Research article

Controllability results of neutral Caputo fractional functional differential equations

  • Received: 14 September 2023 Revised: 18 October 2023 Accepted: 23 October 2023 Published: 08 November 2023
  • MSC : 34H05

  • In this paper, using the properties of the phase space on infinite delay, generalized Gronwall inequality and fixed point theorems, the existence and controllability results of neutral fractional functional differential equations with multi-term Caputo fractional derivatives were obtained under Lipschitz and non-Lipschitz conditions.

    Citation: Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu. Controllability results of neutral Caputo fractional functional differential equations[J]. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550

    Related Papers:

    [1] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [2] Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
    [3] H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220
    [4] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
    [5] Ye Li, Biao Qu . Mild solutions for fractional non-instantaneous impulses integro-differential equations with nonlocal conditions. AIMS Mathematics, 2024, 9(5): 12057-12071. doi: 10.3934/math.2024589
    [6] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [7] Lahcene Rabhi, Mohammed Al Horani, Roshdi Khalil . Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative. AIMS Mathematics, 2022, 7(7): 11614-11634. doi: 10.3934/math.2022647
    [8] Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo . Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type. AIMS Mathematics, 2020, 5(4): 3714-3730. doi: 10.3934/math.2020240
    [9] Manal Elzain Mohamed Abdalla, Hasanen A. Hammad . Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281
    [10] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
  • In this paper, using the properties of the phase space on infinite delay, generalized Gronwall inequality and fixed point theorems, the existence and controllability results of neutral fractional functional differential equations with multi-term Caputo fractional derivatives were obtained under Lipschitz and non-Lipschitz conditions.



    As the most important qualitative aspect of a control system, the controllability means that one can govern the state of a system to the desired final state by using a suitable control function, which has a significant role in the dynamical system. In the last 10 years, the controllability of fractional differential equations or inclusions has been studied widely, which involves Cauchy and nonlocal conditions, abstract spaces and general spaces, impulsive and non-impulsive systems and finite delay and infinite delay. The main topics are the approximate controllability [1,2,3,4,5,6,7,8,9,10,11,12,13,14], controllability [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37], exact controllability [38,39], total controllability[40], numerical controllability[41,42], relative controllability [43,44] and optimal controllability[45], et al. The fixed point method combined with the other nonlinear analysis theories are the main methods.

    In [46], the authors considered the existence and attractivity dependence of solutions for a class of multi-term Caputo fractional functional differential equations with finite delay

    {CDαu(t)=mi=1CDαifi(t,ut)+f0(t,ut), t>t0,αi(0,α);u(t)=φ(t), t0σtt0, (1.1)

    where CDα,CDαi denote the Caputo's fractional derivative of order α,αi with 0αiα. In [47], the finite-time stability of neutral Caputo fractional functional differential system is considered

    {cDλ0x(t)CcDμ0x(tτ(t))=Ax(t)+Bx(tτ(t))+Dw(t)+f(t,x(t),x(tτ(t)),w(t)),t[0,T],x(t)=ϕ(t),t[τ,0], (1.2)

    where CDλ0,CDμ0 denote the Caputo's fractional derivative of order λ,μ with 0μλ<1. More details of existence and stability of neutral fractional functional differential equations are noted in [48,49,50,51,52,53,54,55]. For basic knowledge of fractional differential equations, see [56,57,58].

    The controllability problem of equations similar to Eqs (1.1) and (1.2) with infinite delay is rarely studied. Motivated by the above discussion, in this paper we investigate the following classes of multi-term neutral Caputo fractional functional differential equations with infinite delay

    {CDαx(t)mi=1CDβigi(t,x(t))=f(t,xt), tJ=[0,T];x(t)=ϕ(t), tI=(,0],CDβix(0)=μiRn, (1.3)

    and its controllability form

    {CDαx(t)mi=1CDβigi(t,x(t))=f(t,xt)+Bu(t), tJ=[0,T];x(t)=ϕ(t), tI=(,0],CDβix(0)=μiRn, (1.4)

    where CDα,CDβi denote Caputo fractional derivative of α,βi order, 0βiα<1; xRn, fC(J×Rn,Rn),giC(J×Rn,Rn), ϕD[59] (will be defined later). For any function x defined on (,T] and any tJ, xt=x(t+θ),θI represents the history of the state from time up to the present time t. The control function u(t)L(J,Rm) or u(t)L2(J,Rm), B is a bounded linear operator.

    The main contributions and difficulties of this paper are listed bellow:

    (1) The Gronwall inequality is powerful tool to consider existence, stability and other qualitative and quantitative properties of solutions to differential systems. However we need to pay attention to the use of fractional order integral operators on the monotonicity of nonnegative functions [47,60].

    (2) To overcome the difficulty in investigating the priori bound of neutral fractional functional differential equations with infinite delay, the property of the phase space (D,D) on infinite delay in [59] and a kind of Gronwall fractional integral inequality in [61] are used together.

    In this article, by using the generalized Gronwall inequality and the fixed point approach (which includes the contraction mapping principle and the Schaefer fixed point theorem), we establish some sufficient conditions for the existence results of Eq (1.3) and controllability results of Eq (1.4) under Lipschitz and non-Lipschitz conditions, respectively.

    Let Lp(J,Rn) be the Banach space of all measurable functions from J into Rn, which are Lebesgue integrable with the norm xLp=T0x(t)pdt,1p<+. Let C(J,Rn) be the Banach space of all continuous functions from J into Rn with the norm u:=sup{u(t):tJ}. We define the space

    Cβ((,T],Rn)={u:(,T]Rn:u|ID;u(t)|J,CDβiu(t)|JC(J,Rn)}

    as the space of all functions from (,T] into Rn with the semi-norm u:=ϕD+u.

    Definition 2.1. [56,57,58] For a function h given on the interval [a,b], the Caputo fractional order derivative of order α of h is defined by

    (cDαa+h)(t)=1Γ(nα)ta(ts)nα1h(n)(s)ds,

    where n=[α]+1 and [α] denotes the integer part of α.

    Definition 2.2. [56,57,58] The Riemann-Liouville integral of order γ for f defined on [a,b] is denoted by

    Iγf(t)=1Γ(γ)ta(ts)γ1f(s)ds,t[a,b],γ>0,

    provided that the right side is point-wise defined on [a,b], where Γ() is the gamma function.

    Definition 2.3. [56,57,58] The Riemann-Liouville fractional derivative of order γ for f defined on [a,b] is denoted by

    Dγf(t)=1Γ(nγ)dndtnt0(ts)nγ1f(s)ds,t[a,b],n1<γ<n,

    provided that the right side is point-wise defined on [a,b], where Γ() is the gamma function. In particular, if γ[0,1), then

    Dγf(t)=1Γ(1γ)ddtt0(ts)γf(s)ds,t[a,b].

    Definition 2.4. [56,57,58] The Caputo fractional order derivative of order γ for a function f:[0,+)R can be written as

    CDγf(t)=Dγ(f(t)n1k=0tkk!f(k)(0)),t>0,n1<γ<n.

