Research article

Analysis of a fractional model for HIV CD$ 4^+ $ T-cells with treatment under generalized Caputo fractional derivative

  • Received: 15 March 2021 Accepted: 26 April 2021 Published: 29 April 2021
  • MSC : 26A33, 34A08, 34A34, 34C60, 47H10

  • In this paper, a mathematical model of generalized fractional-order is constructed to study the problem of human immunodeficiency virus (HIV) infection of CD$ 4^+ $ T-cells with treatment. The model consists of a system of four nonlinear differential equations under the generalized Caputo fractional derivative sense. The existence results for the fractional-order HIV model are investigated via Banach's and Leray-Schauder nonlinear alternative fixed point theorems. Further, we also established different types of Ulam's stability results for the proposed model. The effective numerical scheme so-called predictor-corrector algorithm has been employed to analyze the approximated solution and dynamical behavior of the model under consideration. It is worth noting that, unlike many discusses recently conducted, dimensional consistency has been taken into account during the fractionalization process of the classical model.

    Citation: Jutarat Kongson, Chatthai Thaiprayoon, Weerawat Sudsutad. Analysis of a fractional model for HIV CD$ 4^+ $ T-cells with treatment under generalized Caputo fractional derivative[J]. AIMS Mathematics, 2021, 6(7): 7285-7304. doi: 10.3934/math.2021427

    Related Papers:

  • In this paper, a mathematical model of generalized fractional-order is constructed to study the problem of human immunodeficiency virus (HIV) infection of CD$ 4^+ $ T-cells with treatment. The model consists of a system of four nonlinear differential equations under the generalized Caputo fractional derivative sense. The existence results for the fractional-order HIV model are investigated via Banach's and Leray-Schauder nonlinear alternative fixed point theorems. Further, we also established different types of Ulam's stability results for the proposed model. The effective numerical scheme so-called predictor-corrector algorithm has been employed to analyze the approximated solution and dynamical behavior of the model under consideration. It is worth noting that, unlike many discusses recently conducted, dimensional consistency has been taken into account during the fractionalization process of the classical model.



    加载中


    [1] G. Haas, A. Hosmalin, F. Hadida, J. Duntze, P. Debre, B. Autran, Dynamics of HIV variants and specific cytotoxic T-cell recognition in nonprogressors and progressors, Immunol. Lett., 56 (1997), 25–26. doi: 10.1016/S0165-2478(97)86936-2
    [2] F. Kirchhoff, Ⅳ life cycle: Overview, Encycl. AIDS, 2013 (2013), 1–9.
    [3] M. A. Nowak, S. Bonhoeffer, G. M. Shaw, R. M. May, Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., 184 (1997), 203–217. doi: 10.1006/jtbi.1996.0307
    [4] T. B. Kepler, A. S. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. Natl. Acad. Sci. USA, 95 (1998), 11514–11519. doi: 10.1073/pnas.95.20.11514
    [5] R. J. Smith, L. M. Wahl, Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects, Bull. Math. Biol., 66 (2004), 1259–1283. doi: 10.1016/j.bulm.2003.12.004
    [6] M. Kot, Elements of Mathematical Ecology, Cambridge: Cambridge University Press, 2001.
    [7] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, New York: Springer, 2001.
    [8] M. A. Nowak, R. M. May, Virus Dynamics, UK: Oxford University Press, 2000.
    [9] A. S. Perelson, Modeling the interaction of the immune system with HIV, In: C. Castillo-Chavez, Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, New York: Springer, 1989.
    [10] A. S. Perelson, D. E. Kirschner, R. D. Boer, Dynamics of HIV infection of CD$4^+$ T cells, Math. Biosci., 114 (1993), 81–125. doi: 10.1016/0025-5564(93)90043-A
    [11] H. C. Tuckwell, F. Y. M. Wan, On the behavior of solutions in viral dynamical models, Biosystems, 73 (2004), 157–161. doi: 10.1016/j.biosystems.2003.11.004
    [12] L. Rong, M. A. Gilchrist, Z. Feng, A. S. Perelson, Modeling within host HIV-1 dynamics and the evolution of drug resistance: Trade offs between viral enzyme function and drug susceptibility, J. Theor. Biol., 247 (2007), 804–818. doi: 10.1016/j.jtbi.2007.04.014
    [13] P. K. Srivastava, M. Banerjee, P. Chandra, Modeling the drug therapy for HIV infection, J. Biol. Sys., 17 (2009), 213–223. doi: 10.1142/S0218339009002764
    [14] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
    [15] I. Podlubny, Fractional Differential Equations, New York: Academic Press, 1999.
    [16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science, 2006.
    [17] Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD$4^+$ T-cells, Math. Comput. Modell., 50 (2009), 386–392. doi: 10.1016/j.mcm.2009.04.019
    [18] V. S. Ertürk, Z. M. Odibat, S. Momani, An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD$4^{+}$ T-cells, Comput. Math. Appl., 62 (2011), 996–1002. doi: 10.1016/j.camwa.2011.03.091
    [19] A. A. M. Arafa, S. Z. Rida, M. Khalil, Fractional modeling dynamics of HIV and CD$4^{+}$ T-cells during primary infection, Nonlinear Biomed. Phys., 6 (2012), 1–7. doi: 10.1186/1753-4631-6-1
    [20] A. A. M. Arafa, S. Z. Rida, M. Khalil, A fractional-order model of HIV infection with drug therapy effect, J. Egypt. Math. Soc., 22 (2014), 538–543. doi: 10.1016/j.joems.2013.11.001
    [21] S. Arshad, D. Baleanu, W. Bu, Y. Tang, Effects of HIV infection on CD$4^{+}$ T-cell population based on a fractional-order model, Adv. Differ. Equations, 92 (2017), 1–14.
    [22] A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Solitons Fractals, 221 (2019), 119–128.
    [23] B. H. Lichae, J. Biazar, Z. Ayati, The fractional differential model of HIV-1 Infection of CD$4^{+}$ T-cells with description of the effect of antiviral drug treatment, Comput. Math. Methods Med., 2019 (2019), 4059549.
    [24] A. J. Ferrari, E. A. Santillan Marcus, Study of a fractional-order model for HIV infection of CD$4^{+}$ T-Cells with treatment, J. Frational Calculus Appl., 11 (2020), 12–22.
    [25] H. Khan, J. F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law, Math. Methods Appl Sci., 43 (2020), 3786–3806. doi: 10.1002/mma.6155
    [26] G. Nazir, K. Shah, A. Debbouche, R. A. Khan, Study of HIV mathematical model under nonsingular kernel type derivative of fractional order, Chaos Solitons Fractals, 139 (2020), 1–8.
    [27] T. Abdeljawad, J. Alzabut, H. Zhou, A Krasnoselskii existence result for nonlinear delay Caputo $q$-fractional difference equations with applications to Lotka-Volterra competition model, Appl. Math. E-Notes, 17 (2017), 307–318.
    [28] T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218–230. doi: 10.1016/j.cam.2017.10.021
    [29] H. Khan, J. F. Gómez-Aguilar, A. Khan, T. S. Khan, Stability analysis for fractional order advection-reaction diffusion system, Phys. A: Stat. Mech. Appl., 521 (2019), 737–751. doi: 10.1016/j.physa.2019.01.102
    [30] V. S. Ertürk, P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Chaos Solitons Fractals, 139 (2020), 1–9.
    [31] Z. Odibat, D. Baleanu, Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives, Appl. Numer. Math., 156 (2020), 94–105. doi: 10.1016/j.apnum.2020.04.015
    [32] X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium, Appl. Math. Lett., 37 (2014), 26–33. doi: 10.1016/j.aml.2014.05.002
    [33] E. Bonyah, J. F. Gómez-Aguilar, A. Adu, Stability analysis and optimal control of a fractional human african trypanosomiasis model, Chaos Solitons Fractals, 117 (2018), 150–160. doi: 10.1016/j.chaos.2018.10.025
    [34] I. Koca, Modelling the spread of ebola virus with atangana-baleanu fractional operators, Eur. Phys. J. Plus, 133 (2018), 1–14. doi: 10.1140/epjp/i2018-11804-8
    [35] B. Ghanbaria, J. F. Gómez-Aguilar, Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives, Chaos Solitons Fractals, 116 (2018), 114–120. doi: 10.1016/j.chaos.2018.09.026
    [36] J. Singha, D. Kumara, Z. Hammouchb, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504–515.
    [37] H. Khan, Y. Li, A. Khan, Existence of solution for a fractional-order lotka-volterra reaction-diffusion model with mittag-leffler kernel, Math. Methods Appl. Sci., 42 (2019), 3377–3387. doi: 10.1002/mma.5590
    [38] M. A. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Math., 4 (2019), 134–146. doi: 10.3934/Math.2019.1.134
    [39] A. Khan, T. Abdeljawada, J. F. Gómez-Aguilard, H. Khane, Dynamical study of fractional order mutualism parasitism food web module, Chaos Solitons Fractals, 134 (2020), 109685. doi: 10.1016/j.chaos.2020.109685
    [40] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with caputo-fabrizio fractional derivative, Chaos Soliton Fractals, 134 (2020), 109705. doi: 10.1016/j.chaos.2020.109705
    [41] M. Moustafa1, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Dynamical analysis of a fractional order eco-epidemiological model with nonlinear incidence rate and prey refuge, J. Appl. Math. Comput., 65 (2021), 623–650. doi: 10.1007/s12190-020-01408-6
    [42] E. Uçara, N. Özdemir, A fractional model of cancer-immune system with Caputo and Caputo–Fabrizio derivatives, Eur. Phys. J. Plus, 136 (2021), 1–17. doi: 10.1140/epjp/s13360-020-01001-7
    [43] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alexandria Eng. J., 60 (2021), 477–489. doi: 10.1016/j.aej.2020.09.020
    [44] A. Khan, H. M. Alshehri, T. Abdeljawada, Q. M. Al-Mdallale, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results Phys., 22 (2021), 103888. doi: 10.1016/j.rinp.2021.103888
    [45] M. U. Rahman, M. Arfan, Z. Shah, P. Kumam, M. Shutaywi, Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana-Baleanu derivative, Alexandria Eng. J., 60 (2021), 2845–2856. doi: 10.1016/j.aej.2021.01.015
    [46] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865.
    [47] U. N. Katugampola, A new approach to generalized fractional derivatives, Bul. Math. Anal. Appl., 6 (2014), 1–15.
    [48] K. Deimling, Nonlinear Functional Analysis, New York: Springer-Verlag, 1985.
    [49] G. Andrzej, D. James, Fixed Point Theory, New York: Springer, 2003.
    [50] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2213) PDF downloads(152) Cited by(8)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog