Research article

Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment

  • Received: 27 December 2021 Revised: 26 April 2022 Accepted: 10 May 2022 Published: 16 May 2022
  • MSC : 90B06, 90C90

  • This paper studies the problem of facility location in a hybrid uncertain environment with both randomness and fuzziness. We establish a data-driven two-stage fuzzy random mixed integer optimization model, by considering the uncertainty of transportation cost and customer demand. Given the complexity of the model, this paper based on particle swarm optimization (PSO), beetle antenna search algorithm (BAS) and interior point algorithm, a hybrid intelligent algorithm (HIA) is proposed to solve two-stage fuzzy random mixed integer optimization model, yielding the optimal facility location and maximal expected return of supply chain simultaneously. Finally, taking the supply chain of medical mask in Shanghai as an example, the influence of uncertainty on the location of processing factory was studied. We compare the HIA with hybrid PSO and hybrid genetic algorithm (GA), to validate the proposed algorithm based on the computational time and the convergence rate.

    Citation: Zhimin Liu, Ripeng Huang, Songtao Shao. Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment[J]. AIMS Mathematics, 2022, 7(7): 13292-13312. doi: 10.3934/math.2022734

    Related Papers:

  • This paper studies the problem of facility location in a hybrid uncertain environment with both randomness and fuzziness. We establish a data-driven two-stage fuzzy random mixed integer optimization model, by considering the uncertainty of transportation cost and customer demand. Given the complexity of the model, this paper based on particle swarm optimization (PSO), beetle antenna search algorithm (BAS) and interior point algorithm, a hybrid intelligent algorithm (HIA) is proposed to solve two-stage fuzzy random mixed integer optimization model, yielding the optimal facility location and maximal expected return of supply chain simultaneously. Finally, taking the supply chain of medical mask in Shanghai as an example, the influence of uncertainty on the location of processing factory was studied. We compare the HIA with hybrid PSO and hybrid genetic algorithm (GA), to validate the proposed algorithm based on the computational time and the convergence rate.



