In this paper we concern with the Fibonacci bimodal maps. We first study the topological properties of the Fibonacci bimodal maps in the context of kneading map and give an equivalent description of Fibonacci combinatorics. Then we construct a one-parameter family $ f_{\lambda} $ of countably piecewise linear Fibonacci bimodal maps depending on the parameter $ \lambda $ which are all odd functions. By a random walk argument on its induced Markov map, we will show that a phase transition occurs from Lebesgue conservative to Lebesgue dissipative behaviors.
Citation: Haoyang Ji, Wenxiu Ma. Phase transition for piecewise linear fibonacci bimodal map[J]. AIMS Mathematics, 2023, 8(4): 8403-8430. doi: 10.3934/math.2023424
In this paper we concern with the Fibonacci bimodal maps. We first study the topological properties of the Fibonacci bimodal maps in the context of kneading map and give an equivalent description of Fibonacci combinatorics. Then we construct a one-parameter family $ f_{\lambda} $ of countably piecewise linear Fibonacci bimodal maps depending on the parameter $ \lambda $ which are all odd functions. By a random walk argument on its induced Markov map, we will show that a phase transition occurs from Lebesgue conservative to Lebesgue dissipative behaviors.
[1] | B. Branner, J. H. Hubbard, The iteration of cubic polynomials I, Acta Math., 160 (1988), 143–206. |
[2] | H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc., 350 (1998), 2229–2263. |
[3] | H. Bruin, G. Keller, T. Nowicki, S. van Strien, Wild Cantor attractors exist, Ann. Math., 143 (1996), 97–130. https://doi.org/10.2307/2118654 doi: 10.2307/2118654 |
[4] | H. Bruin, M. Todd, Transience and thermodynamic formalism for infinitely branched interval maps, J. London Math. Soc., 86 (2012), 171–194. https://doi.org/10.1112/jlms/jdr081 doi: 10.1112/jlms/jdr081 |
[5] | H. Bruin, M. Todd, Wild attractors and thermodynamic formalism, Monatsh. Math. 178 (2015), 39–83. https://doi.org/10.1007/s00605-015-0747-2 doi: 10.1007/s00605-015-0747-2 |
[6] | H. Bruin, W. Shen, S. van Strien, Invariant measure exists without a growth condition, Commun. Math. Phys., 241 (2003), 287–306. https://doi.org/10.1007/s00220-003-0928-z doi: 10.1007/s00220-003-0928-z |
[7] | F. Hofbauer, G. Keller, Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri Poincaré, 53 (1990), 413–425. |
[8] | H. Ji, S. Li, The attractor of Fibonacci-like renormalization operator, Acta Math. Sin., English Ser., 36 (2020), 1256–1278. https://doi.org/10.1007/s10114-020-9185-8 doi: 10.1007/s10114-020-9185-8 |
[9] | H. Ji, W. Ma, Decay of geometry for a class of cubic polynomials, Preprint. |
[10] | G. Keller, T. Nowicki, Fibonacci maps re(al)-visited, Ergod. Theor. Dyn. Sys., 15 (1995), 99–120. https://doi.org/10.1017/S0143385700008269 doi: 10.1017/S0143385700008269 |
[11] | M. Lyubich, J. Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc., 6 (1993), 425–457. |
[12] | M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. Math., 140 (1994), 347–404. https://doi.org/10.2307/2118604 doi: 10.2307/2118604 |
[13] | W. de Melo, S. van Strien, One-dimensional dynamics, Springer-Verlag, Berlin, 1993. |
[14] | M. L. Nascimento, R. J. S. Mota, The importance of Fibonacci combinatorics for dynamic systems in the interval and in the circle and applications, Eur. Int. J. Sci. Technol., 10 (2021), 82–96. |
[15] | W. Shen, On the metric properties of multimodal interval maps and $C^2$ density of Axiom A, Invent. Math., 156 (2004), 301–403. https://doi.org/10.1007/s00222-003-0343-2 doi: 10.1007/s00222-003-0343-2 |
[16] | E. Straube, On the existence of invariant absolutely continuous measures, Commun. Math. Phys., 81 (1981), 27–30. https://doi.org/10.1007/BF01941798 doi: 10.1007/BF01941798 |
[17] | A. K. Supriatna, E. Carnia, M. Z. Ndii, Fibonacci numbers: a population dynamics perspective, Heliyon, 5 (2019), e01130. https://doi.org/10.1016/j.heliyon.2019.e01130 doi: 10.1016/j.heliyon.2019.e01130 |
[18] |
G. Świ |
[19] | E. Vargas, Fibonacci bimodal maps, Discrete Contin. Dyn. Sys., 22 (2008), 807–815. |