This paper presents a new four-dimensional (4D) hyperchaotic system by introducing a linear controller to 3D chaotic Qi system. Based on theoretical analysis and numerical simulations, the dynamical behaviors of the new system are studied including dissipativity and invariance, equilibria and their stability, quasi-periodic orbits, chaotic and hyperchaotic attractors. In addition, the Hopf bifurcation at the zero equilibrium point and hyperchaos control of the system are investigated. The numerical simulations, including phase diagram, Lyapunov exponent spectrum, bifurcations and Poincaré maps are carried out in order to analyze and verify the complex phenomena of the 4D hyperchaotic system.
Citation: Ning Cui, Junhong Li. A new 4D hyperchaotic system and its control[J]. AIMS Mathematics, 2023, 8(1): 905-923. doi: 10.3934/math.2023044
[1] | Ahmed A. Gaber, Abdul-Majid Wazwaz . Dynamic wave solutions for (2+1)-dimensional DJKM equation in plasma physics. AIMS Mathematics, 2024, 9(3): 6060-6072. doi: 10.3934/math.2024296 |
[2] | Shami A. M. Alsallami . Investigating exact solutions for the (3+1)-dimensional KdV-CBS equation: A non-traveling wave approach. AIMS Mathematics, 2025, 10(3): 6853-6872. doi: 10.3934/math.2025314 |
[3] | Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426 |
[4] | Ajay Kumar, Esin Ilhan, Armando Ciancio, Gulnur Yel, Haci Mehmet Baskonus . Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation. AIMS Mathematics, 2021, 6(5): 4238-4264. doi: 10.3934/math.2021251 |
[5] | Mohammed Aly Abdou, Loubna Ouahid, Saud Owyed, A. M. Abdel-Baset, Mustafa Inc, Mehmet Ali Akinlar, Yu-Ming Chu . Explicit solutions to the Sharma-Tasso-Olver equation. AIMS Mathematics, 2020, 5(6): 7272-7284. doi: 10.3934/math.2020465 |
[6] | Cheng Chen . Hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable-coefficients. AIMS Mathematics, 2022, 7(6): 10378-10386. doi: 10.3934/math.2022578 |
[7] | Sixing Tao . Breather wave, resonant multi-soliton and M-breather wave solutions for a (3+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2022, 7(9): 15795-15811. doi: 10.3934/math.2022864 |
[8] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[9] | Chun-Ku Kuo, Dipankar Kumar, Chieh-Ju Juan . A study of resonance Y-type multi-soliton solutions and soliton molecules for new (2+1)-dimensional nonlinear wave equations. AIMS Mathematics, 2022, 7(12): 20740-20751. doi: 10.3934/math.20221136 |
[10] | Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447 |
This paper presents a new four-dimensional (4D) hyperchaotic system by introducing a linear controller to 3D chaotic Qi system. Based on theoretical analysis and numerical simulations, the dynamical behaviors of the new system are studied including dissipativity and invariance, equilibria and their stability, quasi-periodic orbits, chaotic and hyperchaotic attractors. In addition, the Hopf bifurcation at the zero equilibrium point and hyperchaos control of the system are investigated. The numerical simulations, including phase diagram, Lyapunov exponent spectrum, bifurcations and Poincaré maps are carried out in order to analyze and verify the complex phenomena of the 4D hyperchaotic system.
Fixed point theory is an extensively used mathematical tool in various fields of science and engeneering [1,2,3] Many researchers have generalized Banach contraction principle in various directions. Some have generalized the underlying space while some others have modified the contractive conditions [4,5,6,7].
Zadeh [8] initiated the notion of fuzzy set which lead to the evolution of fuzzy mathematics. Kramosil and Michalek [9] generalized probabilistic metric space via concept of fuzzy metric. George and Veeramani [10] defined Hausdorff topology on fuzzy metric space after slight modification in the definition of fuzzy metric presented in [9]. Heilpern [11] defined fuzzy mapping and establish fixed point result for it. Subsequently many concepts and results from general topology were generalized to fuzzy topological space.