    Lemma 2.1. [56,57,58] Let α>0 and m=[α]+1 then the general solution to the fractional differential equation CDαu(t)=0 is given by

    u(t)=c0+c1t+c2t2+cm1tm1,

    where ciR,i=0,1,,m1 are some constants. Further assuming that uCm([0,T],R), we can get

    IαCDαu(t)=u(t)+c0+c1t+c2t2+cm1tm1,

    for ciR,i=0,1,,m1.

    Lemma 2.2. [60] For any nonnegative function wC([a,b],[0,+)) and any t[a,b], we have the following inequality

    sup0τtτ0(τs)α1w(s)dst0(ts)α1sup0σsw(σ)ds,α>0.

    Lemma 2.3. [61] Let u be a nonnegative continuous function defined on the interval I=[a,b], and p(t):I(0,) be a nondecreasing continuous function. Suppose that q(t):I[0,) is a nondecreasing continuous function. If u satisfies the following inequality:

    u(t)p(t)+q(t)ni=1(Iαia+u)(t), αi>0, tI,

    then for every kN such that (k+1)min{α1,α2,,αn}>1,

    u(t)Pk(t)exp(taHk+1(t,s)ds), tI,

    where

    Pk(t):=p(t)(1+kj=1qj(t)i1++in=j,0i1,,inj(ji1,,in)(ta)i1α1++inαnΓ(1+i1α1++inαn)),Hk+1(t,s):=qk+1(t)j1++jn=k+1,0j1,,jnk+1(k+1j1,,jn)(ts)j1α1++jnαnΓ(1+j1α1++jnαn),

    with (k+1j1,,jn) is combination number formula.

    Similar result to Lemma 2.2, one can see:

    Lemma 2.4. [47] Assume that x(t)C1([0,+),[0,+)) and x(t)0 and λ>0 then t0(ts)λ1x(s)dsΓ(λ) is monotonically increasing with respect to t.

    We introduce the axiomatic definition of the phase space (D,D) in [59].

    Let X be a linear topological space of functions from (,0] to X with the semi-norm D, and called an admissible phase space D if the following fundamental axioms conditions hold.

    (A1) If x:(,T]X is continuous on [0,T] and x0D, then for any t[0,T], the following conditions hold:

    (a)xtD;

    (b)x(t)HxtD for some positive constant H;

    (c) there are functions K(t),M(t):[0,)[0,) such that

    xtDK(t)sup{x(s):s[0,t]}+M(t)x0D,

    where K is continuous, M is locally bounded and H,K,M are independent of x with KT=sup{K(s):s[0,T]}, MT=sup{M(s):s[0,T]}.

    (A2) For the function x() in (A1), the function xtD and is continuous on the interval [0,T].

    (A3) The space D is a Banach space.

    By Lemma 2.1 and some basic theory of fractional calculus, we can get the following two lemmas. Lemmas 3.1 and 3.2 are proved in a similar way, and only the detailed proof of Lemma 3.2 is given.

    Lemma 3.1. The function xCβ((,T],Rn) is a solution of Eq (1.3) if, and only if, x(t) satisfies the following integral equation

    x(t)={ϕ(0)mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)+mi=1t0(ts)αβi1gi(s,x(s))dsΓ(αβi)+t0(ts)α1f(s,xs)]dsΓ(α),tJ;ϕ(t), tI.

    Lemma 3.2. The function xCβ((,T],Rn) is a solution of Eq (1.4) if, and only if, x(t) satisfies the following integral equation

    x(t)={ϕ(0)mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)+mi=1t0(ts)αβi1gi(s,x(s))dsΓ(αβi)+t0(ts)α1[f(s,xs)+Bu(s)]dsΓ(α),tJ;ϕ(t), tI.

    Proof. Necessity: For tJ, on both sides of (1.4) by using the fractional integral operator Iα0, then we get

    Iα0[CDα0x(t)mi=1CDβi0gi(t,x(t))]=Iα0[f(t,xt)+Bu(t)].

    By Lemma 2.1, we have

    x(t)ϕ(0)[mi=1Iαβi0gi(t,x(t))mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)]=Iα0[f(t,xt)+Bu(t)], tJ,

    and so

    x(t)=ϕ(0)mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)+mi=1Iαβi0gi(t,x(t))+Iα0[f(s,xt)+Bu(t)], tJ.

    Sufficiency. If x(t) is a solution of Eq (1.4) on both sides of

    x(t)=ϕ(0)mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)+mi=1Iαβi0gi(t,x(t))+Iα0[f(s,xt)+Bu(t)], tJ,

    by using the Caputo fractional derivative operator CDα0, Definitions 2.1 and 2.4 and the fact that Iαβi0gi(t,x(t))|t=0=0, we get

    CDα0x(t)=mi=1gi(0,ϕ(0))CDα0tαβiΓ(αβi+1)+mi=1CDα0Iαβi0gi(t,x(t))+CDα0Iα0[f(t,xt)+Bu(t)], tJ,

    where

    mi=1gi(0,ϕ(0))CDα0tαβiΓ(αβi+1)=mi=1gi(0,ϕ(0))Dα0tαβiΓ(αβi+1)mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)|t=0tβiΓ(1βi)=mi=1gi(0,ϕ(0))Dα0tαβiΓ(αβi+1)=mi=1gi(0,ϕ(0))tβiΓ(1βi), tJ;
    mi=1CDα0Iαβi0gi(t,x(t))=mi=1Dα0Iαβi0gi(t,x(t))mi=1tαΓ(1α)Iαβi0gi(t,x(t))|t=0=mi=1Dα0Iαβi0gi(t,x(t))=mi=1Iβi0gi(t,x(t)), tJ;
    CDα0Iα0[f(t,xt)+Bu(t)]=Dα0Iα0[f(t,xt)+Bu(t)]Iα0[f(t,xt)+Bu(t)]|t=0tαΓ(1α)=Dα0Iα0[f(t,xt)+Bu(t)]=f(t,xt)+Bu(t), tJ.

    Then, we get

    mi=1CDα0Iαβi0gi(t,x(t))mi=1CDαgi(0,ϕ(0))tαβiΓ(αβi+1)=mi=1Iβi0gi(t,x(t))mi=1gi(0,ϕ(0))tβiΓ(1βi)=mi=1CDα0gi(t,x(t)), tJ.

    On both sides of the above equality, using the Caputo fractional operator CDα, we get

    CDα0x(t)mi=1CDβi0gi(t,x(t))=f(t,xt)+Bu(t), tJ.

    The proof is completed.

    Definition 3.1. Equation (1.4) is said to be controllable on the interval J if for every ϕD,xT=x(T)Rn, there is a control function u(t)L(J,Rm) or u(t)L2(J,Rm) such that the mild solution x(t) of Eq (1.4) satisfies x(T)=xT and x0=ϕD.

    We make the following assumptions throughout the paper.

