The index of strong rotundity is introduced. This index is used to determine how far an element of the unit sphere of a real Banach space is from being a strongly exposed point of the unit ball. This index is computed for Hilbert spaces. Characterizations of the set of rotund points and the set of smooth points are provided for a better understanding of the construction of the index of strong rotundity. Finally, applications to the stereographic projection are provided.
Citation: Francisco Javier García-Pacheco. The index of strong rotundity[J]. AIMS Mathematics, 2023, 8(9): 20477-20486. doi: 10.3934/math.20231043
The index of strong rotundity is introduced. This index is used to determine how far an element of the unit sphere of a real Banach space is from being a strongly exposed point of the unit ball. This index is computed for Hilbert spaces. Characterizations of the set of rotund points and the set of smooth points are provided for a better understanding of the construction of the index of strong rotundity. Finally, applications to the stereographic projection are provided.
[1] | A. Aizpuru, F. J. García-Pacheco, $L^2$-summand vectors in Banach spaces, Proc. Amer. Math. Soc., 134 (2006), 2109–2115. https://doi.org/10.1090/S0002-9939-06-08243-8 doi: 10.1090/S0002-9939-06-08243-8 |
[2] | P. Bandyopadhyay, D. Huang, B. L. Lin, S. L. Troyanski, Some generalizations of locally uniform rotundity, J. Math. Anal. Appl., 252 (2000), 906–916. https://doi.org/10.1006/jmaa.2000.7169 doi: 10.1006/jmaa.2000.7169 |
[3] | P. Bandyopadhyay, B. L. Lin, Some properties related to nested sequence of balls in {B}anach spaces, Taiwanese J. Math., 5 (2001), 19–34. https://doi.org/10.11650/twjm/1500574887 doi: 10.11650/twjm/1500574887 |
[4] | A. Beurling, A. E. Livingston, A theorem on duality mappings in Banach spaces, Ark. Mat., 4 (1962), 405–411. https://doi.org/10.1007/BF02591622 doi: 10.1007/BF02591622 |
[5] | J. Blažek, Some remarks on the duality mapping, Acta Univ. Carolin. Math. Phys., 23 (1982), 15–19. |
[6] | J. W. Carlson, T. L. Hicks, A characterization of inner product spaces, Math. Japon, 23 (1978), 371–373. |
[7] | J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630 |
[8] | D. F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc., 110 (1964), 284–314. https://doi.org/10.2307/1993705 doi: 10.2307/1993705 |
[9] | F. J. García-Pacheco, J. B. Seoane-Sepúlveda, The stereographic projection in Banach spaces, Rocky Mountain J. Math., 37 (2007), 1167–1172. https://doi.org/10.1216/rmjm/1187453103 doi: 10.1216/rmjm/1187453103 |
[10] | F. J. García-Pacheco, The stereographic projection in topological modules, Axioms, 12 (2023), 225. https://doi.org/10.3390/axioms12020225 doi: 10.3390/axioms12020225 |
[11] | J. L. Kelley, General topology, New York: Springer-Verlag, 1975. |
[12] | A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc., 78 (1955), 225–238. https://doi.org/10.2307/1992956 doi: 10.2307/1992956 |
[13] | C. F. Marcus, The stereographic projection in vector notation, Math. Mag., 39 (1966), 100–102. https://doi.org/10.1080/0025570X.1966.11975692 doi: 10.1080/0025570X.1966.11975692 |
[14] | A. P. Stone, On the stereographic projection of the sphere, Math. Gaz., 40 (1956), 181–184, https://doi.org/10.2307/3608806 doi: 10.2307/3608806 |