    加载中


    [1] J. Current, S. Ratick, C. Revelle, Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach, Eur. J. Oper. Res., 110 (1998), 597–609. https://doi.org/10.1016/s0377-2217(97)00303-2 doi: 10.1016/s0377-2217(97)00303-2
    [2] A. Klose, A. Drexl, Facility location models for distribution system design, Eur. J. Oper. Res., 162 (2005), 4–29. https://doi.org/10.1016/j.ejor.2003.10.031 doi: 10.1016/j.ejor.2003.10.031
    [3] R. Manzini, E. Gebennini, Optimization models for the dynamic facility location and allocation problem, Int. J. Prod. Res., 46 (2008), 2061–2086. https://doi.org/10.1080/00207540600847418 doi: 10.1080/00207540600847418
    [4] I. Akgun, F. Gumusbuga, B. Tansel, Risk based facility location by using fault tree analysis in disaster management, Omega, 52 (2015), 168–179. https://doi.org/10.1016/j.omega.2014.04.003 doi: 10.1016/j.omega.2014.04.003
    [5] A. A. Ageev, Improved approximation algorithms for multilevel facility location problems, Oper. Res. Lett., 30 (2002), 327–332. https://doi.org/10.1016/S0167-6377(02)00162-1 doi: 10.1016/S0167-6377(02)00162-1
    [6] T. H. Tran, M. P. Scaparra, J. R. OHanley, A hypergraph multi-exchange heuristic for the single-source capacitated facility location problem, Eur. J. Oper. Res., 263 (2017), 173–187. https://doi.org/10.1016/j.ejor.2017.04.032 doi: 10.1016/j.ejor.2017.04.032
    [7] A. Moya-Martinez, M. Landete, J. F. Monge, Close-enough facility location, Mathematics, 9 (2021), 670. https://doi.org/10.3390/math9060670 doi: 10.3390/math9060670
    [8] G. Laporte, F. V. Louveaux, L. van Hamme, Exact solution to a location problem with stochastic demands, Transport. Sci., 28 (1994), 95–103. https://doi.org/10.1287/trsc.28.2.95 doi: 10.1287/trsc.28.2.95
    [9] Z. M. Liu, S. J. Qu, H. Raza, Z. Wu, D. Q. Qu, J. H. Du, Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment, JIMO, 17 (2021), 2783–2804. https://doi.org/10.3934/jimo.2020094 doi: 10.3934/jimo.2020094
    [10] Q. Wang, R. Batta, C. M. Rump, Algorithms for a facility location problem with stochastic customer demand and immobile servers, Ann. Oper. Res., 111 (2002), 17–34. https://doi.org/10.1023/A:1020961732667 doi: 10.1023/A:1020961732667
    [11] A. S. Zadeh, R. Sahraeian, S. M. Homayouni, A dynamic multi-commodity inventory and facility location problem in steel supply chain network design, Int. J. Adv. Manuf. Technol., 70 (2014), 1267–1282. https://doi.org/10.1007/s00170-013-5358-2 doi: 10.1007/s00170-013-5358-2
    [12] J. de Armas, A. A. Juan, J. M. Marques, J. P. Pedroso, Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic, J. Oper. Res. Soc., 68 (2017), 1161–1176. https://doi.org/10.1057/s41274-016-0155-6 doi: 10.1057/s41274-016-0155-6
    [13] B. Li, Q. Xun, J. Sun, K. L. Teo, C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Model., 58 (2018), 86–97. https://doi.org/10.1016/j.apm.2017.11.039 doi: 10.1016/j.apm.2017.11.039
    [14] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [15] B. A. Kumar, S. K. Paikray, H. Dutta, Cost optimization model for items having fuzzy demand and deterioration with two-warehouse facility under the trade credit financing, AIMS Mathematics, 5 (2020), 1603–1620. https://doi.org/10.3934/math.2020109 doi: 10.3934/math.2020109
    [16] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst.k, 1 (1978), 3–28. https://doi.org/10.1016/0165-0114(78)90029-5 doi: 10.1016/0165-0114(78)90029-5
    [17] B. D. Liu, Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE T. Fuzzy Syst., 10 (2002), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692 doi: 10.1109/TFUZZ.2002.800692
    [18] S. Y. Choua, Y. H. Changa, C. Y. Shen, A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes, European Journal of Operational Research, 189 (2008), 132–145. https://doi.org/10.1016/j.ejor.2007.05.006 doi: 10.1016/j.ejor.2007.05.006
    [19] S. M. Wang, J. Watada, W. Pedrycz, Value-at-risk based two-stage fuzzy facility location problems, IEEE T. Ind. Inform., 5 (2009), 465–482. https://doi.org/10.1109/TII.2009.2022542 doi: 10.1109/TII.2009.2022542
    [20] M. Rezaei, M. H. F. Zarandi, Facility location via fuzzy modeling and simulation, Appl. Soft Comput., 11 (2011), 5330–5340. https://doi.org/10.1016/j.asoc.2011.05.026 doi: 10.1016/j.asoc.2011.05.026
    [21] T. Paksoy, N. Y. Pehlivan, E. Ozceylan, A new tradeoff model for fuzzy supply chain network design and optimization, Human Ecol. Risk Assess.: Int. J., 19 (2013), 492–514. https://doi.org/10.1080/10807039.2013.755100 doi: 10.1080/10807039.2013.755100
