Research article Special Issues

Numerical algorithms for solutions of nonlinear problems in some distance spaces

  • Received: 20 November 2022 Revised: 22 December 2022 Accepted: 02 January 2023 Published: 03 February 2023
  • MSC : 47H09, 47H10

  • This paper introduces some numerical algorithms for finding solutions of nonlinear problems like functional equations, split feasibility problems (SFPs) and variational inequality problems (VIPs) in the setting of Hilbert and Banach spaces. Our approach is based on the Thakur-Thakur-Postolache (TTP) iterative algorithm and the class of mean nonexpansive mappings. First we provide some convergence results (including weak and strong convergence) in the setting of Banach space. To support these results, we provide a numerical example and prove that our TTP algorithm in this case converges faster to fixed point compared to other iterative algorithms of the literature. After that, we consider two new TTP type projection iterative algorithms to solve SFPs and VIPs on the Hilbert space setting. Our result are new in analysis and suggest new type effective numerical algorithms for finding approximate solutions of some nonlinear problems.

    Citation: Junaid Ahmad, Kifayat Ullah, Reny George. Numerical algorithms for solutions of nonlinear problems in some distance spaces[J]. AIMS Mathematics, 2023, 8(4): 8460-8477. doi: 10.3934/math.2023426

    Related Papers:

  • This paper introduces some numerical algorithms for finding solutions of nonlinear problems like functional equations, split feasibility problems (SFPs) and variational inequality problems (VIPs) in the setting of Hilbert and Banach spaces. Our approach is based on the Thakur-Thakur-Postolache (TTP) iterative algorithm and the class of mean nonexpansive mappings. First we provide some convergence results (including weak and strong convergence) in the setting of Banach space. To support these results, we provide a numerical example and prove that our TTP algorithm in this case converges faster to fixed point compared to other iterative algorithms of the literature. After that, we consider two new TTP type projection iterative algorithms to solve SFPs and VIPs on the Hilbert space setting. Our result are new in analysis and suggest new type effective numerical algorithms for finding approximate solutions of some nonlinear problems.



    加载中


    [1] H. A. Abass, C. Izuchukwu, O. T. Mewomo, On split equality generalized equilibrium problems and fixed point problems of Bregman relatively nonexpansive semigroups, J. Appl. Numer. Optim., 4 (2022), 357–380. 10.23952/jano.4.2022.3.04 doi: 10.23952/jano.4.2022.3.04
    [2] M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vestn., 66 (2014), 223–234.
    [3] R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications Series, New York: Springer, 6 (2009).
    [4] R. P. Agarwal, D. O'Regon, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [5] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., (1922), 133–181.
    [6] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [7] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [8] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221–239.
    [9] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414.
    [10] D. Gohde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312
    [11] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [12] L. Liu, B. Tan, A. Latif, Approximation of fixed points for a semigroup of Bregman quasi-nonexpansive mappings in Banach spaces, J. Nonlinear Var. Anal., 5 (2021), 9–22. https://doi.org/10.23952/jnva.5.2021.1.02 doi: 10.23952/jnva.5.2021.1.02
    [13] G. Lopez, V. Martín-Ma Themrquez, H. K. Xu, Halpern's iteration for nonexpansive mappings, In: Nonlinear Analysis and Optimization I: Nonlinear Analysis, 513 (2010), 211–231. http://doi.org/10.1090/conm/513/10085
    [14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162
    [15] G. Maniu, On a three-step iteration process for Suzuki mappings with qualitative study, Numer. Funct. Anal. Optim., 41 (2020), 929–949. https://doi.org/10.1080/01630563.2020.1719415 doi: 10.1080/01630563.2020.1719415
    [16] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006jmaa.2000.70
    [17] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597.
    [18] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884
    [19] H. F. Senter, W. G. Dotson, Approximating fixed points of non-expansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380.
    [20] W. Takahashi, Nonlinear Functional Analysis, Yokohoma: Yokohoma Publishers, 2000.
    [21] B. S. Thakur, D. Thakur, M. Postolache, New iteration scheme for approximating fixed point of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T
    [22] T. Thianwan, A new iteration scheme for mixed type asymptotically nonexpansive mappings in hyperbolic spaces, J. Nonlinear Funct. Anal., 2021 (2021), 21. https://doi.org/10.23952/jnfa.202 doi: 10.23952/jnfa.202
    [23] C. X. Wu, L. J. Zhang, Fixed points for mean non-expansive mappings, Acta Math. Appl. Sin., 23 (2007), 489–494.
    [24] S. Zhang, About fixed point theory for mean nonexpansive mapping in Banach spaces. J. Sichuan Univ., 2 (1975), 67–78.
    [25] Z. F. Zuo, Fixed-point theorems for mean nonexpansive mappings in Banach spaces, Abstr. Appl. Anal. 2014 (2014), 746291. https://doi.org/10.1155/2014/746291 doi: 10.1155/2014/746291
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(944) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog