We assess the multi-derivative nonlinear neutral fractional order integro-differential equations with Atangana-Baleanu fractional derivative of the Riemann-Liouville sense. We discuss results about the existence and difference solution on some data, based on the Prabhakar fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ with generalized Mittag-Leffler function. The results are obtained by using Krasnoselskii's fixed point theorem and the Gronwall-Bellman inequality.
Citation: Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani. Existence and data dependence results for neutral fractional order integro-differential equations[J]. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
We assess the multi-derivative nonlinear neutral fractional order integro-differential equations with Atangana-Baleanu fractional derivative of the Riemann-Liouville sense. We discuss results about the existence and difference solution on some data, based on the Prabhakar fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ with generalized Mittag-Leffler function. The results are obtained by using Krasnoselskii's fixed point theorem and the Gronwall-Bellman inequality.
[1] |
T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos, 29 (2019), 023102. https://doi.org/10.1063/1.5085726 doi: 10.1063/1.5085726
![]() |
[2] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 468. https://doi.org/10.1186/s13662-018-1914-2 doi: 10.1186/s13662-018-1914-2
![]() |
[3] |
A. A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-diffrential equations, Adv. Theor. Nonlinear Anal. Appl., 4 (2020), 321–331. https://doi.org/10.31197/atnaa.799854 doi: 10.31197/atnaa.799854
![]() |
[4] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
![]() |
[5] |
A. Atangana, S. I. Araz, Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Differ. Equ., 2021 (2021), 57. https://doi.org/10.1186/s13662-021-03213-2 doi: 10.1186/s13662-021-03213-2
![]() |
[6] |
A. Atangana, S. I. Araz, Rhythmic behaviors of the human heart with piecewise derivative, Math. Biosci. Eng., 19 (2022), 3091–3109. https://doi.org/10.3934/mbe.2022143 doi: 10.3934/mbe.2022143
![]() |
[7] |
R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
![]() |
[8] |
N. H. Aljahdaly, R. Shah, R. P. Agarwal, T. Botmart, The analysis of the fractional-order system of third-order KdV equation within different operators, Alex. Eng. J., 61 (2022), 11825–11834. https://doi.org/10.1016/j.aej.2022.05.032 doi: 10.1016/j.aej.2022.05.032
![]() |
[9] |
M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmart, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615
![]() |
[10] |
E. Bonyah, R. Zarin Fatmawati, Mathematical modeling of cancer and hepatitis co-dynamics with non-local and non-singular kernel, Commun. Math. Biol. Neu., 2022 (2022). http://doi.org/10.28919/cmbn/5029 doi: 10.28919/cmbn/5029
![]() |
[11] | A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, McGraw-Hill, New York, 1953. |
[12] |
A. Fernandez, T. Abdeljawad, D. Baleanu, Relations between fractional models with three-parameter Mittag-Leffler kernels, Adv. Differ. Equ., 2020 (2020), 186. https://doi.org/10.1186/s13662-020-02638-5 doi: 10.1186/s13662-020-02638-5
![]() |
[13] |
N. Iqbal, T. Botmart, W. W. Mohammed, A. Ali, Numerical investigation of fractional-order Kersten-Krasil'shchik coupled KdV-mKdV system with Atangana-Baleanu derivative, Adv. Cont. Dis. Model., 2022 (2022), 37. https://doi.org/10.1186/s13662-022-03709-5 doi: 10.1186/s13662-022-03709-5
![]() |
[14] |
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
![]() |
[15] |
F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics, J. Comput. Phys., 293 (2015), 70–80. https://doi.org/10.1016/j.jcp.2014.08.006 doi: 10.1016/j.jcp.2014.08.006
![]() |
[16] |
K. Kumar, R. Patel, V. Vijayakumar, A. Shukla, C. Ravichandran, A discussion on boundary controllability of nonlocal impulsive neutral integrodifferential evolution equations, Math. Meth. Appl. Sci., 45 (2022), 8193–8215. https://doi.org/10.1002/mma.8117 doi: 10.1002/mma.8117
