In this paper, we investigate the conformable time fractional Burgers type equations. First, we construct the explicit solutions of Riccati equation by means of modified tanh function method and modified extended exp-function method respectively. In addition, based on the formulas obtained above, the traveling wave solutions of conformable time fractional Burgers equation and (2+1)-dimensional generalized conformable time fractional Burgers equations are established applying functional separation variables method. Furthermore, the three-dimensional diagrams of the obtained exact solutions are presented for the purpose of visualization.
Citation: Xiaoli Wang, Lizhen Wang. Traveling wave solutions of conformable time fractional Burgers type equations[J]. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
In this paper, we investigate the conformable time fractional Burgers type equations. First, we construct the explicit solutions of Riccati equation by means of modified tanh function method and modified extended exp-function method respectively. In addition, based on the formulas obtained above, the traveling wave solutions of conformable time fractional Burgers equation and (2+1)-dimensional generalized conformable time fractional Burgers equations are established applying functional separation variables method. Furthermore, the three-dimensional diagrams of the obtained exact solutions are presented for the purpose of visualization.
[1] | R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. doi: 10.1122/1.549724 |
[2] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993. |
[3] | L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413–3442. |
[4] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Boston (MA): World Scientific, 2012. |
[5] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, 2006. |
[6] | Y. Yang, L. Z. Wang, Lie symmetry analysis for the space-time fractional porous medium equations, J. Northwest Univ., 50 (2020), 88–92. |
[7] | Y. Yang, L. Z. Wang, Lie symmetry analysis, conservation laws and separation variable type solutions of the time-fractional porous medium equation, Waves Random Complex Media, (2020), 1–20. Available from: https://doi.org/10.1080/17455030.2020.1810358. |
[8] | J. Hou, L. Z. Wang, Applications of invariant subspace method in the space-time fractional partial differential equations, J. Northwest Univ., 50 (2020), 84–87+92. |
[9] | X. Y. Cheng, L. Z. Wang, J. Hou, Solving time fractional Keller-Segel type diffusion equations with symmetry analysis, power series method, invariant subspace method and q-homotopy analysis method, unpublished work. |
[10] | X. Y. Cheng, J. Hou, L. Z. Wang, Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube, Comput. Appl. Math., 40 (2021), 1–17. doi: 10.1007/s40314-020-01383-5 |
[11] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002 |
[12] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016 |
[13] | D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 1–15. doi: 10.1007/s10092-016-0173-4 |
[14] | K. Hosseini, A. Bekir, R. Ansari, New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method, Optik, 132 (2017), 203–209. doi: 10.1016/j.ijleo.2016.12.032 |
[15] | F. Ferdous, M. G. Hafez, Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems, J. Ocean Eng. Sci., 3 (2018), 244–252. doi: 10.1016/j.joes.2018.08.005 |
[16] | S. Akther, M. G. Hafez, F. Ferdous, Oblique resonance wave phenomena for nonlinear coupled evolution equations with fractional temporal evolution, Eur. Phys. J. Plus, 134 (2019), 473. doi: 10.1140/epjp/i2019-12832-6 |
[17] | S. A. Iqbal, M. G. Hafez, S. A. A. Karim, Bifurcation analysis with chaotic motion of oblique plane wave for describing a discrete nonlinear electrical transmission line with conformable derivative, Results Phys., 18 (2020), 103309. doi: 10.1016/j.rinp.2020.103309 |
[18] | M. Eslami, F. S. Khodadad, F. Nazari, H. Rezazadeh, The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative, Opt. Quantum. Electron., 49 (2017), 391. doi: 10.1007/s11082-017-1224-z |
[19] | X. L. Wang, L. Z. Wang, Traveling wave solutions of conformable space-time fractional coupled BWBK equations and conformable space-time fractional MEW equation, unpublished work. |
