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model consists of a system of four nonlinear differential equations under the generalized Caputo
fractional derivative sense. The existence results for the fractional-order HIV model are investigated via
Banach’s and Leray-Schauder nonlinear alternative fixed point theorems. Further, we also established
different types of Ulam’s stability results for the proposed model. The effective numerical scheme
so-called predictor-corrector algorithm has been employed to analyze the approximated solution and
dynamical behavior of the model under consideration. It is worth noting that, unlike many discusses
recently conducted, dimensional consistency has been taken into account during the fractionalization
process of the classical model.
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1. Introduction

The human immunodeficiency virus (HIV) is a kind of retrovirus and it is the cause of acquired
immunodeficiency syndrome (AIDS) [1]. CD4+ T-cells are targeted of HIV, which are the most
abundant white blood cells of the immune system and play a major role in protecting the body from
infection. When HIV infection occurs, the virus attacks the CD4+ T-cells and tries to replicate itself.
The process of infection completes is called the HIV life cycle [2], which carried out in five stages:
Stage I: (binding and fusion) when HIV is entering into the CD4+ T-cell, it is detected and bound by

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021427


7286

receptors at the cell membrane and then it has been fused, which allows HIV to enter inside the CD4+

T-cell. Stage II: (reverse transcription) within the CD4+ T-cell, HIV releases and uses reverse
transcriptase enzyme to convert its genetic material RNA to DNA, which allows HIV to enter the
CD4+ T-cell nucleus. Stage III: (integration and transcription) within the nucleus of CD4+ T-cell, HIV
releases and uses integrase enzyme to integrate its viral DNA into DNA of the CD4+ T-cell, this is
called proviral DNA. Afterward, the cell is motivated, it will turn on the transcription of the proviral
DNA to produce the viral RNA and move out of the nucleus to the cytoplasm. Stage IV: (replication
and assembly) within the cytoplasm, the viral RNA begins to use the machinery of the CD4+ T-cell to
make long chains of HIV proteins, which are the building blocks for HIV replication. After that HIV
protein and RNA move to the surface of the cell membrane and assemble into immature HIV. Stage V:
(budding) the immature HIV pushes itself out of the host cell and releases protease enzyme to split the
long protein chains in the immature virus. Lastly, it becomes a mature virus which makes effects on
other CD4+ T-cells. Antiretroviral therapy is the use of HIV medicines to treat HIV infection and to
protect the immune system by blocking the virus from reproducing at different stages of the HIV life
cycle for instances fusion inhibitors, reverse transcription inhibitors, integrase inhibitors, and protease
inhibitors [3–5].

Mathematical modeling and simulations were used as an essential instrument to forecast the
possibility and severity of diseases and allow information to know its dynamic behavior of the
infection. These models are useful tools and play a significant role to explain the dynamics of the
immunological response to HIV infection, we refer readers to some books, see. [6–8]. Presenting
some important previous works about the HIV model, researchers commonly used mathematical
expressions in the form of differential equations to establish the relation between HIV viruses and
uninfected CD4+ cells, and the effect of drug therapy on infected cells is described by mathematical
models. In 1989, Perelson [9] initiated a simple model for the HIV infection and analyzed some
dynamics behavior of the HIV infection of CD4+ T-cells in 1993 with his team [10]. In 2004,
Tuckwell et al. [11] studied the dynamics behavior of solutions in the two-component model of the
HIV infection model as follows: 

dS
dt

= λ − kS (t)I(t) − µ1S (t),

dI
dt

= kS (t)I(t) − µ2S (t),
(1.1)

where S is denoted the uninfected CD4+ T-cells, I is denoted the density of infected such cells, λ is
constant rate, µ1 is their per capita death rate, µ2 is the rate of disappearance of infected cells, and k
is infection rate. After three years, Rong et al. [12] developed a mathematical model of HIV model
to predicate the initial constraints that shape the evolution of viral resistance to antiretroviral drugs in
2007 as: 

dS
dt

= λ − kS (t)V(t) − µ1S (t) + bI(t),

dI
dt

= kV(t)S (t) − (δ + b)S (t),

dV
dt

= NδS (t) − cV(t),

(1.2)

where they considered three compartments of CD4+ T-cells including concentration of uninfected
(susceptible) cells S , infected cells I in eclipse phase, and free HIV virus particles in the blood cells
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V . Here denotes δ death rate of infected S cells and includes the possibility of death by bursting of
infected S cells, hence δ ≥ µ1. Further, the parameter b is the rate at which infected cells return to the
uninfected class, while c is the death rate of the virus and N is the average number of viral particles
produced by an infected cell, where k is the rate of infection.

In 2009, Srivastava et al. [13] presented a primary infection model with reverse transcriptase (RT)
inhibitor which takes place before the infected cell starts producing the virus. They studied the
dynamics of the uninfected CD4+ T-cells, the virus population, and the infected CD4+ T-cells. They
also distinguished the infected class of CD4+ T-cells into two subclasses: Pre-RT class which is the
phase of the infected cells in which the reverse transcription is not completed and post-RT class which
is the phase of those infected cells in which the reverse transcription is completed. The model of
integer order is shown of the form:

dS
dt

= λ − kL(t)S (t) − µ1S (t) + (ησ + b)I(t),

dI
dt

= kL(t)S (t) − (µ2 + σ + b)I(t),

dV
dt

= (1 − η)σI(t) − ωV(t),

dL
dt

= NωV(t) − cL(t),

(1.3)

with the initial conditions (S (0), I(0),V(0), L(0))T = (S 0, 0, 0, L0)T, where (·)T represents the transpose
operation, S , I, V and L are denoted the density of susceptible CD4+ T-cells, the density of infected
CD4+ T-cells in pre-RT class, the density of infected CD4+ T-cells in post-RT class and the density
of virus, respectively. The stability and numerical results are obtained in their work. The unknown
parameters will be provide in the details in Section 3.

The researchers used differential equations to applied in various areas to real-world problems.
Since the theory of differential equations is well-known for applied researchers. It has popular in
many fields and is working on different aspects of the mentioned area. In the last three centuries,
various researchers developed fractional-order differential equations. It was extensively applied in
various areas to real-world problems; see [14–16]. The well-known aspects that has been established
recently are existence theory, stability analysis, numerical and optimization methods. The
mathematician researchers introduced the different fractional derivatives that have been provided in
fractional calculus. There are many types of research studies that have been created by using
fractional derivatives and apply them to the HIV model. For examples; In 2009, Ding and Ye [17]
studied the stability of equilibrium for a fractional HIV infection of CD4+ T-cells model and
numerical simulations presented. In 2011, Ertürk et al. [18] discussed an approximated solution of a
fractional HTLV-I infection of CD4+ T-cells model using a multi-step generalized differential
transform method. In 2012, Arafa et al. [19] constructed and analyzed fractional modeling dynamics
of HIV and CD4+ T-cells during primary infection. The generalized Euler method (GEM) used to find
a numerical solution of this model. A few years later, Arafa et al. [20] studied and analyzed the
behavior of solutions for a fractional-order model of HIV infection with CD4+ T-cells in Caputo sense
by using the GEM. In 2017, Arshad et al. [21] analyzed the effects of the HIV infection model on
CD4+ T-cell population based on a Caputo fractional derivative. By applying a finite difference
approximation, the numerical scheme has been proposed. Khan et al. [22] established the stability
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results and numerical solutions of the fractional HIV/AIDS model in sense of an Atangana-Baleanu
derivative operator. In 2019, Lichae et al. [23] studied an HIV-1 infection model of CD4+ T-cells with
a description of the effect of antiviral drug treatment under a Caputo fractional derivative. The
approximate solution has been gained by applying the Laplace transform and the Adomian
decomposition method. Ferrari et al. [24] presented an HIV model under Caputo fractional derivative,
which the presences of a reverse transcriptase inhibitor based on [13] is indicated. They proved the
existence and uniqueness of the model and shown that the model is positive invariance. The
equilibrium points and their stability of the model are also investigated. Recently, the qualitative
theory has been interested and applied to mathematical models. For example, in 2020, Khan et
al. [25] studied and analyzed the existence and stability results for the fractional order HIV-TB model
with the Mittag-Leffler kernel. Further, numerical solutions are obtained. The HIV model under the
Caputo-Fabrizio fractional derivative is studied by Nazir et al. [26]. They obtained the existence
criterias of the solutions by using fixed point theory. The stability of the concerned solution is also
showed in the Hyers-Ulam sense. The approximate solution of the model is verified by using the
technique of Laplace transform with the Adomian decomposition method. Abdeljawad et al. [27]
studied the existence of solutions of the q-fractional difference equations with help of Krasnoselskii’s
fixed point theorem and show the results by the Lotka-Volterra model. Abdeljawad and
co-workers [28] applied the Banach fixed point theorem to prove existence results for the discrete
fractional differences in sense of the discrete Mittage-Leffler kernel and numerical results were
provided for the presence of the results. Khan et al. [29] discussed the existence of solutions and
stability for the fractional-order advection-diffusion model in sense of the Mittag-Leffler kernel and
shown the results numerically. Khan et al. [30] studied the time-fractional COVID-19 model with the
help of the corrector-predictor method in the sense of a generalized Caputo fractional derivative [31].
The existence results are investigated by using Schauders and Weissingers fixed point theorems.
Many papers have been developed under various types of fractional derivatives, see [32–45] and
references cited therein.

Inspired by the mentioned discussion previously works in the HIV infection model with CD4+ T-
cells, we consider the model [13] under the generalized Caputo fractional derivative [31]. The main
aim of this research is to examine the existence and uniqueness of the solutions for the fractional
HIV model via the famous fixed point theorems such as Banach’s and Larey-Schauder’s nonlinear
alternative. Moreover, stability analysis in the context of various Ulam’s stability is discussed. Finally,
we use the predictor-corrector algorithm proposed by Erturk et al. [30] to find the approximate solutions
of the fractional HIV model for various fractional derivative orders.

This paper is organized as follows: Some preliminary facts, viral definitions, theoretical results, and
descriptions of the fractional HIV model are presented in Section 2. In Section 3, we derive the relation
between the Volterra integral equation and the proposed model. Also, with the help of these models,
the existence and uniqueness of solutions are discussed by using the concepts of Banachs fixed point
theorem and Larey-Schuader’s nonlinear alternative. In Section 4, Ulam’s stability of the proposed
model in the frame of Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized
Ulam-Hyers-Rassias is provided. As an application, the general numerical scheme and numerical
simulations illustrate the theoretical results in Section 5. Finally, the details of the conclusion have
been completed in Section 6.
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2. Preliminaries

2.1. Background materials

This section gives some notations, basic definitions, and fundamental results of generalized
fractional derivative and integral operators which are useful throughout this paper, see more details
in [31, 46, 47].

Definition 2.1. ( [46]). The generalized fractional integral of the function f , ρIαa+ , of order α > 0
where ρ > 0, is expressed (provided it exists) as:

(ρIαa+ f )(t) =
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

f (s)
ds

s1−ρ , t > a ≥ 0, (2.1)

and Γ(·) represents the Gamma function.

Definition 2.2. ( [47]). The generalized Riemann-type fractional derivative of the function f , ρDαa+ , of
order α > 0 where ρ > 0, is defined by

(ρDαa+ f )(t) = δn(ρIn−α
a+ f )(t) =

δn

Γ(n − α)

∫ t

a

(
tρ − sρ

ρ

)n−α−1

f (s)
ds

s1−ρ , t > a ≥ 0, (2.2)

where δ = t1−ρ d
dt and n − 1 < α ≤ n.

Definition 2.3. ( [47]). The generalized Caputo-type fractional derivative of a function f , ρ
CD

α
a+ , of

order α > 0 where ρ > 0, is defined by

(ρCD
α
a+ f )(t) =

ρDαa+

 f (s) −
n−1∑
k=0

δk f (a)
k!

(
sρ − aρ

ρ

)k (t), t > a ≥ 0, (2.3)

where n = [α] + 1. In case of 0 < α < 1, we have

(ρCD
α
a+ f )(t) =

(ρ
D
α
a+

[
f (s) − f (a)

])
(t). (2.4)

Definition 2.4. ( [31]). The new generalized Caputo-type fractional derivative of a function f , CρDαa+ ,
of order α > 0 where ρ > 0, is defined by

(Cρ
D
α
a+ f )(t) =

1
Γ(n − α)

∫ t

a

(
tρ − sρ

ρ

)n−α−1

(δn f )(s)
ds

s1−ρ , t > a ≥ 0, (2.5)

where n − 1 < α ≤ n.

Lemma 2.5. ( [31]). Let f ∈ Cn([a, b]), n − 1 < α ≤ n and ρ > 0. Then, for 0 ≤ a < t ≤ b < ∞, the
following relation holds:

(ρIαa+
Cρ
D
α
a+ f )(t) = f (t) −

n−1∑
k=0

(δk f )(a)
k!

(
tρ − aρ

ρ

)k

. (2.6)

In particular, if 0 < α ≤ 1, we have

(ρIαa+
Cρ
D
α
a+ f )(t) = f (t) − f (a).
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Lemma 2.6. (Banach fixed point theorem [48]). Let X be a Banach space, and D be a non-empty and
closed subset of X. If the operator Q : D→ D is a contraction, then, Q has a fixed point in D.

Lemma 2.7. (Leray-Schauder nonlinear alternative [49]). Let X be a Banach space, C a closed,
convex subset of X, U an open subset of C and 0 ∈ U. Suppose that D : U → C is a continuous,
compact (that is,D(U) is a relatively compact subset of C) map. Then either (i)D has a fixed point in
U; or (ii) there is a x ∈ ∂U (the boundary of U in C) and ν ∈ (0, 1) with x = νD(x).

2.2. Model description

This work is based on the HIV models proposed by [13,24], which are considered the antiretroviral
therapy of reverse transcriptase (RT) inhibitor. The unknown variables could be considered in the
model represent the following: S (t) is the density of susceptible CD4+ T-cells; I(t) is the density of
infected CD4+ T-cells before reverse transcription (pre-RT class); V(t) is the density of infected CD4+

T-cells in which reverse transcription is completed (post-RT class) and so are capable of producing
virus; L(t) is the virus density. Besides, the following positive parameters have been considered: λ is
inflows rate of CD4+ T-cells; k is an interaction infection rate of CD4+ T-cells; µ1 is the natural death
rate of CD4+ T-cells; η is the efficacy of RT inhibitor (η ∈ (0, 1)); σ is transition rate of pre-RT class
infected CD4+ T-cells to pose-RT class; b is reverting rate of infected cells to uninfected class due to
non-completion of reverse transcription; µ2 is the death rate of infected CD4+ T-cells; ω is the death
rate of actively infected CD4+ T-cells; N is the total number of viral particles produced by an infected
CD4+ T-cells; c is the clearance rate of the virus.