Nˇadˇaban [12] generalized b-metric space by introducing fuzzy b-metric space in the setting of fuzzy metric space initiated by Michalek and Kramosil. Faisar Mehmood et al.[13] generalized fuzzy b-metric by introducing the concept of extended fuzzy b-metric. In this article we present the idea of μ-extended fuzzy b-metric space which extends the concepts of fuzzy b-metric and extended fuzzy b-metric spaces. We also establish a Banach-type fixed point result in the context of μ-extended fuzzy b-metric space.
First we recollect basic definitions and results which will be used in the sequel.
Definition 1.1. [14] A binary operation ∗:[0,1]2→[0,1] is said to be continuous t-norm if ([0,1],≤,∗) is an ordered abelian topological monoid with unit 1.
Some frequently used examples of continuous t-norm are x∗Ly=max{x+y−1,0}, x∗Py=xy and x∗My=min{x,y}. These are respectively called Lukasievicz t-norm, product t-norm and minimum t-norm
Definition 1.2. [9] A fuzzy metric space is 3-tuple (S,ς,∗), where S is a nonempty set, ∗ is continuous t-norm and ς is a fuzzy set on S×S×[0,∞) which satisfies the following conditions, for all p,q,r∈S,
(KM1)ς(p,q,0)=0;
(KM2)ς(p,q,ℓ)=1, for all ℓ>0 if and only if p=q;
(KM3)ς(p,q,ℓ)=ς(q,p,ℓ);
(KM4)ς(p,r,ℓ+t)≥ς(p,q,ℓ)∗ς(q,r,t), for all ℓ,t>0;
(KM5)ς(p,q,.):[0,∞)→[0,1] is non-decreasing continuous;
(KM6)limℓ→∞ς(r,y,ℓ)=1.
Note that ς(p,q,ℓ) indicates the degree of closeness between p and q with respect to ℓ≥0.
Remark 1.1. For p≠qandℓ>0, it is always true that 0<ς(p,q,ℓ)<1.
Lemma 1.1. [15] Let S be a nonempty set. Then ς(p,q,.) is nondecreasing for all p,q∈S.
Example 1.1. [16] Let S be a nonempty set and ς:S×S×(0,∞)→[0,1] be fuzzy set defined on a metric space (S,d) such that
ς(x,y,ℓ)=pℓqpℓq+rd(x,y),∀x,y∈Sandℓ>0, |
where p,q and r are positive real numbers, and ∗ is product t-norm. This is a fuzzy metric induced by the metric d. The above fuzzy metric is also defined if minimum t-norm is used instead of product t-norm.
If we take p=q=r=1, then the above fuzzy metric becomes standard fuzzy metric.
Definition 1.3. [12] Let S be a non-empty set and b≥1 be a given real number. A fuzzy set ς:S×S→[0,∞) is said to be fuzzy b-metric if for all p,q,r∈S, the following conditions hold:
(FbM1)ς(p,q,0)=0;
(FbM2)ς(p,q,ℓ)=1, for all ℓ>0 if and only if q=p;
(FbM3)ς(p,q,ℓ)=ς(q,p,ℓ);
(FbM4)ς(p,r,b(ℓ+t)≥ς(p,q,ℓ)∗ς(q,r,t), for all ℓ,t>0;
(FbM5)ς(p,q,.):(0,∞)→[0,1] is continuous and limℓ→∞ς(p,q,ℓ)=1.
Faisar Mehmood et al. [13] defined extended fuzzy b-metric as.
Definition 1.4. [13] The ordered triple (S,ς,∗) is called extended fuzzy b-metric space by function α:S×S→[1,∞), where S is non-empty set, ∗ is continuous t-norm and ς:S×S→[0,∞) is fuzzy set such that for all x,y,z∈S the following conditions hold:
(FbM1)ςα(p,q,0)=0;
(FbM2)ςα(p,q,ℓ)=1, for all ℓ>0 if and only if q=p;
(FbM3)ςα(p,q,ℓ)=ςα(q,p,ℓ);
(FbM4)ςα(p,r,α(p,r)(ℓ+t)≥ςα(p,q,ℓ)∗ςα(q,r,t), for all ℓ,t>0;
(FbM5)ςα(p,q,.):(0,∞)→[0,1] is continuous and limℓ→∞ςα(p,q,ℓ)=1.
The authors in [13] established the following Banach type fixed point result in the setting of extended fuzzy b-metric space.
Theorem 1.1. Let (S,ςα,∗) be an extended fuzzy-b metric space by mapping α:X×S→[1,∞) which is G-complete such that ςα satisfies
limt→∞ςα(p,q,t)=1, ∀p,q∈Sandt>0. | (1.1) |
Let f:S→S be function such that
ςα(fp,fq,kt)≥ςα(p,q,t), ∀p,q∈Sandt>0, | (1.2) |
where k∈(0,1). Moreover, if for b0∈S and n,p∈N with α(bn,bn+p)<1k, where bn=fnbo. Then f will have a unique fixed point.
Motivated by the concept presented in [13], we present μ-extended fuzzy b-metric space and generalize Banach contraction principle to it using the approach of Grabiec [17].
Definition 2.1. Let α,μ:X×X→[1,∞) defined on a non-empty set X. A fuzzy set ςμ:X×X×[0,∞)→[0,1] is said to be μ-extended fuzzy b-metric if for all p,q,r∈X, the following conditions hold:
(μE1)ςμ(p,q,0)=0;
(μE2)ςμ(p,q,ℓ)=1, for all ℓ>0 if and only if q=p;
(μE3)ςμ(p,q,ℓ)=ςμ(q,p,ℓ);
(μE4)ςμ(p,r,α(p,r)ℓ+μ(p,r)ȷ)≥ςμ(p,q,ℓ)∗ςμ(q,r,ȷ), for all ℓ,t>0;
(μE5)ςμ(p,q,.):(0,∞)→[0,1] is continuous and limℓ→∞ςμ(p,q,ℓ)=1.
And (X,ςμ,∗,α,μ) is called μ-extended fuzzy b-metric space.
Remark 2.1. It is worth mentioning that fuzzy b-metric and extended fuzzy b-metric are special types of μ-extended fuzzy b-metric when α(x,y)=μ(x,y)=b, for some b≥1 and α(x,y)=μ(x,y), respectively.
In the following we exemplify Definition 2.1.
Example 2.1. Let S={1,2,3} and α,μ:S×S→[1,∞) be two functions defined by α(m,n)=1+m+n and μ(m,n)=m+n−1. If ςμ:S×S×[0,∞)→[0,1] is a fuzzy set defined by
ςμ(m,n,ℓ)=min{m,n}+ℓmax{m,n}+ℓ, |
where contiuous t-norm ∗ is defined as t1∗t2=t1×t2, for all t1,t2∈[0,1] We show that (S,ςμ,∗,α,μ) is μ-extended fuzzy b-metric space. Clearly α(1,1)=3, α(2,2)=5, α(3,3)=7,α(1,2)=α(2,1)=4, α(2,3)=α(3,2)=6, α(1,3)=α(3,1)=5, and μ(1,1)=1, μ(2,2)=3, μ(3,3)=5, μ(1,2)=μ(2,1)=2, μ(2,3)=μ(3,2)=4, μ(1,3)=μ(3,1)=3. One can easily verify that the conditions (μE1),(μE2),(μE3) and (μE5) hold. In order to show that (S,ςμ,×,α,μ) is μ-extended fuzzy b-metric space, it only remains to prove that (μE4) is satisfied for all m,n,p∈S. For for all ℓ,ȷ>0, it is clear that
ςμ(1,2,α(1,2)ℓ+μ(1,2)ȷ)=1+4ℓ+2ȷ2+4ℓ+2ȷ≥2+ȷ+2ℓ+ℓȷ9+3ȷ+3ℓ+ℓȷ=ςμ(1,3,ℓ)∗ςμ(3,2,ȷ), |
ςμ(1,3,α(1,3)ℓ+μ(1,3)ȷ)=1+5ℓ+3ȷ3+5ℓ+3ȷ≥2+ȷ+2ℓ+ℓȷ6+ȷ+2ℓ+ℓȷ=ςμ(1,2,ℓ)∗ςμ(2,3,ȷ), |
and
ςμ(2,3,α(2,3)ℓ+μ(2,3)ȷ)=2+6ℓ+4ȷ3+6ℓ+4ȷ≥1+ȷ+ℓ+ℓȷ6+2ȷ+3ℓ+ℓȷ=ςμ(2,1,ℓ)∗ςμ(1,3,ȷ). |
Hence ςμ is μ-extended fuzzy b-metric.
Example 2.2. Let S={1,2,3} and α,μ:S×S→[1,∞) be two functions defined by α(m,n)=max{m,n} and μ(m,n)=min{m,n}. If ςμ:S×S×[0,∞)→[0,1] is a fuzzy set defined by
ςμ(m,n,ℓ)={1, m=n,0, ℓ=0,ℓ2, ,0<ℓ<2,max{m,n}ℓ+1, 2<ℓ<3,max{m,n}ℓ, 3<ℓ,1ℓ+1, ℓ∈S, |
where continuous t-norm ∗ is defined to be the minimum, that is t1∗t2=min(t1,t2). Obviously conditions (μE1),(μE2),(μE3) and (μE5) trivially hold. For p,q,r∈S notice the following:
Case 1: When 0<ℓ+ȷ2<1. Then
ςμ(1,2,α(1,2)ℓ+μ(1,2)ȷ)=ℓ+ȷ2≥min{ℓ2,ȷ2}=ςμ(1,3,ℓ)∗ςμ(3,2,ȷ). |
Case 2: When 1<2ℓ+ȷ<32. Then
ςμ(1,2,α(1,2)ℓ+μ(1,2)ȷ)=22ℓ+ȷ+1≥min{ℓ2,ȷ2}=ςμ(1,3,ℓ)∗ςμ(3,2,ȷ). |
Case 3: When 2ℓ+ȷ>3 such that ℓ=0 and ȷ>3. Then
ςμ(1,2,α(1,2)ℓ+μ(1,2)ȷ)=2ȷ>0=min{0,3ȷ}=ςμ(1,3,ℓ)∗ςμ(3,2,ȷ). |
Case 4: When 2ℓ+ȷ>3 such that ℓ>3 and ȷ=0. Then
ςμ(1,2,α(1,2)ℓ+μ(1,2)ȷ)=1ℓ>0=min{3ℓ,0}=ςμ(1,3,ℓ)∗ςμ(3,2,ȷ). |
Similarly it can be easily verified that condition (μE4) is satisfied for all the remaining cases. Hence (S,ςμ,∗,α,μ) is μ-extended fuzzy b-metric space.
Before establishing an analog of Banach contraction principle in setting of μ-extended fuzzy b-metric space, we present the following concepts in the setting of μ-extended fuzzy b-metric space.
Definition 2.2. Let (S,ςμ,∗,α,μ) be a μ-extended fuzzy b-metric space and {an} be a sequence in S.
(1) {an} is a G-convergent sequence if there exists a0∈S such that
limn→∞ςμ(an,a0,ℓ)=1, ∀ℓ>0. |
(2) {an} in X is called G-Cauchy if
limn→∞ςμ(an,an+p,ℓ)=1,foreachp∈Nandℓ>0. |
(3) S is G-complete, if every Cauchy sequence in S converges.