[20] | A. Akbulut, M. Kaplan, Auxiliary equation method for time-fractional differential equations with conformable derivative, Comput. Math. Appl., 75 (2018), 876–882. doi: 10.1016/j.camwa.2017.10.016 |
[21] | M. G. Hafez, S. A. Iqbal, S. Akther, M. F. Uddin, Oblique plane waves with bifurcation behaviors and chaotic motion for resonant nonlinear Schrodinger equations having fractional temporal evolution, Results Phys., 15 (2019), 102778. doi: 10.1016/j.rinp.2019.102778 |
[22] | S. Akhter, M. G. Hafez, H. Rezazadeh, Resonance nonlinear wave phenomena with obliqueness and fractional time evolution via the novel auxiliary ordinary differential equation method, SN Appl. Sci., 1 (2019), 1–13. |
[23] | F. Ferdous, M. G. Hafez, Nonlinear time fractional Korteweg-de Vries equations for the interaction of wave phenomena in fluid-filled elastic tubes, Eur. Phys. J. Plus, 133 (2018), 384. doi: 10.1140/epjp/i2018-12195-6 |
[24] | F. Ferdous, M. G. Hafez, M. Y. Ali, Obliquely propagating wave solutions to conformable time fractional extended Zakharov-Kuzetsov equation via the generalized $\exp(\Phi(\xi))$-expansion method, SeMA, 76 (2019), 109–122. doi: 10.1007/s40324-018-0164-2 |
[25] | F. Ferdous, M. G. Hafez, A. Biswas, Mehmet Ekici, Q. Zhou, M. Alfiras, et al., Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized $\exp(-\Phi(\xi))$-expansion, Optik, 178 (2019), 439–448. doi: 10.1016/j.ijleo.2018.10.016 |
[26] | W. Miller Jr, L. A. Rubel, Functional separation of variables for Laplace equations in two dimensions, J. Phys. A, 26 (1993), 1901. doi: 10.1088/0305-4470/26/8/017 |
[27] | E. Pucci, G. Saccomandi, Evolution equations, invariant surface conditions and functional separation of variables, Physica D, 139 (2000), 28–47. doi: 10.1016/S0167-2789(99)00224-9 |
[28] | C. Z. Qu, S. L. Zhang, Group foliation method and functional separation of variables to nonlinear diffusion equations, Chin. Phys. Lett., 22 (2005), 1563. doi: 10.1088/0256-307X/22/7/001 |
[29] | A. D. Polyanin, Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations, Mathematics, 8 (2020), 90. doi: 10.3390/math8101793 |
[30] | S. El-Ganaini, M. O. Al-Amr, New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves, Comput. Math. Appl., 78 (2019), 2094–2106. doi: 10.1016/j.camwa.2019.03.050 |
[31] | X. L. Wang, L. Z. Wang, Exact solutions of three classes of conformable time-fractional differential equations, unpublished work. |
[32] | J. Murray, On Burgers' model equations for turbulence, J. Fluid Mech., 59 (1973), 263–279. doi: 10.1017/S0022112073001564 |
[33] | Z. Y. Yan, Singularity structure analysis and abundant new dromion-like structures for the (2+1)-dimensional generalized Burgers equation, Chin. J. Phys., 40 (2002), 203–213. |
[34] | K. Z. Hong, B. Wu, X. F. Chen, Painlevé analysis and some solutions of (2+1)-dimensional generalized Burgers equations, Commun. Theor. Phys., 39 (2003), 393. doi: 10.1088/0253-6102/39/4/393 |
[35] | A. Kurt, Y. Çenesiz, O. Tasbozan, On the solution of Burgers' equation with the new fractional derivative, Open Phys, 13 (2015), 355–360. |
[36] | Y. Çenesiz, D. Baleanu, A. Kurt, O. Tasbozan, New exact solutions of Burgers' type equations with conformable derivative, Waves Random Complex Media, 27 (2017), 103–116. doi: 10.1080/17455030.2016.1205237 |
[37] | M. T. Islam, M. A. Akbar, M. A. K. Azad, Closed-form travelling wave solutions to the nonlinear space-time fractional coupled Burgers' equation, Arab. J. Basic. Appl. Sci., 26 (2019), 1–11. doi: 10.1080/25765299.2018.1523702 |
[38] | A. D. Polyaninn, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman and Hall/CRC, 2003. |
[39] | H. A. Nassar, M. A. Abdel-Razek, A. K. Seddeek, Expanding the tanh-function method for solving nonlinear equations, Appl. Math., 2 (2011), 1096–1104. doi: 10.4236/am.2011.29151 |
[40] | M. Shakeel, S. T. Mohyud-Din, M. A. Iqbal, Modified extended exp-function method for system of nonlinear partial differential equations defined by seismic sea waves, Pramana J. Phys., 91 (2018), 28. doi: 10.1007/s12043-018-1601-6 |