We study the HIV model infection with CD4+ T-cells (1.3) under the generalized Caputo fractional
derivative [31] and the meaning of all parameters is shown in the previous section:



(Cρ
D
α
0+S )(t) = λ − kL(t)S (t) − µ1S (t) + (ησ + b)I(t),

(Cρ
D
α
0+ I)(t) = kL(t)S (t) − (µ2 + σ + b)I(t),

(Cρ
D
α
0+V)(t) = (1 − η)σI(t) − ωV(t),

(Cρ
D
α
0+ L)(t) = NωV(t) − cL(t),

(2.7)

where CρDα0+(·) is the generalized Caputo-type fractional derivative of order α with 0 < α ≤ 1 and
ρ > 0. We simplify the model (2.7) for easy description in the following setting:



(Cρ
D
α
0+S )(t) = g1(t, S , I,V, L),

(Cρ
D
α
0+ I)(t) = g2(t, S , I,V, L),

(Cρ
D
α
0+V)(t) = g3(t, S , I,V, L),

(Cρ
D
α
0+ L)(t) = g4(t, S , I,V, L),

(2.8)
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where the nonlinear functions g1–g4 are given by

g1(t, S , I,V, L) = λ − kL(t)S (t) − µ1S (t) + (ησ + b)I(t),

g2(t, S , I,V, L) = kL(t)S (t) − (µ2 + σ + b)I(t),

g3(t, S , I,V, L) = (1 − η)σI(t) − ωV(t),

g4(t, S , I,V, L) = NωV(t) − cL(t),

(2.9)

with the initial conditions (S (0), I(0),V(0), L(0))T = (S 0, I0,V0, L0)T.

3. Existence results

This section discusses the existence and uniqueness of solutions of the proposed model by helping
fixed point theorems.

Let E = C([0,T ],R) denotes the Banach space of all continuous functions from [0,T ] to R equipped
with the norm defined by

‖ξ‖ = sup
t∈[0,T ]

|ξ(t)|, where |ξ(t)| = |S (t)| + |I(t)| + |V(t)| + |L(t)|,

and S , I, V , L ∈ E. In view of Lemma 2.5, the model (2.7) can be written of the initial value problem (Cρ
D
α
0+ξ)(t) = G(t, ξ(t)),

ξ(0) = ξ0 ≥ 0,
(3.1)

which is equivalent to the Volterra integral equation

ξ(t) = ξ0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, ξ(s))
ds

s1−ρ , (3.2)

where ξ(t) = (S (t), I(t),V(t), L(t))T with the initial conditions ξ(0) = (S 0, I0,V0, L0)T, and G(t, ξ(t)) =

(gi(t, S , I,V, L))T for i = 1, 2, 3, 4.
In view of the integral equation (3.2), an operator Q : E→ E defined by

(Qξ)(t) = ξ0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, ξ(s))
ds

s1−ρ . (3.3)

It should be noticed that the problem (3.1) which is equivalent to the model (2.7) has solutions if
and only if the operator Q has fixed points.

3.1. Uniqueness result via Banach’s fixed point theorem

Theorem 3.1. Assume that a function G : [0,T ]→ R is continuous such that:

(H1) there exists a constant LG > 0 such that

|G(t, ξ1(t)) − G(t, ξ2(t))| ≤ LG|ξ1(t) − ξ2(t)|,

for any ξ1, ξ2 ∈ E and for all t ∈ [0,T ].
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If
LGT ρα

ραΓ(α + 1)
< 1, (3.4)

then the problem (3.1) has a unique solution on [0,T ]. Consequently, the model (2.7) has a unique
solution on [0,T ].

Proof. Early the proving, we convert the problem (3.1) into a fixed point problem, ξ = Qξ, where Q is
given as in (3.3). Applying the Banach contraction principle, we show that Q has a unique fixed point,
which is the unique solution of the problem (3.1).

Let supt∈[0,T ] |G(t, 0)| = M1 < ∞. Setting Br1 = {ξ ∈ E : ‖ξ‖ ≤ r1} with

r1 ≥
‖ξ0‖ + M1T ρα

ραΓ(α+1)

1 − LGT ρα

ραΓ(α+1)

. (3.5)

Note that Br1 is a bounded, closed, and convex subset of E.
Step I. We show that QBr1 ⊂ Br1 .
For any ξ ∈ Br1 , we have

|(Qξ)(t)| ≤ ‖ξ0‖ +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|G(s, ξ(s))|
ds

s1−ρ

≤ ‖ξ0‖ +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1 [
|G(s, ξ(s)) − G(s, 0)| + |G(s, 0)|

] ds
s1−ρ

≤ ‖ξ0‖ +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1 ds
s1−ρ

(
LGr1 + M1

)
≤ ‖ξ0‖ +

T ρα

ραΓ(α + 1)
(LGr1 + M1) ≤ r1,

which implies that QBr1 ⊂ Br1 .
Step II. We show that Q : Br1 → Br1 is a contraction.
For any ξ1, ξ2 ∈ E and each t ∈ [0,T ], we have

|(Qξ1)(t) − (Qξ2)(t)| ≤
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|G(s, ξ1(s)) − G(s, ξ2(s))|
ds

s1−ρ

≤
LG

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|ξ1(t) − ξ2(t)|
ds

s1−ρ

≤
LGT ρα

ραΓ(α + 1)
‖ξ1 − ξ2‖, (3.6)

which implies that ‖Qξ1 − Qξ2‖ ≤ [(LGT ρα)/(ραΓ(α + 1))]‖ξ1 − ξ2‖. As (LGT ρα)/(ραΓ(α + 1)) < 1,
then the operator Q is a contraction. Hence, as a result of the Banach contraction principle (Lemma
2.6), the operator Q has a fixed point. Therefore, the problem (3.1) has a unique solution on [0,T ].
Consequently, the model (2.7) has a unique solution on [0,T ]. The proof is completed. �
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3.2. Existence result via Leray-Schauder’s nonlinear alternative

The Leray-Schauder’s nonlinear alternative (Lemma 2.7) is presented for our first existence result.