    (H1) The functions giC(J×Rn,Rn),i=1,,m,fC(J×D,Rn) and some nonnegative continuous functions ci1(t),i=1,,m,c3(t),c4(t) exist such that

    gi(t,u)gi(t,v)ci1(t)uv,f(t,u)f(t,v)c3(t)uvD,

    with gi(0,0)=f(0,0)=0. Furthermore, we have

    gi(t,u)gi(t,u)gi(t,0)+gi(t,0)ci1(t)u+ci2(t),tJ,uRn,f(t,u)f(t,u)f(t,0)+f(t,0)c3(t)uD+c4(t),tJ,uD,

    and we denote

    ci2(t)=sup{gi(t,0),tJ},c4(t)=sup{f(t,0),tJ},ˆcij=sup{cij(t),j=1,2,tJ},ˆcl=sup{cl(t),l=3,4,tJ}.

    (H1) The functions giC(J×Rn,Rn),fC(J×D,Rn), there exists some functions cij(t)L1qij(J,R+),qij[0,αβi),j=1,2;cj(t)L1qj(J,R+),j=3,4,q3,q4[0,α), such that

    gi(t,u)gi(t,v)ci1(t)uv,u,vRn,f(t,u)f(t,v)c3(t)uvD,u,vD.

    (H1) The functions giC(J×Rn,Rn),fC(J×D,Rn), there exists nonnegative continuous functions ci1(t),ci2(t),i=1,,m,c3(t),c4(t) such that

    gi(t,u)ci1(t)u+ci2(t),tJ,uRn,f(t,u)c3(t)uD+c4(t),tJ,uD.

    (H2)(1+M1M2TαΓ(α+1)){mi=1ˆci1TαβiΓ(αβi+1)+ˆc3KTTαΓ(α+1)}<1.

    (H2)(1+M1M2TαΓ(α+1))[mi=1Tβiq1Γ(αβi)(1qi1βiqi1)1qi1ci1L1qi1J+Tαq3Γ(α+1)(1q3αq3)1q3c3L1q3J]<1, tJ.

    (H3)B:L(J,Rm)Rn is a bounded linear operator. The operator Wu:L(J,Rm)Rn is defined as

    Wu=1Γ(α)T0(Ts)α1Buu(s)ds,

    with inverse operator W1u (in L(J,Rm)/kerWu), and there exists two positive constants Mi,i=1,2 such that BM1,W1uM2.

    (H3)B:L(J,Rm)Rn is a linear operator. The operator Wu:L2(J,Rm)Rn is defined as

    Wu=1Γ(α)T0(Ts)α1Buu(s)ds

    with inverse operator W1u (in L2(J,Rm)/kerWu), and there are two positive constants Mi,i=1,2 such that BM1,W1uM2.

    Using the Banach contraction mapping principle, we can get the existence result of Eq (1.3) and the controllability of Eq (1.4). The method of proving the following theorems is standard. For the integrity of the paper, the details of the proof of the relevant conclusion are given below.

    Theorem 3.1. If the assumptions (H1)(H3) hold, then Eq (1.4) is controllable on J.

    Proof. Define tha space S(T)={xCβ((,T],Rn):x0=ϕ}. For any xS(T), define the control function ux() as

    ux(t)=W1u{xT[ϕ(0)mi=1gi(0,ϕ(0))Γ(αβi+1)Tαβi+mi=1T0(Ts)αβi1gi(s,x(s))dsΓ(αβi)+T0(Ts)α1f(s,xs)]dsΓ(α)]}, (3.1)

    where xT denotes the final state of Eq (1.4) at T.

    According to Lemma 3.2, it follows that z is a solution of Eq (1.4) if, and only if,

    z(t)={ϕ(0)mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)+mi=1t0(ts)αβi1gi(s,z(s))dsΓ(αβi)+t0(ts)α1[f(s,zs)+Bu(s)]dsΓ(α), tJ,ϕ(t), tI. (3.2)

    For any ϕ:(,0]RnD, let ˜ϕ be the extension of ϕ. ˜ϕ is denoted by

    ˜ϕ(t)={ϕ(0)mi=1gi(0,ϕ(0))Γ(αβi+1)tαβi, tJ,ϕ(t), tI. (3.3)

    For any xC(J,Rn), let ˜x be the extension of x. ˜x is denote by

    ˜x(t)={x(t)ϕ(0)+mi=1gi(0,ϕ(0))Γ(αβi+1)tαβi, tJ,0, tI. (3.4)

    It can be seen that if z(t)=˜ϕ(t)+˜x(t),zt=˜ϕt+˜xt,tJ satisfies the following integral equation

    z(t)=ϕ(0)mi=1gi(0,ϕ(0))tαβiΓ(αβi+1)+mi=1t0(ts)αβi1gi(s,z(s))dsΓ(αβi)+t0(ts)α1[f(s,zs)+Bu(s)]dsΓ(α), tJ,

    then x satisfies the following integral equation

    x(t)=mi=1t0(ts)αβi1gi(s,˜x(s)+˜ϕ(s))dsΓ(αβi)+t0(ts)α1[f(s,˜xs+˜ϕs)+Bu(s)]dsΓ(α)=mi=1t0(ts)αβi1gi(s,x(s))dsΓ(αβi)+t0(ts)α1[f(s,˜xs+˜ϕs)+Bu(s)]dsΓ(α), tJ.

    Consider the following Banach space Ω={xS(T);xr:x0=0} with the norm x=suptJx(t), where r is a sufficiently large positive number. The operator N:ΩΩ is defined as

    (Nx)(t)={mi=1t0(ts)αβi1gi(s,x(s))dsΓ(αβi)+t0(ts)α1[f(s,˜xs+˜ϕs)+Bu(s)]dsΓ(α), tJ,0, tI. (3.5)

    So, the fixed point of N is equal to the controllable of Eq (1.4) on J.

    (1) NΩΩ. For any xΩ, by the assumption (H1), we get Nx=0r,tI.

    By the property (A1(c)) on the phase space (D,D), we have

    ˜xt+˜ϕtDK(t)sup{˜x(s):s[0,t]}+M(t)˜x(0)D+K(t)sup{˜ϕ(s):s[0,t]}+M(t)˜ϕ(0)DKTsup{˜x(s):s[0,t]}+KTsup{ϕ(0)mi=1gi(0,ϕ(0))sαβiΓ(αβi+1):s[0,t]}+MTϕDKTsup{x(s):s[0,t]}+KTmi=1gi(0,ϕ(0))Γ(αβi+1)Tαβi+(KT+MT)ϕDKTr+KTmi=1gi(0,ϕ(0))Γ(αβi+1)Tαβi+(KT+MT)ϕD=A,tJ. (3.6)