Next, we prove Banach fixed point Theorem in μ-extended fuzzy b-metric space.
Theorem 2.1. Let (S,ςμ,∗,α,μ) be a G-complete μ-extended fuzzy b-metric space with mappings α,μ:S×S→[1,∞) such that
limt→∞ςμ(u,v,t)=1, ∀u,v∈Sandt>0. | (2.1) |
Let f:S→S be a mapping satisfying that there exists k∈(0,1) such that
ςμ(fu,fv,kt)≥ςμ(u,v,t), ∀u,v∈Sandt>0. | (2.2) |
If for any b0∈S and n,p∈N,
max{supp≥1limi→∞α(bi,bi+p),supp≥1limi→∞μ(bi,bi+p)}<1k, |
where bn=fnbo, then f has a unique fixed point.
Proof. Without loss of generality, assume that bn+1≠bn ∀n≥0. From (2.2), it follows that, for any n,q∈N,
ςμ(bn,bn+1,kt)=ςμ(fbn−1,fbn,kt)≥ςμ(bn−1,bn,t)≥ςμ(bn−2,bn−1,tk)≥ςμ(bn−3,bn−2,tk2)⋮≥ςμ(b0,b1,tkn−1). |
That is
ςμ(bn,bn+1,kt)≥ςμ(b0,b1,tkn−1). | (2.3) |
For any p∈N, applying (μE4) yields that
ςμ(bn,bn+p,t)=ςμ(bn,bn+p,ptp)=ςμ(bn,bn+p,tp+pt−tp)≥ςμ(bn,bn+1,tpα(bn,bn+p))∗ςμ(bn+1,bn+p,pt−tpμ(bn,bn+p))≥ςμ(bn,bn+1,tpα(bn,bn+p))∗ςμ(bn+1,bn+2,tpμ(bn,bn+p)α(bn+1,bn+p))∗ςμ(bn+2,bn+p,pt−2tpμ(bn,bn+p)μ(bn+1,bn+p)). |
From (2.3) and (μE4), it follows that
ςμ(bn,bn+p,t)≥ςμ(b0,b1,tpα(bn,bn+p)kn)∗ςμ(b0,b1,tpμ(bn,bn+p)α(bn+1,bn+p)kn+1)∗ςμ(b0,b1,tpμ(bn,bn+p)μ(bn+1,bn+p)α(bn+2,bn+p)kn+2)∗⋯∗ςμ(b0,b1,tpμ(bn,bn+p)μ(bn+1,bn+p)⋯μ(bn+(p−3),bn+p)α(bn+(p−2),bn+p)kn+(p−1)). |
Noting that for k∈(0,1), α(bn,bn+p)k<1 and μ(bn,bn+p)k<1 hold for all n,p∈N and letting n→∞, applying Eq 3, it follows that
limn→∞ςμ(bn,bn+p,t)=1∗1∗⋯∗1=1, |
that is {bn} is Cauchy sequence. Due to the completeness of (S,ςμ,∗,α,μ) there exists some b∈S such that bn→basn→∞. We claim that b is unique fixed point of f. Applying Eq (1.1) and condition (μE4), we have
ςμ(fb,b,t)≥ςμ(fb,bn+1,t2α(fb,b))∗ςμ(bn+1,b,t2μ(fb,b))≥ςμ(b,bn,t2α(fb,b)k)∗ςμ(bn+1,b,t2μ(fb,b)). |
Thus ςμ(fb,b,t)=1 and hence b is a fixed point of f. To show the uniqueness, let c be another fixed point of f. Applying inequality (2.3) yields that
ςμ(b,c,t)=ςμ(fb,fc,t)≥ςμ(b,c,tk)=ςμ(fb,fc,tk)≥ςμ(b,c,tk2)⋮≥ςμ(b,c,tkn), |
which implies that ςμ(b,c,t)→1, as n→∞, and hence b=c.
Remark 2.2. If α(u,v)=μ(u,v) for all u,v∈S, then Theorem 2.1 reduces to Theorem 1.1.
The following example illustrates Theorem 2.1.
Example 2.3. Let S=[0,1] and ςμ(u,v,t)=e−|u−v|t, ∀u,v∈S. It can be easily verified that (S,ςμ,∗,α,μ) is a G-complete μ-extended fuzzy b-metric space with mappings α,μ:S×S→[1,∞) defined by α(u,v)=1+uv and μ(u,v)=1+u+v, respectively and continuous t-norm ∗ as usual product.
Let f:S→S be such that f(x,y)=1−13x. For all t>0 we have
ςμ(fu,fv,12t)=e−23|u−v|t>e−|u−v|t=ςμ(u,v,t). |
That is all the conditions of Theorem 2.1 are satisfied. Therefore, f has unique fixed point 34∈[0,1]=S.
We introduce the concept of μ-extended fuzzy b-metric space and established fixed point result which generalizes Banach contraction principle to this newly introduced space. The concept we presented may lead to further investigation and applications. As the class of of μ-extended fuzzy b-metric spaces is wider than those of the fuzzy b-metric spaces and extended fuzzy b-metric spaces, therefore results established in this framework will generalize many results in the existing literature.
The authors are grateful to the editorial board and anonymous reviewers for their comments and remarks which helped to improve this manuscript.
The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017- 01-17.
The authors declare that they have no competing interest.
[1] |
O. Rössler, An equation for hyperchaos, Phys. Lett. A, 71 (1979), 155–157. https://doi.org/10.1016/0375-9601(79)90150-6 doi: 10.1016/0375-9601(79)90150-6
![]() |
[2] |
S. Zhang, T. Gao, A coding and substitution frame based on hyper-chaotic systems for secure communication, Nonlinear Dyn., 84 (2016), 833–849. https://doi.org/10.1007/s11071-015-2530-2 doi: 10.1007/s11071-015-2530-2
![]() |
[3] |
H. Li, Z. Hua, H. Bao, L. Zhu, M. Chen, B. Bao, Two-dimensional memristive hyperchaotic maps and application in secure communication, IEEE T. Ind. Electron., 68 (2021), 9931–9940. https://doi.org/10.1109/TIE.2020.3022539 doi: 10.1109/TIE.2020.3022539
![]() |
[4] |
Q. Li, H. Zeng, J. Li, Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria, Nonlinear Dyn., 79 (2015), 2295–2308. https://doi.org/10.1007/s11071-014-1812-4 doi: 10.1007/s11071-014-1812-4
![]() |
[5] |
Z. Wang, F. Min, E. Wang, A new hyperchaotic circuit with two memristors and its application in image encryption, AIP Adv., 6 (2016), 095316. https://doi.org/10.1063/1.4963743 doi: 10.1063/1.4963743
![]() |
[6] |
N. Fataf, S. Palit, S. Mukherjee, M. Said, D. Son, S. Banerjee, Communication scheme using a hyperchaotic semiconductor laser model: chaos shift key revisited, Eur. Phys. J. Plus, 132 (2017), 492. https://doi.org/10.1140/epjp/i2017-11786-y doi: 10.1140/epjp/i2017-11786-y
![]() |
[7] |
E. Barakat, M. Abdel-Aty, I. El-Kalla, Hyperchaotic and quasiperiodic behaviors of a two-photon laser with multi-intermediate states, Chaos Soliton. Fract., 152 (2021), 111316. https://doi.org/10.1016/j.chaos.2021.111316 doi: 10.1016/j.chaos.2021.111316
![]() |
[8] |
Q. Jia, Projective synchronization of a new hyperchaotic Lorenz system, Phys. Lett. A, 370 (2007), 40–45. https://doi.org/10.1016/j.physleta.2007.05.028 doi: 10.1016/j.physleta.2007.05.028
![]() |
[9] |
Y. Chen, Q. Yang, Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dyn., 77 (2014), 569–581. https://doi.org/10.1007/s11071-014-1318-0 doi: 10.1007/s11071-014-1318-0
![]() |
[10] |
J. Singh, B. Roy, Hidden attractors in a new complex generalised Lorenz hyperchaotic system, its synchronisation using adaptive contraction theory, circuit validation and application, Nonlinear Dyn., 92 (2018), 373–394. https://doi.org/10.1007/s11071-018-4062-z doi: 10.1007/s11071-018-4062-z
![]() |
[11] |
Q. Lai, Z. Wan, P. Kuate, H. Fotsin, Dynamical analysis, circuit implementation and synchronization of a new memristive hyperchaotic system with coexisting attractors, Mod. Phys. Lett. B, 35 (2021), 2150187. https://doi.org/10.1142/S0217984921501876 doi: 10.1142/S0217984921501876
![]() |
[12] |
K. Thamilmaran, M. Lakshmanan, A. Venkatesan, Hyperchaos in a modified canonical chua's circuit, Int. J. Bifurcat. Chaos, 14 (2004), 221–243. https://doi.org/10.1142/S0218127404009119 doi: 10.1142/S0218127404009119
![]() |
[13] |
M. Sahin, A. Demirkol, H. Guler, S. Hamamci, Design of a hyperchaotic memristive circuit based on wien bridge oscillator, Comput. Electr. Eng., 88 (2020), 106826. https://doi.org/10.1016/j.compeleceng.2020.106826 doi: 10.1016/j.compeleceng.2020.106826
![]() |
[14] |
M. Abdul Rahim, H. Natiq, N. Fataf, S. Banerjee, Dynamics of a new hyperchaotic system and multistability, Eur. Phys. J. Plus, 134 (2019), 499. https://doi.org/10.1140/epjp/i2019-13005-5 doi: 10.1140/epjp/i2019-13005-5
![]() |
[15] |
H. Natiq, S. Banerjee, S. He, M. Said, A. Kilicman, Designing an M-dimensional nonlinear model for producing hyperchaos, Chaos Soltion. Fract., 114 (2018), 506–515. https://doi.org/10.1016/j.chaos.2018.08.005 doi: 10.1016/j.chaos.2018.08.005
![]() |
[16] |
G. Qi, B. Wyk, M. Wyk, A four-wing attractor and its analysis, Chaos Soliton. Fract., 40 (2009), 2016–2030. https://doi.org/10.1016/j.chaos.2007.09.095 doi: 10.1016/j.chaos.2007.09.095
![]() |
[17] |
G. Qi, X. Liang, Mechanical analysis of Qi four-wing chaotic system, Nonlinear Dyn., 86 (2016), 1095–1106. https://doi.org/10.1007/s11071-016-2949-0 doi: 10.1007/s11071-016-2949-0
![]() |
[18] |
C. Xu, Q. Zhang, On the chaos control of the Qi system, J. Eng. Math., 90 (2015), 67–81. https://doi.org/10.1007/s10665-014-9730-5 doi: 10.1007/s10665-014-9730-5
![]() |
[19] |
G. Qi, J. Zhang, Energy cycle and bound of Qi chaotic system, Chaos Soliton. Fract., 99 (2017), 7–15. https://doi.org/10.1016/j.chaos.2017.03.044 doi: 10.1016/j.chaos.2017.03.044
![]() |
[20] |
X. Wang, Y. Zhang, Y. Gao, Hyperchaos generated from Qi system and its observer, Mod. Phys. Lett. B, 23 (2009), 963–974. https://doi.org/10.1142/S021798490901920X doi: 10.1142/S021798490901920X
![]() |
[21] |
X. Wang, Y. Gao, Y. Zhang, Hyperchaos Qi system, Int. J. Mod. Phys. B, 24 (2010), 4771–4778. https://doi.org/10.1142/S0217979210055895 doi: 10.1142/S0217979210055895
![]() |
[22] |
K. Sudheer, M. Sabir, Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters, Commun. Nonlinear Sci., 15 (2010), 4058–4064. https://doi.org/10.1016/j.cnsns.2010.01.014 doi: 10.1016/j.cnsns.2010.01.014
