Let $ R $ be a ring with unity. In this paper, we introduce a new graph associated with $ R $ called the simple-intersection graph of $ R $, denoted by $ GS(R) $. The vertices of $ GS(R) $ are the nonzero ideals of $ R $, and two vertices are adjacent if and only if their intersection is a nonzero simple ideal. We study the interplay between the algebraic properties of $ R $, and the graph properties of $ GS(R) $ such as connectedness, bipartiteness, girth, dominating sets, etc. Moreover, we determine the precise values of the girth and diameter of $ GS(R) $, as well as give a formula to compute the clique and domination numbers of $ GS(R) $.
Citation: Fida Moh'd, Mamoon Ahmed. Simple-intersection graphs of rings[J]. AIMS Mathematics, 2023, 8(1): 1040-1054. doi: 10.3934/math.2023051
Let $ R $ be a ring with unity. In this paper, we introduce a new graph associated with $ R $ called the simple-intersection graph of $ R $, denoted by $ GS(R) $. The vertices of $ GS(R) $ are the nonzero ideals of $ R $, and two vertices are adjacent if and only if their intersection is a nonzero simple ideal. We study the interplay between the algebraic properties of $ R $, and the graph properties of $ GS(R) $ such as connectedness, bipartiteness, girth, dominating sets, etc. Moreover, we determine the precise values of the girth and diameter of $ GS(R) $, as well as give a formula to compute the clique and domination numbers of $ GS(R) $.
[1] | S. Akbari, R. Nikandish, Some results on the intersection graph of ideals of matrix algebras, Linear Multilinear A., 62 (2014), 195–206. https://doi.org/10.1080/03081087.2013.769101 doi: 10.1080/03081087.2013.769101 |
[2] | S. Akbari, R. Nikandish, M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 12 (2013). http://dx.doi.org/10.1142/S0219498812502003 doi: 10.1142/S0219498812502003 |
[3] | T. Alraqad, H. Saber, R. Abu-Dawwas, Intersection graphs of graded ideals of graded rings, AIMS Math., 6 (2021), 10355–10368. https://doi.org/10.3934/math.2021600 doi: 10.3934/math.2021600 |
[4] | D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840 |
[5] | N. Ashrai, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with eings, Commun. Algebra, 38 (2010), 2851–2871. https://doi.org/10.1080/00927870903095574 doi: 10.1080/00927870903095574 |
[6] | J. A. Bondy, U. S. R. Murty, Graph theory, Springer-Verlag, London, 2011. |
[7] | I. Chakrabarty, S. Ghosh, T. K. Mukherjee, M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309 (2009), 5381–5392. https://doi.org/10.1016/j.disc.2008.11.034 doi: 10.1016/j.disc.2008.11.034 |
[8] | I. Chakrabarty, J. V. Kureethara, A survey on the intersection graphs of ideals of rings, Commun. Combin. Optim., 7 (2022), 121–167. https://dx.doi.org/10.22049/cco.2021.26990.1176 doi: 10.22049/cco.2021.26990.1176 |
[9] | P. M. Cohn, Introduction to ring theory, British Library Cataloguing in Publication Data, Springer-Verlag, London Berlin Heidelberg, 2000. https://doi.org/10.1007/978-1-4471-0475-9 |
[10] | S. H. Jafari, N. J. Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166. |
[11] | A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin., 25 (2002), 73–78. |
[12] | L. A. Mahdavi, Y. Talebi, Co-intersection graph of submodules of a module, Algebra Discrete Math., 21 (2016), 128–143. |
[13] | H. R. Maimani, M. Salimi, A. Sattari, S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319 (2008), 1801–1808. https://doi.org/10.1016/j.jalgebra.2007.02.003 doi: 10.1016/j.jalgebra.2007.02.003 |
[14] | J. Matczuk, A. Majidinya, Sum-essential graphs of modules, J. Algebra Appl., 20 (2021), 211–215. https://doi.org/10.1142/S021949882150211X doi: 10.1142/S021949882150211X |
[15] | J. Matczuk, M. Nowakowska, E. R Puczy lowski, Intersection graphs of modules and rings, J. Algebra Appl., 17 (2018), 185–131. https://doi.org/10.1142/S0219498818501311 doi: 10.1142/S0219498818501311 |
[16] | E. A. Osba, The intersection graph for finite commutative principal ideal rings, Acta Math. Acad. Paedagog. Nyházi., 32 (2016), 15–22. |
[17] | Z. S. Pucanović, Z. Z. Petrović, Toroidality of intersection graphs of ideals of commutative rings, Graph. Combinator., 30 (2014), 707–716. https://doi.org/10.1007/s00373-013-1292-1 doi: 10.1007/s00373-013-1292-1 |
[18] | N. J. Rad, S. H. Jafari, S. Ghosh, On the intersection graphs of ideals of direct product of rings, J. Discuss. Math.-Gen. Algebra Appl., 34 (2014), 191–201. https://doi.org/10.7151/dmgaa.1224 doi: 10.7151/dmgaa.1224 |