Theorem 3.2. Assume that:

(H2) there exists a function q ∈ C([0,T ],R+) and a continuous nondecreasing function H : [0,∞) →
[0,∞) which is subhomogeneous (that is,H(µξ) ≤ µH(ξ), for all µ ≥ 1 and ξ ∈ E), such that

|G(t, ξ(t))| ≤ q(t)H(|ξ(t)|) for each (t, ξ) ∈ [0,T ] × R,

where q0 = supt∈[0,T ]{q(t)}.
(H3) there exists a constant M2 > 0 such that

M2

‖ξ0‖ +
q0H(M2)T ρα

ραΓ(α+1)

> 1.

Then, the problem (3.1) which is equivalent with the model (2.7) has at least one solution on [0,T ].

Proof. Let the operator Q be defined by (3.3). Firstly, we show that the operator Q maps bounded sets
(balls) into bounded set in E. For a positive constant r2 > 0, let Br2 = {ξ ∈ E : ‖ξ‖ ≤ r2} be a bounded
ball in E. From assumption (H2), for t ∈ [0,T ], we have

|(Qξ)(t)| ≤ ‖ξ0‖ +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, ξ(s))
ds

s1−ρ

≤ ‖ξ0‖ +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|G(s, ξ(s))|
ds

s1−ρ

≤ ‖ξ0‖ +
q0H(‖ξ‖)T ρα

ραΓ(α + 1)
,

which leads to
‖Qξ‖ ≤ ‖ξ0‖ +

q0H(r2)T ρα

ραΓ(α + 1)
.

Secondly, we show that the operator Q maps bounded sets into equicontinuous sets of E. Let
τ1, τ2 ∈ [0,T ] with τ1 < τ2 and ξ ∈ Br2 . Then, we obtain

|(Qξ)(τ2) − (Qξ)(τ1)|

≤

∣∣∣∣∣∣ 1
Γ(α)

∫ τ2

0

(
τ
ρ
2 − sρ

ρ

)α−1

G(s, ξ(s))
ds

s1−ρ −
1

Γ(α)

∫ τ1

0

(
τ
ρ
1 − sρ

ρ

)α−1

G(s, ξ(s))
ds

s1−ρ

∣∣∣∣∣∣
≤

q0H(‖ξ‖)
ραΓ(α + 1)

(∣∣∣τρα2 − τ
ρα
1

∣∣∣ + 2
∣∣∣τρ2 − τρ1∣∣∣α) . (3.7)

Clearly, which independent of ξ ∈ Br2 , the right hand side of the inequality (3.7) tends to zero as
τ2 → τ1. Therefore, by the Arzelá-Ascoli theorem, Q : E→ E is completely continuous.

Finally, we show that the boundedness of the set of all solutions to ξ = κQξ for κ ∈ (0, 1). Let ξ ∈ E
be a solution. Then, for t ∈ [0,T ], and following computation similar process to the first step, we get

|ξ(t)| = |κ(Qξ)(t)| ≤ ‖ξ0‖ +
q0H(‖ξ‖)T ρα

ραΓ(α + 1)
.
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Taking the norm into the both sides of the above inequality, for t ∈ [0,T ], which implies that

‖ξ‖

‖ξ0‖ +
q0H(‖ξ‖)T ρα

ραΓ(α+1)

≤ 1.

In view of (H3), there exists a constant M2 > 0 such that ‖ξ‖ , M2. Let us set K := {ξ ∈ E : ‖ξ‖ < M2}.
Note that the operator Q : K → C is continuous and completely continuous. From the choice of

K, there is no ξ ∈ ∂K such that ξ = κQξ for some κ ∈ (0, 1). Hence, by the nonlinear alternative
of Leray-Schauder type (Lemma 2.7), we deduce that the operator Q has a fixed point ξ ∈ K which
implies that the model (2.7) has at least one solution on [0,T ]. The result is desired. �

4. Ulam-Hyers stability

In this section, we are developing some sufficient conditions under which the model (2.7) will satisfy
the assumptions of the different types of Ulam’s stability such as Ulam-Hyers stable, generalized Ulam-
Hyers stable, Ulam-Hyers-Rassias stable, and generalized Ulam-Hyers-Rassias stable.

Before we state the Ulam’s stability theorem, the following definitions are needed. Let ε > 0 be
a positive real number and ΦG : [0,T ] → R+ be a continuous function. We consider the following
inequalities: ∣∣∣CρDα0+z(t) − G(t, z(t))

∣∣∣ ≤ ε, ∀t ∈ [0,T ], (4.1)∣∣∣CρDα0+z(t) − G(t, z(t))
∣∣∣ ≤ εΦG(t), ∀t ∈ [0,T ], (4.2)∣∣∣CρDα0+z(t) − G(t, z(t))
∣∣∣ ≤ ΦG(t), ∀t ∈ [0,T ], (4.3)

where ε = max(ε j)T for j = 1, 2, 3, 4.

Definition 4.1. [50] The problem (3.1) is said to be Ulam-Hyers stable if there exists a constant
CG > 0 such that for every ε > 0 and for each solution z ∈ E of the inequality (4.1) there exists a
solution ξ ∈ E of the problem (3.1) with

|z(t) − ξ(t)| ≤ CGε, t ∈ [0,T ], (4.4)

where CG = max(CG j)
T for j = 1, 2, 3, 4.

Definition 4.2. [50] The problem (3.1) is said to be generalized Ulam-Hyers stable if there exists a
function ΦG ∈ C(R+,R+), with ΦG(0) = 0 such that, for each solution z ∈ E of inequality (4.2), there
exists a solution ξ ∈ E of the problem (3.1) such that

|z(t) − ξ(t)| ≤ ΦG(ε), t ∈ [0,T ], (4.5)

where ΦG = max(ΦG j)
T for j = 1, 2, 3, 4.

Definition 4.3. [50] The problem (3.1) is said to be Ulam-Hyers-Rassias stable with respect to ΦG ∈

C([0,T ],R+) if there exists a real number MΦG > 0 such that for each ε > 0 and for each solution z ∈ E
of the inequality (4.2) there exists a solution ξ ∈ E of the problem (3.1) with

|z(t) − ξ(t)| ≤ MΦGεΦG(t), t ∈ [0,T ]. (4.6)
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Definition 4.4. [50] The problem (3.1) is said to be generalized Ulam-Hyers-Rassias stable with
respect to ΦG ∈ C([0,T ],R+) if there exists a real number MΦG > 0 such that for each solution z ∈ E of
the inequality (4.3), there exists a solution ξ ∈ E of the problem (3.1) with

|z(t) − ξ(t)| ≤ MΦGΦG(t), t ∈ [0,T ]. (4.7)

Remark 4.5. It is clear that (i) Definition 4.1 ⇒ Definition 4.2; (ii) Definition 4.3 ⇒ Definition 4.4;
(iii) Definition 4.3 for ΦG(·) = 1⇒ Definition 4.1.

Remark 4.6. A function z ∈ E is a solution of the inequality (4.1) if and only if there exists a function
w ∈ E (which depends on z) such that the following properties:

(i) |w(t)| ≤ ε, w = max(w j)T, ∀t ∈ [0,T ].
(ii) CρDα0+z(t) = G(t, z(t)) + w(t), ∀t ∈ [0,T ].

Remark 4.7. A function z ∈ E is a solution of the inequality (4.2) if and only if there exists a function
v ∈ E (which depends on z) such that the following properties:

(i) |v(t)| ≤ εΦG(t), v = max(v j)T, ∀t ∈ [0,T ].
(ii) CρDα0+z(t) = G(t, z(t)) + v(t), ∀t ∈ [0,T ].

4.1. The Ulam-Hyers stability and generalized Ulam-Hyers stability

We demonstrate an important role that will be used in the proofs of Ulam-Hyers stability and
generalized Ulam-Hyers stability.

Lemma 4.8. Let α ∈ (0, 1] and ρ > 0. If z ∈ E is a solution of the inequality (4.1), then z is a solution
of the following inequality∣∣∣∣∣∣∣z(t) − z0 −

1
Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, z(s))
ds

s1−ρ

∣∣∣∣∣∣∣ ≤ T ρα

ραΓ(α + 1)
ε. (4.8)

Proof. Let z be a solution of the inequality (4.1). In view of Remark 4.6 (ii), we obtain
Cρ
D
α
0+z(t) = G(t, z(t)) + w(t), t ∈ [0,T ],

z(0) = z0 ≥ 0.
(4.9)

Thus, the solution of the problem (4.9) can be written

z(t) = z0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, z(s))
ds

s1−ρ +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

w(s)
ds

s1−ρ .

By applying Remark 4.6 (i),∣∣∣∣∣∣∣z(t) − z0 −
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, z(s))
ds

s1−ρ

∣∣∣∣∣∣∣ ≤ 1
Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|w(s)|
ds

s1−ρ

≤
T ρα

ραΓ(α + 1)
ε.

Therefore, the inequality (4.8) is achieved. �
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Next, we investigate the Ulam-Hyers stability and generalized Ulam-Hyers stability results.

Theorem 4.9. Assume that G : [0,T ] × R → R is continuous for every ξ ∈ E. If (H1) and (3.4) are
satisfied, then the problem (3.1) which is equivalent to the model (2.7) is Ulam-Hyers and,
consequently, generalized Ulam-Hyers stable on [0,T ].

Proof. Suppose that ε > 0 and let z ∈ E be any solution of the inequality (4.1). Let ξ ∈ E be the unique
solution of the problem (3.1),  Cρ

D
α
0+ξ(t) = G(t, ξ(t)), t ∈ [0,T ],

ξ(0) = ξ0.

By using (3.2) and Lemma 4.8 with the property of triangle inequality, we get

|z(t) − ξ(t)| ≤

∣∣∣∣∣∣∣z(t) − ξ0 −
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, ξ(s))
ds

s1−ρ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣z(t) − z0 −
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, z(s))
ds

s1−ρ

∣∣∣∣∣∣∣
+

1
Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|G(s, z(s)) − G(s, ξ(s))|
ds

s1−ρ

≤

∣∣∣∣∣∣∣z(t) − z0 −
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

G(s, z(s))
ds

s1−ρ

∣∣∣∣∣∣∣
+
LG

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|z(s) − ξ(s)|
ds

s1−ρ

≤
T ρα

ραΓ(α + 1)
ε +

LGT ρα

ραΓ(α + 1)
|z(t) − ξ(t)| .

This implies that |z(t) − ξ(t)| ≤ CGε, where

CG =

T ρα

ραΓ(α+1)

1 − LGT ρα

ραΓ(α+1)

.

Hence, the model (2.7) is Ulam-Hyers stable. Now, by setting ΦG(ε) = CGε such that ΦG(0) = 0 yields
that the model (2.7) is generalized Ulam-Hyers stable. The proof is completed. �

4.2. The Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability

We assume that the following assumption:

(H4) There exists an increasing function ΦG ∈ E and there exists λΦG > 0, such that for any t ∈ [0,T ],
the following integral inequality

ρIα0+ΦG(t) ≤ λΦGΦG(t). (4.10)
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Let us present an important lemma that will be used in the proofs of the Ulam-Hyers-Rassias
stability and generalized Ulam-Hyers-Rassias stability results.

Lemma 4.10. Let α ∈ (0, 1] and ρ > 0. If z ∈ E is a solution of the inequality (4.2), then z is a solution
of the following inequality ∣∣∣z(t) − z0 −

ρIα0+G(t, z(t))
∣∣∣ ≤ ελΦGΦG(t). (4.11)

Proof. Let z be a solution of the inequality (4.2). In view of Remark 4.7 (ii), we obtain
Cρ
D
α
0+z(t) = G(t, z(t)) + v(t), t ∈ [0,T ],

z(0) = z0 ≥ 0.
(4.12)

Thus, the solution of the problem (4.12) can be written

z(t) = z0 + ρIα0+G(t, z(t)) + ρIα0+v(t).

By applying Remark 4.7 (i),∣∣∣z(t) − z0 −
ρIα0+G(t, z(t))

∣∣∣ ≤ ρIα0+ |v(t)| ≤ ε ρIα0+ΦG(t) ≤ ελΦGΦG(t).

Hence, the inequality (4.8) is achieved. �

In the last result, we are ready to prove the Ulam-Hyers-Rassias stability and generalized Ulam-
Hyers-Rassias stability results.

Theorem 4.11. Assume that G : [0,T ] × R→ R is continuous for every ξ ∈ E. If (H1), (H3) and (3.4)
are satisfied, then the problem (3.1) which is equivalent to the model (2.7) is Ulam-Hyers-Rassias and,
consequently, generalized Ulam-Hyers-Rassias stable on [0,T ].

Proof. Let ε > 0 and z ∈ E be the solution of the inequality (4.3). Let ξ ∈ E be the unique solution of
the problem (3.1). By applying (3.2) and Lemma 4.10, we have

|z(t) − ξ(t)| ≤
∣∣∣z(t) − ξ0 −

ρIα0+G(t, ξ(t))
∣∣∣

≤
∣∣∣z(t) − z0 −

ρIα0+G(t, z(t))
∣∣∣ +

1
Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|G(s, z(s)) − G(s, ξ(s))|
ds

s1−ρ

≤
∣∣∣z(t) − z0 −

ρIα0+G(t, z(t))
∣∣∣ +
LG

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

|z(s) − ξ(s)|
ds

s1−ρ

≤ ελΦGΦG(t) +
LGT ρα

ραΓ(α + 1)
|z(t) − ξ(t)| ,

which implies that |z(t) − ξ(t)| ≤
λΦG

1−
LGTρα

ραΓ(α+1)

εΦG(t). By setting

MΦG =
λΦG

1 − LGT ρα

ραΓ(α+1)

,

we get the following inequality
|z(t) − ξ(t)| ≤ MΦGεΦG(t). (4.13)

Therefore, the model (2.7) is Ulam-Hyers-Rassias stable. Moreover, if we set ε = 1, in (4.13), with
ΦG(0) = 0, then the model (2.7) is generalized Ulam-Hyers-Rassias stable. The proof is completed. �
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5. Simulation results and discussion

In this section, the fractional variant of the HIV model under consideration via the generalized
Caputo fractional derivative is numerically simulated by using the predictor-corrector algorithm as
proposed in [30].

The first step of the algorithm, the interval [0,T ] is divided into n unequal subintervals {[tk, tk+1], k =

0, 1, . . . , n − 1} using the mesh points
t0 = 0,

tk+1 = (tρk + h)1/ρ, k = 0, 1, . . . , n − 1,

where h = T ρ

n . The approximate solutions of the HIV model (2.7) can be written as

S k+1 ≈ S (0) +
ρ−αhα

Γ(α + 2)

k∑
j=0

a j,k+1g1(t j, S j, I j,V j, L j) +
ρ−αhα

Γ(α + 2)
g1(tk+1, S P

k+1, I
P
k+1,V

P
k+1, L

P
k+1),

Ik+1 ≈ I(0) +
ρ−αhα

Γ(α + 2)

k∑
j=0

a j,k+1g2(t j, S j, I j,V j, L j) +
ρ−αhα

Γ(α + 2)
g2(tk+1, S P

k+1, I
P
k+1,V

P
k+1, L

P
k+1),

Vk+1 ≈ V(0) +
ρ−αhα

Γ(α + 2)

k∑
j=0

a j,k+1g3(t j, S j, I j,V j, L j) +
ρ−αhα

Γ(α + 2)
g3(tk+1, S P

k+1, I
P
k+1,V

P
k+1, L

P
k+1),

Lk+1 ≈ L(0) +
ρ−αhα

Γ(α + 2)

k∑
j=0

a j,k+1g4(t j, S j, I j,V j, L j) +
ρ−αhα

Γ(α + 2)
g4(tk+1, S P

k+1, I
P
k+1,V

P
k+1, L

P
k+1),

where 

S P
k+1 ≈ S (0) +

ρ−αhα

Γ(α + 1)

k∑
j=0

[
(k + 1 − j)α − (k − j)α

]
g1(t j, S j, I j,V j, L j),

IP
k+1 ≈ I(0) +

ρ−αhα

Γ(α + 1)

k∑
j=0

[
(k + 1 − j)α − (k − j)α

]
g2(t j, S j, I j,V j, L j),

VP
k+1 ≈ V(0) +

ρ−αhα

Γ(α + 1)

k∑
j=0

[
(k + 1 − j)α − (k − j)α

]
g3(t j, S j, I j,V j, L j),

LP
k+1 ≈ L(0) +

ρ−αhα

Γ(α + 1)

k∑
j=0

[
(k + 1 − j)α − (k − j)α

]
g4(t j, S j, I j,V j, L j),

and

a j,k+1 =


kα − (k − α)(k + 1)α if j = 0,

(k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α+1 if 1 ≤ j ≤ k.

According to the biological works of literature [13, 24], we will consider the model’s constant
parameters and initial states as shown in Table 1.
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Table 1. Values of the parameters and initial states.

Parameter Value Unit
λ 10 mm−3day−1

k 0.000024 mm3day−1

µ1 0.01 day−1

σ 0.4 day−1

b 0.05 day−1

µ2 0.015 day−1

ω 0.26 day−1

c 2.4 day−1

η 0.6 dimensionless
N 1000 dimensionless
S (0) 300 mm−3

I(0) 10 mm−3

V(0) 10 mm−3

L(0) 10 mm−3

For the prediction of the epidemiology of the HIV model, we calculate the numerical solutions of
the model (2.7) for various fractional orders, see illustrative Figures 1–4. All figures represent the
comparison of the amount of susceptible CD4+ T-cells populations, the concentration of the infected
CD4+ T-cells in pre-RT class, the concentration of the infected CD4+ T-cells in post-RT class, and the
population of HIV virus, respectively, for the fractional orders α = 1, 0.9, 0.8, 0.7, 0.6 with ρ = 0.97
and n = 3000.

It can be easily seen that when the values of fractional orders α approach to 1, the solutions S α(t)
decrease to the integer order soluion S 1(t) = S (t) of the classical model [13], see in Figure 1, but the
solutions Iα(t),Vα(t) and Lα(t) also increase to the interger order solution I1(t) = I(t), V1(t) = V(t) and
L1(t) = L(t), respectively, of the classical model [13] as see in Figures 2–4.

Figure 1. The density of S (t) for ρ = 0.97 and n = 3, 000 with α = 0.6, 0.7, 0.8, 0.9, 1.
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Figure 2. The density of I(t) for ρ = 0.97 and n = 3, 000 with α = 0.6, 0.7, 0.8, 0.9, 1.

Figure 3. The density ofL(t) for ρ = 0.97 and n = 3, 000 with α = 0.6, 0.7, 0.8, 0.9, 1.

Figure 4. The density of V(t) for ρ = 0.97 and n = 3, 000 with α = 0.6, 0.7, 0.8, 0.9, 1.
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6. Conclusions

The analysis of the mathematical model of HIV infections with antiretroviral therapy involving the
generalized Caputo fractional derivative established in this paper. We showed that the solution of the
considered model (2.7) exists and has at least one solution with the help of the Larey-Schauder
nonlinear alternative and the unique solution proved by using Banach’s fixed point theorem. The
stability of the solution was examined by employing the various Ulam’s stability such as Ulam-Hyers
stable, generalized Ulam-Hyers stable, Ulam-Hyers-Rassias stable, and generalized
Ulam-Hyers-Rassias stable. Further on using the predictor-corrector algorithm, we illustrated the
approximate solutions for the different fractional-order α via the Matlab program and we concluded
that the solutions of the considered model (2.7) tend to the standard solution when the fractional order
α → 1. For further work, one can be developed and applied to the different types of fractional
derivatives with the similar techniques in many real-world problems. We hope that this work would
be a good alternative way for various researches.
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