In this work, we study the effect of heat conduction theories pioneered by Green and Naghdi, popularly called thermoelasticity of type Ⅲ, on the stability of laminated Timoshenko beams. Without the structural (interfacial slip) damping or any other forms of damping mechanisms, we establish an exponential stability result depending on the equality of wave velocities of the system. Our work shows that the thermal effect is strong enough to stabilize the system exponentially without any additional internal or boundary dampings. The result extends some of the developments in literature where structural damping (in addition to some internal or boundary dampings) is necessary to bring about exponential stability.
Citation: Tijani A. Apalara, Aminat O. Ige, Cyril D. Enyi, Mcsylvester E. Omaba. Uniform stability result of laminated beams with thermoelasticity of type Ⅲ[J]. AIMS Mathematics, 2023, 8(1): 1090-1101. doi: 10.3934/math.2023054
In this work, we study the effect of heat conduction theories pioneered by Green and Naghdi, popularly called thermoelasticity of type Ⅲ, on the stability of laminated Timoshenko beams. Without the structural (interfacial slip) damping or any other forms of damping mechanisms, we establish an exponential stability result depending on the equality of wave velocities of the system. Our work shows that the thermal effect is strong enough to stabilize the system exponentially without any additional internal or boundary dampings. The result extends some of the developments in literature where structural damping (in addition to some internal or boundary dampings) is necessary to bring about exponential stability.
[1] | A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Soc. London. Series A: Math. Phy. Sci., 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012 |
[2] | A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stress., 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136 |
[3] | A. D. Kovalenko, The current theory of thermoelasticity, Int. Appl. Mech., 6 (1970), 355–360. https://doi.org/10.1007/BF00889364 doi: 10.1007/BF00889364 |
[4] | T. A. Apalara, On the stability of some systems of thermoelasticity of type Ⅲ, Ph.D thesis, King Fahd University of Petroleum and Minerals, 2013. |
[5] | S. W. Hansen, R. D. Spies, Structural damping in laminated beams due to interfacial slip, J. Sound Vibr., 204 (1997), 183–202. https://doi.org/10.1006/jsvi.1996.0913 doi: 10.1006/jsvi.1996.0913 |
[6] | J. M. Wang, G. Q. Xu, S. P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Contr. Optim., 44 (2005), 1575–1597. https://doi.org/10.1137/040610003 doi: 10.1137/040610003 |
[7] | T. A. Apalara, Exponential stability of laminated beams with interfacial slip, Mech. Solids, 56 (2021), 131–137. https://doi.org/10.3103/S0025654421010039 doi: 10.3103/S0025654421010039 |
[8] | M. S. Alves, R. N. Monteiro, Exponential stability of laminated Timoshenko beams with boundary/internal controls, J. Math. Anal. Appl., 482 (2020), 123516. https://doi.org/10.1016/j.jmaa.2019.123516 doi: 10.1016/j.jmaa.2019.123516 |
[9] | C. A. Raposo, Exponential stability for a structure with interfacial slip and frictional damping, Appl. Math. Lett., 53 (2016), 85–91. https://doi.org/10.1016/j.aml.2015.10.005 doi: 10.1016/j.aml.2015.10.005 |
[10] | W. Liu, W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math. Optim., 80 (2019), 103–133. https://doi.org/10.1007/s00245-017-9460-y doi: 10.1007/s00245-017-9460-y |
[11] | A. Lo, N. E. Tatar, Exponential stabilization of a structure with interfacial slip, Discr. Cont. Dyn. Sys. A, 36 (2016), 6285–6306. https://doi.org/10.3934/dcds.2016073 doi: 10.3934/dcds.2016073 |
[12] | T. A. Apalara, Uniform stability of a laminated beam with structural damping and second sound, Z. Angew. Math. Phys., 68 (2017), 1–16. https://doi.org/10.1007/s00033-017-0784-x doi: 10.1007/s00033-017-0784-x |
[13] | A. Lo, N. E. Tatar, Uniform stability of a laminated beam with structural memory, Qual. Theory Dyn. Sys., 15 (2016), 517–540. https://doi.org/10.1007/s12346-015-0147-y doi: 10.1007/s12346-015-0147-y |
[14] | N. E. Tatar, Stabilization of a laminated beam with interfacial slip by boundary controls, Bound. Val. Prob., 2015 (2015), 1–11. https://doi.org/10.1186/s13661-015-0432-3 doi: 10.1186/s13661-015-0432-3 |
[15] | M. I. Mustafa, On the stabilization of viscoelastic laminated beams with interfacial slip, Z. Angew. Math. Phys., 69 (2018), 1–14. https://doi.org/10.1007/s00033-018-0928-7 doi: 10.1007/s00033-018-0928-7 |
[16] | M. I. Mustafa, Laminated Timoshenko beams with viscoelastic damping, J. Math. Anal. Appl., 1 (2018), 1–23. https://doi.org/10.1016/j.jmaa.2018.06.016 doi: 10.1016/j.jmaa.2018.06.016 |
[17] | M. I. Mustafa, Boundary control of laminated beams with interfacial slip, J. Math. Phy., 59 (2018), 051508. https://doi.org/10.1063/1.5017923 doi: 10.1063/1.5017923 |
[18] | T. A. Apalara, On the stability of a thermoelastic laminated beam, Acta Math. Sci., 39 (2019), 1517–1524. https://doi.org/10.1007/s10473-019-0604-9 doi: 10.1007/s10473-019-0604-9 |
[19] | T. A. Apalara, A. M. Nass, H. A. Sulaimani, On a Laminated Timoshenko beam with nonlinear structural damping, Math. Compt. Appl., 25 (2020), 35. https://doi.org/10.3390/mca25020035 doi: 10.3390/mca25020035 |
[20] | T. A. Apalara, C. A. Raposo, C. A. Nonato, Exponential stability for laminated beams with a frictional damping, Arch. Math., 114 (2020), 471–480. https://doi.org/10.1007/s00013-019-01427-1 doi: 10.1007/s00013-019-01427-1 |
[21] | B. Feng, Well-posedness and exponential decay for Laminated Timoshenko beams with time delays and boundary feedbacks, Math. Meth. Appl. Sci., 41 (2018), 1162–1174. https://doi.org/10.1002/mma.4655 doi: 10.1002/mma.4655 |
[22] | B. Feng, T. F. Ma, R. N. Monteiro, C. A. Raposo, Dynamics of laminated Timoshenko beams, J. Dyn. Diff. Equ., 30 (2018), 1489–1507. https://doi.org/10.1007/s10884-017-9604-4 doi: 10.1007/s10884-017-9604-4 |
[23] | X. G. Cao, D. Y. Liu, G. Q. Xu, Easy test for stability of laminated beams with structural damping and boundary feedback controls, J. Dyn. Contr. Sys., 13 (2007), 313–336. https://doi.org/10.1007/s10883-007-9022-8 doi: 10.1007/s10883-007-9022-8 |
[24] | S. E. Mukiawa, T. A. Apalara, S. A. Messaoudi, Stability rate of a thermoelastic laminated beam: Case of equal-wave speed and nonequal-wave speed of propagation, AIMS Math., 6 (2021), 333–361. https://doi.org/10.3934/math.2021021 doi: 10.3934/math.2021021 |
[25] | S. E. Mukiawa, T. A. Apalara, S. A. Messaoudi, A general and optimal stability result for a laminated beam, J. Int. Equ. Appl., 32 (2020), 341–359. https://doi.org/10.1216/jie.2020.32.341 doi: 10.1216/jie.2020.32.341 |
[26] | A. Guesmia, Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory, IMA, J. Math. Contr. Info., 37 (2020), 300–350. https://doi.org/10.1093/imamci/dnz002 doi: 10.1093/imamci/dnz002 |
[27] | K. Mpungu, T. A. Apalara, Exponential stability of laminated beam with neutral delay, Afr. Mat., 33 (2022), 1–12. https://doi.org/10.1007/s13370-022-00965-2 doi: 10.1007/s13370-022-00965-2 |
[28] | K. Mpungu, T. A. Apalara, Exponential stability of laminated beam with constant delay feedback, Math. Model. Analy., 26 (2021), 566–581. https://doi.org/10.3846/mma.2021.13759 doi: 10.3846/mma.2021.13759 |
[29] | K. Mpungu, T. A. Apalara, Stability result of Laminated beam with internal distributed delay, J. Math. Inequal., 15 (2021), 1075–1091. https://doi.org/10.7153/jmi-2021-15-73 doi: 10.7153/jmi-2021-15-73 |
[30] | K. Mpungu, T. A. Apalara, M. Muminov, On the stabilization of laminated beams with delay, Appl. Math., 66 (2021), 789–812. https://doi.org/10.21136/AM.2021.0056-20 doi: 10.21136/AM.2021.0056-20 |
[31] | K. Mpungu, T. A. Apalara, Asymptotic behavior of a laminated beam with nonlinear delay and nonlinear structural damping, Hacet. J. Math. Stat., 2022, 1–18. https://doi.org/10.15672/hujms.947131 doi: 10.15672/hujms.947131 |
[32] | Z. Liu, R. Quintanilla, Energy decay rate of a mixed type Ⅱ and type Ⅲ thermoelastic system, Discrete Contin. Dyn. Syst. B, 14 (2010), 1433–1444. https://doi.org/10.3934/dcdsb.2010.14.1433 doi: 10.3934/dcdsb.2010.14.1433 |
[33] | W. Liu, Y. Luan, Y. Liu, G. Li, Well-posedness and asymptotic stability to a laminated beam in thermoelasticity of type Ⅲ, Math. Meth. Appl. Sci., 43 (2020), 3148–3166. https://doi.org/10.1002/mma.6108 doi: 10.1002/mma.6108 |
[34] | X, Zhang, E. Zuazua, Decay of solutions of the system of thermoelasticity of type Ⅲ, Comm. Contemp. Math., 5 (2003), 25–83. https://doi.org/10.1142/S0219199703000896 doi: 10.1142/S0219199703000896 |