    By the assumption (H1) and the control function ux, for tJ, we get

    uxM2[xT+ϕD+mi=1gi(0,ϕ(0))TαβiΓ(αβi+1)+mi=1T0(Ts)αβi1(ci1(s)x(s)+ci2(s))dsΓ(αβi)+T0(Ts)α1(c3(s)˜xs+˜ϕsD+c4(s))dsΓ(α)]M2[xT+ϕD+mi=1(ci1(0)ϕ(0)D+ci2(0))TαβiΓ(αβi+1)+mi=1T0(Ts)αβi1(ci1(s)r+ci2(s))dsΓ(αβi)+T0(Ts)α1(c3(s)A+c4(s))dsΓ(α)]M2[xT+ϕD+mi=1((ci1(0)ϕ(0)D+ci2(0))+ˆci1r+ˆci2)TαβiΓ(αβi+1)+(ˆc3A+ˆc4)TαΓ(α+1)]=B. (3.7)

    So,

    (Nx)(t)mi=1t0(ts)αβi1(ci1(s)x(s)+ci2(s))dsΓ(αβi)+t0(ts)α1[c3(s)(˜xs+˜ϕsD)+c4(s)+Bux(s))dsΓ(α)mi=1t0(ts)αβi1ci1(s)rdsΓ(αβi)+mi=1ˆci2tαβiΓ(αβi+1)+t0(ts)α1c3(s)AdsΓ(α)+(ˆc4+M1B)tαΓ(α+1)mi=1(ˆci1r+ˆci2)TαβiΓ(αβi+1)+(ˆc3A+ˆc4+M1B)TαΓ(α+1)=C,tJ, (3.8)

    then NxCr, tJ, i.e., NΩΩ.

    (2) N is a contractive mapping. Choose any x,yΩ with x0=y0,tI, then

    (Nx)(t)(Ny)(t)mi=1t0(ts)αβi1ci1(s)x(s)y(s)dsΓ(αβi)+t0(ts)α1c3(s)˜xs˜ysDdsΓ(α)+t0(ts)α1Bux(s)Buy(s)dsΓ(α)(1+M1M2TαΓ(α+1)){mi=1ˆci1TαβiΓ(αβi+1)+ˆc3KTTαΓ(α+1)}xy, tJ. (3.9)

    Thus,

    NxNy<xy, tJ,

    i.e., N is a contraction operator and N has a unique fixed point. By the correspondence

    z(t)=˜ϕ(t)+˜x(t),zt=˜ϕt+˜xt,tJ,

    and Eqs (3.1) and (3.2), it follows that Eq (1.4) is controllable on J.

    Theorem 3.2. Suppose that the assumptions (H1),(H2),(H3) hold with α>12, then Eq (1.4) is controllable on J.

    Proof. Define the space S(T) as Theorem 3.2. For any xS(T), choose the control function ux() as in (3.3). Consider Ω={xS(T);xr},r is a sufficiently large positive number. Define the operator N:ΩΩ as in (3.5). We show that N is a contraction mapping and has a fixed point.

    (1) NΩΩ. For any xΩ, by the assumption (H1), we have Nx=0r,tI.

    By the property (A1(c)) on the phase space (D,D), similar to (3.6), we have xt+˜ϕtDA, tJ.

    By the assumption (H1), similar to the assumption (H1), we have

    gi(t,u)ci1(t)u+ci2(t),tJ,uRn,f(t,u)c3(t)uD+c4(t),tJ,uD,

    where cij(t),c3(t),c4(t) are defined as in the assumption (H1). So, by the control function ux and Hölder inequality, we get

    uxM2[xT+ϕ(0)D+mi=1gi(0,ϕ(0))TαβiΓ(αβi+1)+mi=1T0(Ts)αβi1(ci1(s)r+ci2(s))dsΓ(αβi)+T0(Ts)α1(c3(s)A+c4(s))dsΓ(α)]M2[xT+ϕD+mi=1(ci1(0)ϕ(0)D+ci2(0))TαβiΓ(αβi+1)]+M2mi=1T0(Ts)αβi1(ci1(s)r+ci2(s))dsΓ(αβi)+M2T0(Ts)α1(c3(s)A+c4(s))dsΓ(α)M2[xT+ϕ(0)D+mi=1(ci1(0)ϕ(0)D+ci2(0))TαβiΓ(αβi+1)]+M2mi=1r(T0(Ts)αβi11qi1ds)1qi1ci1L1qi1J+(T0(Ts)αβi11qi2ds)1qi2ci2L1qi2JΓ(αβi)+M2A(T0(Ts)α11q3ds)1q3c3L1q3J+(T0(Ts)α11q4ds)1q4c4L1q4JΓ(α)M2[xT+ϕ(0)D+mi=1(ci1(0)ϕ(0)+ci2(0))TαβiΓ(αβi+1)]+M2mi=1r(1qi1βiqi1)1qi1Tβiqi1ci1L1qi1J+(1qi2βiqi2)1qi2Tβiqi2ci2L1qi2JΓ(αβi)+M2ATαq3(1q3αq3)1q3c3L1q3J+Tαq4(1q4αq4)1q4c4L1q4JΓ(α)=B, tJ, (3.10)

    and uxL2(J)BT.

    Therefore, we have

    (Nx)(t)mi=1t0(ts)αβi1(ci1(s)r+ci2(s))dsΓ(αβi)+t0(ts)α1(c3(s)A+c4(s))Γ(α)ds+M1Γ(α+1)T2α12α1uxL2(J)mi=1M2rTβq1Γ(β)(1qi1βqi1)1qi1ci1L1qi1J+mi=1M2Tβqi2Γ(β)(1qi2βqi2)1qi2ci2L1qi2J+M2ATαq3Γ(α)(1q3αq3)1q3c3L1q3J+M2Tαq4Γ(α)(1q4αq4)1q4c4L1q4J+M1Γ(α+1)T2α12α1BT=C,tJ.

    Thus, NxCr, i.e., NΩΩ.

    (2) N is a contractive operator. Choose any x,yΩ with x0=y0,tI, as (3.9), we get

    (Nx)(t)(Ny)(t)mi=1t0(ts)αβi1ci1(s)x(s)y(s)dsΓ(αβi)+t0(ts)α1c3(s)xsysDdsΓ(α)+t0(ts)α1Bux(s)Buy(s)dsΓ(α)(1+M1M2TαΓ(α+1))[mi=1Tβiq1Γ(αβi)(1qi1βiqi1)1qi1ci1L1qi1J+Tαq2Γ(α+1)(1q2αq2)1q2c3L1q2J]xy,

    and NxNy<xy, so N is a contraction mapping and has a fixed point. Thus, (1.4) is controllable on the interval J.

    Theorem 3.3. Suppose that the assumptions (H1),(H3) hold, then Eq (1.4) is controllable on J.

    Proof. For any xS(T), define the control function ux() and N as in Theorem 3.1. We will show that N is continuous and completely continuous.

    (1) N is continuous. Let {xn} be a sequence in S(T) such thatlimnxn=x with xnt=ϕ(t),tI, then NxnNx=0,tI. When tJ, by the property (A1(c)) on the phase space (D,D), we have

    xnsxsD=˜xns˜xsDK(t)sup{xn(s)x(s):s[0,t]}+M(t)ϕ0ϕ0DKTsup{xn(s)x(s):s[0,t]},tJ,

    and by the assumption (H1), we get

    (Nxn)(t)(Nx)(t)mi=1t0(ts)αβi1gi(s,xn(s))gi(s,x(s))dsΓ(αβi)+t0(ts)α1[f(s,˜xns+˜ϕs)f(s,˜xs+˜ϕs)+Buxn(s)Bux(s)]dsΓ(α)
    =mi=1t0(ts)αβi1gi(s,xn(s))gi(s,x(s))dsΓ(αβi)+t0(ts)α1[f(s,xns)f(s,xs)+Buxn(s)Bux(s)]dsΓ(α)mi=1εt0(ts)αβi1dsΓ(αβi)+t0(ts)α1(ε+Buxn(s)ux(s))dsΓ(α)mi=1εtαβiΓ(αβi+1)+εtαΓ(α+1)+M2t0(ts)α1uxn(s)ux(s)dsΓ(α)mi=1εtαβiΓ(αβi+1)+εtαΓ(α+1)+M1M2TαεΓ(α+1)0, (3.11)

    as xnx, i.e.,

    limnsup{(Nxn)(t)(Nx)(t)}=0, tJ.

    In all limnN(xn)Nx=0, i.e., N is continuous.

    (2) N maps a bounded set Br={xS(T):xr},r>0 into a bounded set, i.e., NBr={y:yL},L>0, where r,L are sufficiently large positive numbers. We get easily that Nx=ϕD=0r, tI. From the assumptions (H1),(H3), similar to the proof of Theorem 3.2, we get Nx is bounded.

    (3) N maps BrS(T) into equi-continuous, i.e., as ˆt1ˆt2, ˆt1,ˆt2I,

    (Nx)(ˆt2)(Nx)(ˆt1)=ϕ(ˆt2)ϕ(ˆt1)=0.

    As ˆt1,ˆt2J,ˆt1ˆt2, we have

    (Nx)(ˆt2)(Nx)(ˆt1)mi=1ˆt10[(ˆt2s)αβi1(ˆt1s)αβi1]gi(s,x(s))dsΓ(αβi)+mi=1ˆt2ˆt1(ˆt2s)αβi1gi(s,x(s))dsΓ(αβi)+ˆt2ˆt1(ˆt2s)α1f(s,˜xs+˜ϕs)dsΓ(α)+ˆt2ˆt1[(ˆt2s)α1(ˆt1s)α1]f(s,˜xs+˜ϕs)dsΓ(α)+ˆt10(ˆt2s)α1Bux(s)dsΓ(α)+ˆt2ˆt1[(ˆt2s)α1(ˆt1s)α1]Bux(s)dsΓ(α)mi=1ˆt10[(ˆt2s)αβi1(ˆt1s)αβi1](ci1(s)x(s)+ci2(s))dsΓ(αβi)+mi=1ˆt2ˆt1(ˆt2s)αβi1(ci1(s)x(s)+ci2(s))dsΓ(αβi)+ˆt10[(ˆt2s)α1(ˆt1s)α1](c3(s)˜xs+˜ϕsD+c4(s))dsΓ(α)+ˆt2ˆt1(ˆt2s)α1(c3(s)˜xs+˜ϕsD+c4(s))dsΓ(α)+M1(ˆtα2ˆtα1)Γ(α+1)uxL(J,Rm)
    mi=1(ˆci1r+ˆci2)ˆt10[(ˆt2s)αβi1(ˆt1s)αβi1]dsΓ(αβi)+mi=1(ˆci1r+ˆci2)ˆt2ˆt1(ˆt2s)αβi1dsΓ(αβi)+(ˆc3A+ˆc4)ˆt10[(ˆt2s)α+β1(ˆt1s)α+β1]dsΓ(α+β)+(ˆc3A+ˆc4)ˆt2ˆt1(ˆt2s)α+β1dsΓ(α+β)+M1(ˆtα+β2ˆtα+β1)Γ(α+β+1)uxL(J,Rm)0, (3.12)

    as ˆt2ˆt1, so

    limˆt2ˆt1sup{(Nx)(ˆt2)(Nx)(ˆt1)}=0, tJ

    in all

    limˆt2ˆt1(Nx)(ˆt2)(Nx)(ˆt1)=0, ˆt1,ˆt2IJ.

    By steps one through three and the Ascoli-Arzela theorem, it follows that N:S(T)S(T) is continuous and completely continuous.

    (4) Let K={xS(T):x=λNx,0<λ<1}. We show that the set K is bounded. For any xK, then x=λNx,0<λ<1, so for tJ, we get

    x(t)=λ[mi=1t0(ts)αβi1gi(s,x(s))dsΓ(αβi)+t0(ts)α1[f(s,˜xs+˜ϕs)+Bu(s)]dsΓ(α)]. (3.13)

    By the assumption (H1), similar to the proof of the first step of Theorem 3.2, for tJ we have

    x(t)mi=1t0(ts)αβi1gi(s,x(s))dsΓ(αβi)+t0(ts)α1[f(s,˜xs+˜ϕs)+Bux(s)]dsΓ(α)mi=1t0(ts)αβi1(ci1(s)x(s)+ci2(s))dsΓ(αβi)+t0(ts)α1(c3(s)˜xs+˜ϕsD+c4(s))dsΓ(α)+M1TαΓ(α+1)uxL(J,Rn)M1TαΓ(α+1)uxL(J,Rn)+mi=1t0(ts)αβi1(ci1(s)x(s)+ci2(s))dsΓ(αβi)+t0(ts)α1[c3(s)(K(s)sup{˜x(θ)+˜ϕ(θ):θ[0,s]}+M(s)ϕD)+c4(s)]dsΓ(α)M1TαΓ(α+1)uxL(J,Rn)+mi=1t0(ts)αβi1(ci1(s)x(s)+ci2(s))dsΓ(αβi)+t0(ts)α1[c3(s)(K(s)sup{˜x(θ)+˜ϕ(θ):θ[0,s]}+M(s)ϕD)+c4(s)]dsΓ(α)M1TαΓ(α+1)B+mi=1t0(ts)αβi1[ci1(s)x(s)+ci2(s)]dsΓ(αβi)+t0(ts)α1[c3(s)(K(s)sup{˜x(θ)+˜ϕ(θ):θ[0,s]}+M(s)ϕD)+c4(s)]dsΓ(α). (3.14)