![]() |
[17] |
A. A. Kilbas, M. Saigo, K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Spec. F., 15 (2004), 31–49. https://doi.org/10.1080/10652460310001600717 doi: 10.1080/10652460310001600717
![]() |
[18] |
K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Soliton. Fract., 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
![]() |
[19] |
K. D. Kucche, S. T. Sutar, Analysis of nonlinear fractional diferential equations involving AB Caputo derivative, Chaos Soliton. Fract., 143 (2021), 110556. https://doi.org/10.1016/j.chaos.2020.110556 doi: 10.1016/j.chaos.2020.110556
![]() |
[20] |
K. D. Kucche, J. J. Trujillo, Theory of system of nonlinear fractional diferential equations, Prog. Fract. Differ. Appl., 3 (2017), 7–18. http://doi.org/10.18576/pfda/030102 doi: 10.18576/pfda/030102
![]() |
[21] |
K. D. Kucche, J. J. Nieto, V. Venktesh, Theory of nonlinear implicit fractional diferential equations, Differ. Equat. Dyn. Sys., 28 (2020), 1–17. http://doi.org/10.1007/s12591-016-0297-7 doi: 10.1007/s12591-016-0297-7
![]() |
[22] |
K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Numer. Meth. Part. D. E., 2020, 1–16. http://doi.org/10.1002/num.22652 doi: 10.1002/num.22652
![]() |
[23] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993. |
[24] |
M. S. Abdo, S. K. Panchal, Existence and continuous dependence for fractional neutral functional differential equations, J. Math. Model., 5 (2017), 153–170. https://dx.doi.org/10.22124/jmm.2017.2535 doi: 10.22124/jmm.2017.2535
![]() |
[25] |
A. S. Mohamed, R. A. Mahmoud, Picard, Adomian and perdictor-corrector methods for an initial value problem of arbitrary (fractional) prders differential equation, J. Egyptian Math. Soc., 24 (2016), 165–170. https://doi.org/10.1016/J.JOEMS.2015.01.001 doi: 10.1016/J.JOEMS.2015.01.001
![]() |
[26] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[27] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama. Math. J., 19 (1971), 7–15. |
[28] | B. G. Pachpatte, Inequalities for differential and integral equations, Academic Press, San Diago, 1998. |
[29] |
C. Ravichandran, V. Sowbakiya, K. S. Nisar, Study on existence and data dependence results for fractional order differential equations, Chaos Soliton. Fract., 160 (2022), 112232. https://doi.org/10.1016/j.chaos.2022.112232 doi: 10.1016/j.chaos.2022.112232
![]() |
[30] |
C. Ravichandran, D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Differ. Equ., 2013 (2013), 291. https://doi.org/10.1186/1687-1847-2013-291 doi: 10.1186/1687-1847-2013-291
![]() |
[31] |
S. K. Verma, R. K. Vats, A. Kumar, V. Vijayakumar, A. Shukla, A discussion on the existence and uniqueness analysis for the coupled two-term fractional differential equations, Turkish J. Math., 46 (2022), 516–532. https://doi.org/10.3906/mat-2107-30 doi: 10.3906/mat-2107-30
![]() |
[32] |
S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palerm., 71 (2022), 647–663. https://doi.org/10.1007/s12215-021-00622-w doi: 10.1007/s12215-021-00622-w
![]() |
[33] |
S. T. Sutar, K. D. Kucche, On nonlinear hybrid fractional diferential equations with AB-Caputo derivative, Chaos Soliton. Fract., 143 (2021), 110557. https://doi.org/10.1016/j.chaos.2020.110557 doi: 10.1016/j.chaos.2020.110557
![]() |
[34] |
J. V. C. Sousa, , K. D. Kucche, E. C. Oliveira, Stability of mild solutions of the fractional nonlinear abstract Cauchy problem, Electronic Research Archive, 30 (2022), 272–288. http://doi.org/10.3934/era.2022015 doi: 10.3934/era.2022015
![]() |
[35] |
X. B. Shu, Y. J. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–476. https://doi.org/10.1016/j.amc.2015.10.020 doi: 10.1016/j.amc.2015.10.020
![]() |
[36] |
Y. Guo, M. Q. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
![]() |
[37] |
Y. Guo, X. B. Shu, Y. J. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1 < \beta < 2$, Boundary Value Probl., 2019 (2019), 59. https://doi.org/10.1186/s13661-019-1172-6 doi: 10.1186/s13661-019-1172-6
![]() |