual. Theory Differ. Equ., 22 (2016), 1–28. http://dx.doi.org/10.14232/ejqtde.2016.1.22 doi: 10.14232/ejqtde.2016.1.22 |
[30] | R. Dahal, D. Duncan, C. Goodrich, Systems of semipositone discrete fractional boundary value problems, J. Differ. Equ. Appl., 20 (2014), 473–491. http://dx.doi.org/10.1080/10236198.2013.856073 doi: 10.1080/10236198.2013.856073 |
[31] | J. Xu, C. Goodrich, Y. Cui, Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities, RACSAM, 113 (2019), 1343–1358. http://dx.doi.org/10.1007/s13398-018-0551-7 doi: 10.1007/s13398-018-0551-7 |
[32] | C. Chen, J. Xu, D. O'Regan, Z. Fu, Positive solutions for a system of boundary value problems of fractional difference equations involving semipositone nonlinearities, J. Funct. Space., 2018 (2018), 6835028. http://dx.doi.org/10.1155/2018/6835028 doi: 10.1155/2018/6835028 |
[33] | J. Xu, Z. Yang, Positive solutions of boundary value problem for system of nonlinear $n$th-order ordinary differential equations, Journal of Systems Science and Mathematical Sciences, 30 (2010), 633–641. |
[34] | J. Xu, Z. Yang, Positive solutions for a system of $n$th-order nonlinear boundary value problems, Electron. J. Qual. Theory Differ. Equ., 4 (2011), 1–16. http://dx.doi.org/10.14232/ejqtde.2011.1.4 doi: 10.14232/ejqtde.2011.1.4 |
[35] | J. Sun, Nonlinear functional analysis and its application (Chinese), Beijing: Science Press, 2008. |
[36] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Orlando: Academic Press, 1988. |