    Let

    ν(t)=sup{x(s):s[0,t]},tJ, (3.15)

    then by Lemma 2.2, we get

    ν(t)M1TαΓ(α+1)B+mi=1t0(ts)αβi1[ci1(s)ν(s)+ci2(s)]dsΓ(αβi)+t0(ts)α1[c3(s)(K(s)ν(s)+K(s)ϕ(0)mi=1gi(0,ϕ(0))sαβiΓ(αβi+1)+K(s)˜ϕ(s)+M(s)ϕD)]dsΓ(α)+t0(ts)α1c4(s)dsΓ(α)M1TαΓ(α+1)B+mi=1t0(ts)αβi1[ˆci1ν(s)+ci2(s)]dsΓ(αβi)+t0(ts)α1[ˆc3(KTν(s)+KTmi=1gi(0,ϕ(0))Γ(αβi+1)Tαβi+(KT+MT)ϕD+c4(s)]dsΓ(α)=M1TαΓ(α+1)B+mi=1t0(ts)αβi1ci2dsΓ(αβi)+t0(ts)α1(KTmi=1gi(0,ϕ(0))Γ(αβi+1)Tαβi+(KT+MT)ϕD+ˆc4)dsΓ(α)+mi=1ˆci1t0(ts)αβi1ν(s)dsΓ(αβi)+ˆc3KTt0(ts)α1ν(s)dsΓ(α)M1TαBΓ(α+1)+mi=1ˆci2TαβiΓ(αβi+1)+(KTmi=1gi(0,ϕ(0))Γ(αβi+1)Tαβi+(KT+MT)ϕD+ˆc4)TαΓ(α+1)+mi=1ˆci1KTt0(ts)αβi1ν(s)dsΓ(αβi)+ˆc3KTt0(ts)α1ν(s)dsΓ(α),tJ. (3.16)

    By Lemma 2.3, it follows that there is a positive constant ˆL such that x(t)ν(t)ˆL,tJ and xˆL, i.e., K is a bounded set. By using the Schaefer fixed point theorem, the operator N has a fixed point, which is corresponding to the controllable of Eq (1.4) on the interval J.

    Theorem 3.4. If the assumptions (H1),(H2) hold, then Eq (1.3) has a unique solution on J.

    Proof. The proof process of Theorem 3.4 is similar to the proof of (3.9) in Theorem 3.1, so we omit it.

    Theorem 3.5. If the assumptions (H1),(H2) hold, then Eq (1.3) has at least one solution on J.

    Proof. The proof process of Theorem 3.5 is similar to the proof of Theorem 3.2, so we omit it.

    Theorem 3.6. If the assumptions (H1) holds, then Eq (1.3) has at least one solution on J.

    Proof. The proof process of Theorem 3.6 is similar to the proof of Theorem 3.4, so we omit it.

    Remark. These theorems are also valid for Eqs (1.3) and (1.4) with finite delays.

    Let D={yC((,0],R):limsexp(λs)y(s) exists} with the norm yD=sups0{exp(λs)|y(s)|}, where λ>0 is a constant, then D satisfies the assumptions in [59] with K(t)=M(t)=H=1.

    Example 1. Consider the controllability of the following neutral Caputo fractional functional differential equations as a special case of (1.4) with n=1

    {CD0.8x(t)CD0.6x(t)100+tCD0.5x(t)100+exp(t)=exp(0.5t)xt(exp(t)+exp(t))(200+xtD)+u(t)100,t[0,1],x(t)=ϕ(t)D, t(,0], (4.1)

    where λ=0.5 and

    g1(t,x)=x(t)100+t, g2(t,x)=x(t)100+exp(t),tJ,xR,f(t,x)=exp(0.5t)x(exp(t)+exp(t))(200+xD),tJ,xD;Bu(t)=u(t)100,tR.

    Then, we get

    g1(t,x)g1(t,y)=1100+txy1100xy,g2(t,x)g2(t,y)=1100+exp(t)xy1101xy,f(t,x)f(t,y)=exp(0.5t)(exp(t)+exp(t))x200+xDy200+yD exp(0.5t)(exp(t)+exp(t))xyD2001200xyD,

    and the conditions (H1),(H2),(H3) in Theorem 3.1 hold, so Eq (4.1) is controllable on J.

    Example 2. Consider the controllability of the following neutral Caputo fractional functional differential equations as a special case of (1.4) with n=1

    {CD0.8x(t)CD0.6x(t)25105+exp(t)CD0.5x(t)4100+t2=exp(0.5t)xt(t+100)(t+2000)+u(t)100,t[0,1],x(t)=ϕ(t)D, t(,0], (4.2)

    where λ=0.5 and

    g1(t,x)=x(t)25105+exp(t),tJ,xR,g2(t,x)=x(t)4104+t2,tJ,xR;f(t,x)=exp(0.5t)xt(t+100)(t+200),tJ,xD;Bu(t)=u(t)100,tR.

    Then, we get

    g1(t,x)g1(t,y)=125105+exp(t)x(t)y(t)120xy,g2(t,x)g2(t,y)=14104+t2x(t)y(t)110xy,f(t,xt)f(t,yt)=exp(0.5t)xtyt(t+100)(t+200)11002xyD,

    and the conditions (H1),(H2),(H3) in Theorem 3.2 hold, so Eq (4.2) is controllable on J.

    We considered a class of deterministic Caputo fractional functional differential equations with infinite delay and multiple Caputo fractional derivatives. The controllability of Eq (1.4) and existence of solution to Eq (1.3) were obtained by using the properties of the phase space D on infinite delay, Gronwall inequality and the monotone properties of fractional order operators, and some were fixed point theorems under Lipschitz and non-Lipschitz conditions. We gave two examples to explain the main results.

    In view of the wide application prospect of stochastic fractional differential systems[62,63,64,65], we will extended the results of this paper to relevant stochastic fractional derivative systems. Currently, fractional calculus is defined in various forms, such as the following Riemann-Liouville, Hilfer, Caputo-Hadamard and more. Can the results of this manuscript and some methods such as averaging principles for fractional differential equations be extended to the above cases? In the future, we will strengthen the research in the above directions.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We are thankful to the reviewers for their careful reading of our manuscript and their many insightful comments and valuable suggestions that have improved the quality of this manuscript.

    This work is supported by the Innovative Training Program for College Students of Anhui University (0009), Quality Engineering Projects of Anhui University and National first-class undergraduate major construction point, peak discipline construction of higher education institutions in Anhui Province.

    The authors declare that there are no conflicts of interest.