    [22] S. M. Wang, J. Z. Watada, Capacitated two-stage facility location problem with fuzzy costs and demands, Int. J. Mach. Learn. Cyber., 4 (2013), 65–74. https://doi.org/10.1007/s13042-012-0073-0 doi: 10.1007/s13042-012-0073-0
    [23] Z. M. Liu, S. J. Qu, Z. Wu, Y. Ji, Two-stage fuzzy mixed integer optimization model for three-level location allocation problems under uncertain environment, J. Intell. Fuzzy Syst., 39 (2020), 6741–6756. https://doi.org/10.3233/JIFS-191453 doi: 10.3233/JIFS-191453
    [24] H. Kwakernaak, Fuzzy random variables-I. definitions and theorems, Inform. Sci., 15 (1978), 1–29. https://doi.org/10.1016/0020-0255(78)90019-1 doi: 10.1016/0020-0255(78)90019-1
    [25] Y. K. Liu, B. D. Liu, Fuzzy random variable: A scalar expected value operator, Fuzzy Optim. Decis. Ma., 2 (2003), 143–160. https://doi.org/10.1023/A:1023447217758 doi: 10.1023/A:1023447217758
    [26] M. Wen, K. Iwamura, Facility location-allocation problem in random fuzzy environment: Using$(\alpha, \beta)$ -cost minimization model under the Hurewicz criterion, Comput. Math. Appl., 55 (2008), 704–713. https://doi.org/10.1016/j.camwa.2007.03.026 doi: 10.1016/j.camwa.2007.03.026
    [27] S. M. Wang, J. Watada, W. Pedrycz, Recourse-based facility-location problems in hybrid uncertain environment, IEEE T. Syst. Man Cyber. Part B, 40 (2010), 1176–1187. https://doi.org/10.1109/TSMCB.2009.2035630 doi: 10.1109/TSMCB.2009.2035630
    [28] M. Wen, R. Kang, Some optimal models for facility location-allocation problem with random fuzzy demands, Appl. Soft Comput. J., 11 (2011), 1202–1207. https://doi.org/10.1016/j.asoc.2010.02.018 doi: 10.1016/j.asoc.2010.02.018
    [29] T. Uno, H. Katagiri, K. Kato, Competitive facility location with fuzzy random demands, AIP Conf. Proc., 99 (2010), 99–108. https://doi.org/10.1063/1.3510583 doi: 10.1063/1.3510583
    [30] J. Watada, Building models based on environment with hybrid uncertainty, 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, 2011. https://doi.org/10.1109/ICMSAO.2011.5775646
    [31] M. K. Luhandjula, Fuzziness and randomness in an optimization framework, Fuzzy Set. Syst., 77 (1996), 291–297. https://doi.org/10.1016/0165-0114(95)00043-7 doi: 10.1016/0165-0114(95)00043-7
    [32] M. Lopez-Diaz, M. A. Gil, Constructive definitions of fuzzy random variables, Stat. Prob. Lett., 36 (1997), 135–143. https://doi.org/10.1016/S0167-7152(97)00056-4 doi: 10.1016/S0167-7152(97)00056-4
    [33] B. D. Liu, Uncertainty theory-A branch of mathematics for modeling human uncertainty, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-13959-8
    [34] L. R. Medsker, Hybrid intelligent systems, Boston: Kluwer Academic Publishers, 1995.
    [35] B. D. Liu, Fuzzy random chance-constrained programming, IEEE T. Fuzzy Syst., 9 (2001), 713–720. https://doi.org/10.1109/91.963757 doi: 10.1109/91.963757
    [36] B. D. Liu, Fuzzy random dependent-chance programming, IEEE T. Fuzzy Syst., 9 (2001), 721–726. https://doi.org/10.1109/91.963758 doi: 10.1109/91.963758
    [37] S. M. Wang, J. Watada, A hybrid modified PSO approach to VaR-based facility location problems with variable capacity in fuzzy random uncertainty, Inform. Sci., 192 (2012), 3–18. https://doi.org/10.1016/j.ins.2010.02.014 doi: 10.1016/j.ins.2010.02.014
    [38] X. Y. Jiang, S. Li, BAS: Beetle antennae search algorithm for optimization problems, 2017. arXiv: 1710.10724.
    [39] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, IEEE I. Conf. Syst. Man Cyber., 5 (1997), 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339 doi: 10.1109/ICSMC.1997.637339
    [40] R. D. C. Monteiro, I. Adler, Interior path following primal-dual algorithms. Part I: Linear programming, Math. Program., 44 (1989), 27–41. https://doi.org/10.1007/BF01587075 doi: 10.1007/BF01587075
    [41] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, 1989.
    [42] K. M. Sim, Y. Y. Guo, B. Shi, BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information, IEEE T. Syst. Man Cyber. Part B, 39 (2009), 198–211. https://doi.org/10.1109/TSMCB.2008.2004501 doi: 10.1109/TSMCB.2008.2004501
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1543) PDF downloads(73) Cited by(4)

Article outline

Figures and Tables

Figures(6)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog