Let $ F $ be a finite field of characteristic $ p $ having $ q = p^n $ elements and $ G $ be an abelian group. In this paper, we determine the structure of the group of units of the group algebra $ FG $, where $ G $ is an abelian group of order $ 17\leq |G|\leq 20 $.
Citation: Yunpeng Bai, Yuanlin Li, Jiangtao Peng. Unit groups of finite group algebras of Abelian groups of order 17 to 20[J]. AIMS Mathematics, 2021, 6(7): 7305-7317. doi: 10.3934/math.2021428
Let $ F $ be a finite field of characteristic $ p $ having $ q = p^n $ elements and $ G $ be an abelian group. In this paper, we determine the structure of the group of units of the group algebra $ FG $, where $ G $ is an abelian group of order $ 17\leq |G|\leq 20 $.
[1] | A. Abdollahi, Z. Taheri, Zero divisors and units with small supports in group algebras of torsion-free groups, Commun. Algebra, 46 (2018), 887–925. doi: 10.1080/00927872.2017.1344688 |
[2] | L. Creedon, The unit group of small group algebras and the minimum counter example to the isomorphism problem, arXiv: 0905.4295. |
[3] | R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Commun. Algebra, 36 (2008), 3191–3199. doi: 10.1080/00927870802103503 |
[4] | W. D. Gao, A. Geroldinger, F. Halter-Koch, Group algebras of finite abelian groups and their applications to combinatorial problems, Rocky Mountain J. Math., 39 (2008), 805–823. |
[5] | J. Gildea, A. Kaya, R. Taylor, B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Th. App., 51 (2018), 71–92. doi: 10.1016/j.ffa.2018.01.002 |
[6] | B. Hurley, T. Hurley, Systems of MDS codes from units and idempotents, Discrete Math., 335 (2014), 81–91. doi: 10.1016/j.disc.2014.07.010 |
[7] | B. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, IJICOT, 1 (2009), DOI: 10.1504/IJICOT.2009.024047. |
[8] | P. Hurley, T. Hurley, Block codes from matrix and group rings, In: I. Woungang, S. Misra, S. C. Misra, (Eds), Selected topics in information and coding theory, Hackensack: World Scientific Publication, 2010,159–194. |
[9] | G. Karpilovsky, Unit groups of classical rings, New York: Oxford University Press, 1988. |
[10] | I. Kaplansky, Problems in the theory of rings (revisited), Am. Math. Mon., 77 (1970), 445–454. |
[11] | S. Maheshwari, The unit group of group algebras $FSL(2, Z_{3})$, J. Algebra Comb. Discrete Appl., 3 (2016), 1–6. |
[12] | C. P. Miles, S. Sehgal, An introduction to group rings, Dordrecht/Boston/London: kluwer Academic Publishers, 2002. |
[13] | F. Monaghan, Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic 3, Int. Electron. J. Algebra, 12 (2012), 133–161. |
[14] | D. S. Passman, The algebraic structure of group rings, New York, London, Sydney, Toronto: John Wiley and Sons, 1977. |
[15] | M. Sahai, S. F. Ansari, Unit groups of group algebras of certain dihedral groups-Ⅱ, Asian-Eur. J. Math., 12 (2018), 1950066. |
[16] | M. Sahai, S. F. Sahai, Unit groups of finite group algebras of abelian groups of order at most 16, Asian-Eur. J. Math., 14 (2021), 2150030. doi: 10.1142/S1793557121500303 |
[17] | R. Sandling, Units in the modular group algebra of a finite abelian $p$-group, J. Pure Appl. Algebra, 33 (1984), 337–346. doi: 10.1016/0022-4049(84)90066-5 |
[18] | G. H. Tang, Y. Y. Gao, The unit group of $FG$ of group with order 12, Int. J. Pure Appl. Math., 73 (2011), 143–158. |
[19] | G. H. Tang, Y. J. Wei, Y. L. Li, Unit groups of group algebras of some small groups, Czech. Math. J., 64 (2014), 149–157. doi: 10.1007/s10587-014-0090-0 |