    [1] R. Sakthivel, N. I. Mahmudov, J. H. Kim, Approximate controllability of nonlinear impulsive differential systems, Rep. Math. Phys., 60 (2007), 85–96. https://doi.org/10.1016/S0034-4877(07)80100-5 doi: 10.1016/S0034-4877(07)80100-5
    [2] X. L. Fu, K. D. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dyn. Control Syst., 15 (2009), 425–443. https://doi.org/10.1007/s10883-009-9068-x doi: 10.1007/s10883-009-9068-x
    [3] Z. M. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control I., 30 (2013), 443–462. https://doi.org/10.1093/imamci/dns033 doi: 10.1093/imamci/dns033
    [4] F. Mokkedem, X. L. Fu, Approximate controllability of semi-linear neutral integro-differential systems with finite delay, Appl. Math. Comput., 242 (2014), 202–215. https://doi.org/10.1016/j.amc.2014.05.055 doi: 10.1016/j.amc.2014.05.055
    [5] P. Balasubramaniam, P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232–246. https://doi.org/10.1016/j.amc.2015.01.035 doi: 10.1016/j.amc.2015.01.035
    [6] K. Jeet, D. Bahuguna, Approximate controllability of nonlocal neutral fractional integro-differential equations with finite delay, J. Dyn. Control Syst., 22 (2016), 485–504. https://doi.org/10.1007/s10883-015-9297-0 doi: 10.1007/s10883-015-9297-0
    [7] S. Liu, A. Debbouche, J. R. Wang, ILC Method for solving approximate controllability of fractional differential equations with noninstantaneous impulses, J. Comput. Appl. Math., 339 (2018), 343–355. https://doi.org/10.1016/j.cam.2017.08.003 doi: 10.1016/j.cam.2017.08.003
    [8] V. Vijayakunnar, Approximate controllability results for non-densely defined fractional neutral differential inclusions with Hille-Yosida operators, Int. J. Control, 92 (2019), 2210–2222. https://doi.org/10.1080/00207179.2018.1433331 doi: 10.1080/00207179.2018.1433331
    [9] J. Kamal, N. Sukavanam, Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique, Appl. Math. Comput., 364 (2020), 124690. https://doi.org/10.1016/j.amc.2019.124690 doi: 10.1016/j.amc.2019.124690
    [10] K. Kavitha, V. Vijayakumar, A. Shukla, K. S. Nisar, R. Udhayakumar, Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos Soliton. Fract., 151 (2021), 111264. https://doi.org/10.1016/j.chaos.2021.111264 doi: 10.1016/j.chaos.2021.111264
    [11] K. Kavitha, V. Vijayakumar, K. S. Nisar, A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay, Math. Method. Appl. Sci., 44 (2021), 4428–4447. https://doi.org/10.1002/mma.7040 doi: 10.1002/mma.7040
    [12] K. S. Nisar, V. Vijayakumar, Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system, Math. Method. Appl. Sci., 44 (2021), 13615–13632. https://doi.org/10.1002/mma.7647 doi: 10.1002/mma.7647
    [13] C. Dineshkumar, R. Udhayakumar, K. S. Nisar, A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems, Chaos Soliton. Fract., 142 (2021), 110472. https://doi.org/10.1016/j.chaos.2020.110472 doi: 10.1016/j.chaos.2020.110472
    [14] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay, Chaos Soliton. Fract., 157 (2022), 111916. https://doi.org/10.1016/j.chaos.2022.111916 doi: 10.1016/j.chaos.2022.111916
    [15] Z. M. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay, J. Franklin I., 348 (2011), 2156–2173. https://doi.org/10.1016/j.jfranklin.2011.06.009 doi: 10.1016/j.jfranklin.2011.06.009
    [16] A. Debbouche, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442–1450. https://doi.org/10.1016/j.camwa.2011.03.075 doi: 10.1016/j.camwa.2011.03.075
    [17] K. Balachandran, J. Kokila, On the controllability of fractional dynamical systems, Int. J. Appl. Math. Comput. Sci., 22 (2012), 523–531. https://doi.org/10.2478/v10006-012-0039-0 doi: 10.2478/v10006-012-0039-0
    [18] Z. X. Tai, S. X. Lun, On controllability of fractional impulsive neutral infinite delay evolution integro-differential systems in Banach spaces, Appl. Math. Lett., 25 (2012), 104–110. https://doi.org/10.1016/j.aml.2011.07.002 doi: 10.1016/j.aml.2011.07.002
    [19] R. Sakthivel, N. I. Mahmudov, J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334–10340. https://doi.org/10.1016/j.amc.2012.03.093 doi: 10.1016/j.amc.2012.03.093
    [20] X. F. Zhou, J. Wei, L. G. Hu, Controllability of a fractional linear time-invariant neutral dynamical system, Appl. Math. Lett., 26 (2013), 418–424. https://doi.org/10.1016/j.aml.2012.10.016 doi: 10.1016/j.aml.2012.10.016
    [21] V. Vijayakumar, A. Selvakumar, R. Murugesu, Controllability for a class of fractional neutral integro-differential equations with unbounded delay, Appl. Math. Comput., 232 (2014), 303–312. https://doi.org/10.1016/j.amc.2014.01.029 doi: 10.1016/j.amc.2014.01.029
    [22] Y. Zhou, V. Vijayakumar, R. Murugesu, Controllability results for fractional order neutral functional differential inclusions with infinite delay, Fixed Point Theory, 18 (2017), 773–798.
    [23] B. S. Vadivoo, R. Ramachandran, J. Cao, H. Zhang, X. D. Li, Controllability analysis of nonlinear neutral-type fractional-order differential systems with state delay and impulsive effects, Int. J. Control Autom., 16 (2018), 659–669. https://doi.org/10.1007/s12555-017-0281-1 doi: 10.1007/s12555-017-0281-1
    [24] A. Kumar, M. Malik, R. Sakthivel, Controllability of the second-order nonlinear differential equations with non-instantaneous impulses, Dyn. Control Syst., 24 (2018), 325–342. https://doi.org/10.1007/s10883-017-9376-5 doi: 10.1007/s10883-017-9376-5
    [25] B. G. Priya, P. Muthukumar, Controllability and minimum energy of fractional neutral delay syste control of fractional neutral delay system, IFAC Pap. OnLine, 51 (2018), 592–597.
    [26] M. Muslim, A. Kumar, Controllability of fractional differential equation of order α(1,2] with noninstantaneous impulses, Asian J. Control, 20 (2018), 935–942. https://doi.org/10.1002/asjc.1604 doi: 10.1002/asjc.1604
    [27] J. R. Wang, A. G. Ibrahim, M. Feckan, Y. Zhou, Controllability of fractional non-instantaneous impulsive differential inclusions without compactness, IMA J. Math. Control I., 36 (2019), 443–460. https://doi.org/10.1093/imamci/dnx055 doi: 10.1093/imamci/dnx055
    [28] Y. Huang, Z. Liu, Controllability of nonlinear impulsive integro-differential fractional time-invariant systems, J. Integral Equ. Appl., 31 (2019), 329–341. https://doi.org/10.1216/JIE-2019-31-3-329 doi: 10.1216/JIE-2019-31-3-329
    [29] M. Malik, R. Dhayal, S. Abbas, A. Kumar, Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Racsam Rev. R. Acad. A, 113 (2019), 103–118. https://doi.org/10.1007/s13398-017-0454-z doi: 10.1007/s13398-017-0454-z
    [30] M. Malik, R. Dhayal, S. Abbas, Exact controllability of a retarded fractional differential equation with non-instantaneous impulses, Dynam. Cont. Dis. Ser. B, 26 (2019), 53–69.
    [31] K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Soliton. Fract., 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2020.110035 doi: 10.1016/j.chaos.2020.110035
    [32] K. Jothimani, K. Kaliraj, S. K. Panda, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control The., 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
    [33] W. K. Williams, V. Vijayakumar, Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems, Math. Method. Appl. Sci., 2021.
    [34] P. Balasubramaniam, Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111276. https://doi.org/10.1016/j.chaos.2021.111276 doi: 10.1016/j.chaos.2021.111276
    [35] K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Soliton. Fract., 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
    [36] K. Kavitha, V. Vijayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control, 24 (2022), 1406–1415. https://doi.org/10.1002/asjc.2549 doi: 10.1002/asjc.2549
    [37] J. Huang, D. Luo, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 33 (2023), 013120. https://doi.org/10.1063/5.0125651 doi: 10.1063/5.0125651
    [38] H. P. Ma, L. Biu, Exact controllability and continuos dependent of fractional neutral integro-differential equations with state-dependent delay, Acta Math. Sci., 37B (2017), 235–258. https://doi.org/10.1016/S0252-9602(16)30128-X doi: 10.1016/S0252-9602(16)30128-X
    [39] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I., 356 (2019), 1535–1565. https://doi.org/10.1016/j.jfranklin.2018.12.001 doi: 10.1016/j.jfranklin.2018.12.001
    [40] V. Kumar, M. Malik, A. Debbouche, Total controllability of neutral fractional differential equation with non-instantaneous impulsive effects, J. Comput. Appl. Math., 383 (2021), 113158. https://doi.org/10.1016/j.cam.2020.113158 doi: 10.1016/j.cam.2020.113158
    [41] K. Balachandran, V. Govindaraj, Numerical controllability of fractional dynamical systems, Optimization, 63 (2014), 1267–1279. https://doi.org/10.1080/02331934.2014.906416 doi: 10.1080/02331934.2014.906416
    [42] V. Govindaraj, K. Balachandran, R. K. George, Numerical approach for the controllability of composite fractional dynamical systems, J. Appl. Nonlinear Dyn., 7 (2018), 59–72. https://doi.org/10.5890/JAND.2018.03.005 doi: 10.5890/JAND.2018.03.005
    [43] K. Balachandran, S. Divya, R. L. Germá, J. J. Trujillo, Relative controllability of nonlinear neutral fractional integro-differential systems with distributed delays in control, Math. Method. Appl. Sci., 39 (2016), 214–224. https://doi.org/10.1002/mma.3470 doi: 10.1002/mma.3470
    [44] M. Li, A. Debbouche, J. R. Wang, Relative controllability in fractional differential equations with pure delay, Math. Method. Appl. Sci., 41 (2018), 8906–8914. https://doi.org/10.1002/mma.4651 doi: 10.1002/mma.4651
    [45] Z. M. Yan, F. X. Lu, The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay, Int. J. Control, 89 (2016), 1592–1612. https://doi.org/10.1080/00207179.2016.1140229 doi: 10.1080/00207179.2016.1140229
    [46] J. Losada, J. J. Nieto, E. Pourhadi, On the attractivity of solutions for a class of multi-term fractional functional differential equations, J. Comput. Appl. Math., 312 (2017), 2–21. https://doi.org/10.1016/j.cam.2015.07.014 doi: 10.1016/j.cam.2015.07.014
    [47] F. F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. https://doi.org/10.1016/j.amc.2020.125079 doi: 10.1016/j.amc.2020.125079
    [48] Z. S. Aghayan, A. Alfi, J. T. Machado, Robust stability analysis of uncertain fractional order neutral-type delay nonlinear systems with actuator saturation, Appl. Math. Model., 90 (2021), 1035–1048. https://doi.org/10.1016/j.apm.2020.10.014 doi: 10.1016/j.apm.2020.10.014
    [49] H. T. Tuan, H. D. Thai, G. Roberto, An analysis of solutions to fractional neutral differential equations with delay, Commun. Nonlinear Sci., 100 (2021), 105854. https://doi.org/10.1016/j.cnsns.2021.105854 doi: 10.1016/j.cnsns.2021.105854
    [50] J. Ren, C. B. Zhai, Stability analysis of generalized neutral fractional differential systems with time delays, Appl. Math. Lett., 116 (2021), 106987. https://doi.org/10.1016/j.aml.2020.106987 doi: 10.1016/j.aml.2020.106987
    [51] T. Ismail, N. M. Huseynov, Analysis of positive fractional-order neutral time-delay systems, J. Franklin I., 359 (2022), 294–330. https://doi.org/10.1016/j.jfranklin.2021.07.001 doi: 10.1016/j.jfranklin.2021.07.001
    [52] Q. L. Han, Stability of linear neutral systems with linear fractional norm-bounded uncertainty, Proceedings of the 2005, American Control Conference, 2005, Portland: IEEE, 4 (2005), 2827–2832. https://doi.org/10.1109/ACC.2005.1470398
    [53] L. Hong, S. M. Zhong, H. B. Li, Asymptotic stability analysis of fractional-order neutral systems with time delay, Adv. Differ. Equ., 2015 (2015), 325–335. https://doi.org/10.1186/s13662-015-0659-4 doi: 10.1186/s13662-015-0659-4
    [54] S. Liu, X. Wu, Y. J. Zhang, R. Yang, Asymptotical stability of Riemann-Liouville fractional neutral systems, Appl. Math. Lett., 69 (2017), 168–173. https://doi.org/10.1016/j.aml.2017.02.016 doi: 10.1016/j.aml.2017.02.016
    [55] K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Method. Appl. Sci., 44 (2021), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843
    [56] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B. V., 2006.
    [57] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
    [58] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [59] Y. Hino, S. Murakami, T. Naito, Functional differential equations with infinite delay, Berlin/Heidelberg: Springer, 1991. https://doi.org/10.1007/BFb0084432
    [60] Y. Jalilian, Fractional integral inequalities and their applications to fractional differential equations, Acta Math. Sci., 36B (2016), 1317–1330. https://doi.org/10.1016/S0252-9602(16)30071-6 doi: 10.1016/S0252-9602(16)30071-6
    [61] C. Chen, Q. X. Dong, Existence and Hyers-Ulam stability for a multi-term fractional differential equation with infinite delay, Mathematics, 10 (2022), 1013. https://doi.org/10.3390/math10071013 doi: 10.3390/math10071013
    [62] J. K. Liu, W. Xu, An averaging result for impulsive fractional neutral stochastic differential equations, Appl. Math. Lett., 114 (2021), 106892. https://doi.org/10.1016/j.aml.2020.106892 doi: 10.1016/j.aml.2020.106892
    [63] J. K. Liu, W. Wei, W. Xu, An averaging principle for stochastic fractional differential equations driven by fBm involving impulses, Fractal. Fract., 6 (2022), 256. https://doi.org/10.3390/fractalfract6050256 doi: 10.3390/fractalfract6050256
    [64] D. F. Luo, M. Q. Tian, Q. X. Zhu, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos Soliton. Fract., 158 (2022), 111996. https://doi.org/10.1016/j.chaos.2022.111996 doi: 10.1016/j.chaos.2022.111996
    [65] J. K. Liu, W. Wei, J. B. Wang, W. Xu, Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations, Appl. Math. Lett., 140 (2023), 108586. https://doi.org/10.1016/j.aml.2023.108586 doi: 10.1016/j.aml.2023.108586
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1175) PDF downloads(73) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog