This paper introduces a novel class of generalized $ {\alpha} $-admissible contraction types of mappings in the framework of $ {\theta} $-complete partial satisfactory cone metric spaces and proves the existence and uniqueness of coincidence points for such mappings. In this setting, the topology generated and induced by the partial satisfactory cone metric is associated with semi-interior points rather than interior points of the underlying cone. In addition, some applications of the paper's main coincidence point theorems are given. The results of this paper unify, extend and generalize some previously proved theorems in this generalized setting.
Citation: Nashat Faried, Sahar Mohamed Ali Abou Bakr, H. Abd El-Ghaffar, S. S. Solieman Almassri. Towards coupled coincidence theorems of generalized admissible types of mappings on partial satisfactory cone metric spaces and some applications[J]. AIMS Mathematics, 2023, 8(4): 8431-8459. doi: 10.3934/math.2023425
This paper introduces a novel class of generalized $ {\alpha} $-admissible contraction types of mappings in the framework of $ {\theta} $-complete partial satisfactory cone metric spaces and proves the existence and uniqueness of coincidence points for such mappings. In this setting, the topology generated and induced by the partial satisfactory cone metric is associated with semi-interior points rather than interior points of the underlying cone. In addition, some applications of the paper's main coincidence point theorems are given. The results of this paper unify, extend and generalize some previously proved theorems in this generalized setting.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux ´equations int´egrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | E. El-Shobaky, S. M. Ali, S. A. Montaser, Generalization of Banach contraction principle in two directions, J. Math. Stat., 3 (2007), 112–115. |
[3] | S. M. A. Abou Bakr, A study on common fixed point of joint $(A; B)$ generalized cyclic $\phi$-$abc$ weak nonexpansive mappings and generalized cyclic $abc; r$ contractions in quasi metric spaces, Abstr. Appl. Anal., 2020 (2020), 9427267. https://doi.org/10.1155/2020/9427267 doi: 10.1155/2020/9427267 |
[4] | S. M. A. Abou Bakr, Cyclic $G$-$\Omega$-weak contraction-weak nonexpansive mappings and some fixed point theorems in metric spaces, Abstr. Appl. Anal., 2021 (2021), 6642564. https://doi.org/10.1155/2021/6642564 doi: 10.1155/2021/6642564 |
[5] | L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[6] | Sh. Rezapour, R. Hamlbarani, Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl., 345 (2008), 719–724. https://doi.org/10.1016/j.jmaa.2008.04.049 doi: 10.1016/j.jmaa.2008.04.049 |
[7] | Y. Feng, W. Mao, The equivalence of cone metric spaces and metric spaces, Fixed Point Theory, 11 (2010), 259–264. |
[8] | W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., 72 (2010), 2259–2261. https://doi.org/10.1016/j.na.2009.10.026 doi: 10.1016/j.na.2009.10.026 |
[9] | Z. Kadelburg, S. Radenović, V. Rakočević, A note on equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., 24 (2010), 370–374. https://doi.org/10.1016/j.aml.2010.10.030 doi: 10.1016/j.aml.2010.10.030 |
[10] | A. Amini-Harandi, M. Fakhar, Fixed point theory in cone metric spaces obtained via the scalarization method, Comput. Math. Appl., 59 (2010), 3529–3534. https://doi.org/10.1016/j.camwa.2010.03.046 doi: 10.1016/j.camwa.2010.03.046 |
[11] | H. Çakalli, A. Sönmez, C. Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett., 25 (2012), 429–433. https://doi.org/10.1016/j.aml.2011.09.029 doi: 10.1016/j.aml.2011.09.029 |
[12] | A. Al-Rawashdeh, W. Shatanawi, M. Khandaqji, Normed ordered and $E$-metric spaces, Int. J. Math. Sci., 2012 (2012), 272137. https://doi.org/10.1155/2012/272137 doi: 10.1155/2012/272137 |
[13] | W. S. Du, E. Karapinar, A note on cone $b$-metric and its related results: Generalizations or equivalence, Fixed Point Theory Appl., 2013 (2013), 210. https://doi.org/10.1186/1687-1812-2013-210 doi: 10.1186/1687-1812-2013-210 |
[14] | P. Kumam, N. Dung, V. Hang, Some equivalences between cone $b$-metric spaces and $b$-metric spaces, Abstr. Appl. Anal., 2013 (2013), 573740. https://doi.org/10.1155/2013/573740 doi: 10.1155/2013/573740 |
[15] | A. Azam, N. Mehmood, Multivalued fixed point theorems in $tvs$-cone metric spaces, Fixed Point Theory Appl., 2013 (2013), 184. https://doi.org/10.1186/1687-1812-2013-184 doi: 10.1186/1687-1812-2013-184 |
[16] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017 |
[17] | V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020 |
[18] | S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: A survey, Nonlinear Anal., 74 (2011), 2591–2601. https://doi.org/10.1016/j.na.2010.12.014 doi: 10.1016/j.na.2010.12.014 |
[19] | A. Sönmez, Fixed point theorems in partial cone metric spaces, Mathematics, 2011 (2011), 2741. |
[20] | A. Sönmez, On partial cone metric space, Mathematics, 2012 (2012), 6766. https://doi.org/10.48550/arXiv.1207.6766 doi: 10.48550/arXiv.1207.6766 |
[21] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[22] | S. K. Malhotra, S. Shukla, R. Sen, Some fixed point results in ${\theta}$-complete partial cone metric spaces, J. Adv. Math. Stud., 6 (2013), 97–108. |
[23] | S. Jiang, Z. Li, Extensions of Banach contraction principle to partial cone metric spaces over a non-normal solid cone, Fixed Point Theory Appl., 2013 (2013), 250. https://doi.org/10.1186/1687-1812-2013-250 doi: 10.1186/1687-1812-2013-250 |
[24] | A. Basile, M. G. Graziano, M. Papadaki, I. A. Polyrakis, Cones with semi-interior points and equilibrium, J. Math. Econ., 71 (2017), 36–48. https://doi.org/10.1016/j.jmateco.2017.03.002 doi: 10.1016/j.jmateco.2017.03.002 |
[25] | S. Aleksi´, Z. Kadelburg, Z. D. Mitrovi´c, S. Radenovic, A new survey: Cone metric spaces, arXiv, 2018. https://doi.org/10.48550/arXiv.1805.04795 |
[26] | N. Mehmood, A. Al-Rawashdeh, S. Radenovi´c, New fixed point results for $E$-metric spaces, Positivity, 23 (2019), 1101–1111. https://doi.org/10.1007/s11117-019-00653-9 doi: 10.1007/s11117-019-00653-9 |
[27] | H. Huang, G. Deng, S. Radenovi´c, Some topological properties and fixed point results in cone metric spaces over Banach algebras, Positivity, 23 (2019), 21–34. https://doi.org/10.1007/s11117-018-0590-5 doi: 10.1007/s11117-018-0590-5 |
[28] | H. Huang, Topological properties of $E$-metric spaces with applications to fixed point theory, Mathematics, 7 (2019), 1222. https://doi.org/10.3390/math7121222 doi: 10.3390/math7121222 |
[29] | S. M. A. Abou Bakr, Theta cone metric spaces and some fixed point theorems, J. Math., 2020 (2020), 8895568. https://doi.org/10.1155/2020/8895568 doi: 10.1155/2020/8895568 |
[30] | S. M. A. Abou Bakr, Coupled fixed-point theorems in theta-cone-metric spaces, J. Math., 2021 (2021), 6617738. https://doi.org/10.1155/2021/6617738 doi: 10.1155/2021/6617738 |
[31] | S. M. A. Abou Bakr, Coupled fixed point theorems for some type of contraction mappings in $b$-cone and $b$-theta cone metric spaces, J. Math., 2021 (2021), 5569674. https://doi.org/10.1155/2021/5569674 doi: 10.1155/2021/5569674 |
[32] | S. M. A. Abou Bakr, On various types of cone metric spaces and some applications in fixed Point theory, Int. J. Nonlinear Anal. Appl., 2022 (2022), 2715. https://doi.org/10.22075/IJNAA.2021.24310.2715 doi: 10.22075/IJNAA.2021.24310.2715 |
[33] | S. M. A. Abou Bakr, Fixed point theorems of generalized contraction mappings on $\varpi $-cone metric spaces over Banach algebras, Rocky Mountain J. Math., 52 (2022), 757–776. https://doi.org/10.1216/rmj.2022.52.757 doi: 10.1216/rmj.2022.52.757 |
[34] | K. Deimling, Nonlinear functional analysis, Berlin, Heidelberg: Springer-Verlag, 1985. http://doi.org/10.1007/978-3-662-00547-7 |
[35] | S. K. Malhotra, S. Shukla, J. B. Sharma, Cyclic contractions in $\theta$-complete partial cone metric spaces and fixed point theorems, Jordan J. Math. Stat., 7 (2014), 233–246. |
[36] | C. X. Zhu, W. Xu, T. Došenovič, Z. Golubovic, Common fixed point theorems for cyclic contractive mappings in partial cone $b$-metric spaces and applications to integral equations, Nonlinear Anal. Model., 21 (2016), 807–827. http://doi.org/10.15388/NA.2016.6.5 doi: 10.15388/NA.2016.6.5 |
[37] | G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199–215. |
[38] | M. Mursaleen, S. A. Mohiuddine, R. P. Agarwal, Coupled fixed point theorems for $\alpha $-$\psi$-contractive type mappings in partially ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 228. https://doi.org/10.1186/1687-1812-2012-228 doi: 10.1186/1687-1812-2012-228 |
[39] | Preeti, S. Kumar, Coupled fixed point for $\left (\alpha, \psi \right)$-contractive in partially ordered metric spaces using compatible mappings, Appl. Math., 6 (2015), 1380–1388. http://doi.org/10.4236/am.2015.68130 doi: 10.4236/am.2015.68130 |