![]() |
[23] |
E. De Jesus, C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A, 35 (1987), 5288. https://doi.org/10.1103/PhysRevA.35.5288 doi: 10.1103/PhysRevA.35.5288
![]() |
[24] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[25] |
X. Chen, Z. Jing, X. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317–327. https://doi.org/10.1007/s11071-014-1441-y doi: 10.1007/s11071-014-1441-y
![]() |
[26] |
C. Wang, H. Zhang, W. Fan, P. Ma, Finite-time function projective synchronization control method for chaotic wind power systems, Chaos Soliton. Fract., 135 (2020), 109756. https://doi.org/10.1016/j.chaos.2020.109756 doi: 10.1016/j.chaos.2020.109756
![]() |
[27] |
G. Yuan, S. Chen, S. Yang, Eliminating spiral waves and spatiotemporal chaos using feedback signal, Eur. Phys. J. B, 58 (2007), 331–336. https://doi.org/10.1140/epjb/e2007-00220-6 doi: 10.1140/epjb/e2007-00220-6
![]() |
[28] |
J. Zheng, A simple universal adaptive feedback controller for chaos and hyperchaos control, Comput. Math. Appl., 61 (2011), 2000–2004. https://doi.org/10.1016/j.camwa.2010.08.050 doi: 10.1016/j.camwa.2010.08.050
![]() |
[29] |
S. Sajjadi, D. Baleanu, A. Jajarmi, H. Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos Soliton. Fract., 138 (2020), 109919. https://doi.org/10.1016/j.chaos.2020.109919 doi: 10.1016/j.chaos.2020.109919
![]() |
[30] |
H. Jahanshahi, A. Yousefpour, Z. Wei, R. Alcaraz, S. Bekiros, A financial hyperchaotic system with coexisting attractors: dynamic investigation, entropy analysis, control and synchronization, Chaos Soliton. Fract., 126 (2019), 66–77. https://doi.org/10.1016/j.chaos.2019.05.023 doi: 10.1016/j.chaos.2019.05.023
![]() |
[31] |
F. Chien, A. Roy Chowdhury, H. Saberi Nik, Competitive modes and estimation of ultimate bound sets for a chaotic dynamical financial system, Nonlinear Dyn., 106 (2021), 3601–3614. https://doi.org/10.1007/s11071-021-06945-8 doi: 10.1007/s11071-021-06945-8
![]() |
[32] |
H. Saberi Nik, S. Effati, J. Saberi-Nadjafi, New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system, J. Complexity, 31 (2015), 715–730. https://doi.org/10.1016/j.jco.2015.03.001 doi: 10.1016/j.jco.2015.03.001
![]() |
[33] |
M. Zahedi, H. Saberi Nik, Bounds of the chaotic system for couette-Taylor flow and its application in finite-time control, Int. J. Bifurcat. Chaos, 25 (2015), 1550133. https://doi.org/10.1142/S0218127415501333 doi: 10.1142/S0218127415501333
![]() |
1. | Muhammad Sarwar, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad, Some generalized fixed point results of Banach and ˊCiriˊC type in extended fuzzy b-metric spaces with applications, 2022, 7, 2473-6988, 14029, 10.3934/math.2022774 | |
2. | Badshah-E. Rome, Muhammad Sarwar, Fahd Jarad, Muhammad Gulzar, n -Tupled Common Fixed Point Result in Fuzzy b -Metric Spaces, 2022, 2022, 2314-8888, 1, 10.1155/2022/4097444 | |
3. | Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović, A fixed point theorem in strictly convex b-fuzzy metric spaces, 2023, 8, 2473-6988, 20989, 10.3934/math.20231068 |