Research article

Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets

  • Received: 26 July 2022 Revised: 12 September 2022 Accepted: 15 September 2022 Published: 13 October 2022
  • MSC : 90C32, 90C70

  • Data envelopment analysis (DEA) is a linear programming approach used to determine the relative efficiencies of multiple decision-making units (DMUs). A transportation problem (TP) is a special type of linear programming problem (LPP) which is used to minimize the total transportation cost or maximize the total transportation profit of transporting a product from multiple sources to multiple destinations. Because of the connection between the multi-objective TP (MOTP) and DEA, DEA-based techniques are more often used to handle practical TPs. The objective of this work is to investigate the TP with Fermatean fuzzy costs in the presence of numerous conflicting objectives. In particular, a Fermatean fuzzy DEA (FFDEA) method is proposed to solve the Fermatean fuzzy MOTP (FFMOTP). In this regard, every arc in FFMOTP is considered a DMU. Additionally, those objective functions that should be maximized will be used to define the outputs of DMUs, while those that should be minimized will be used to define the inputs of DMUs. As a consequence, two different Fermatean fuzzy effciency scores (FFESs) will be obtained for every arc by solving the FFDEA models. Therefore, unique FFESs will be obtained for every arc by finding the mean of these FFESs. Finally, the FFMOTP will be transformed into a single objective Fermatean fuzzy TP (FFTP) that can be solved by applying standard algorithms. A numerical example is illustrated to support the proposed method, and the results obtained by using the proposed method are compared to those of existing techniques. Moreover, the advantages of the proposed method are also discussed.

    Citation: Muhammad Akram, Syed Muhammad Umer Shah, Mohammed M. Ali Al-Shamiri, S. A. Edalatpanah. Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets[J]. AIMS Mathematics, 2023, 8(1): 924-961. doi: 10.3934/math.2023045

    Related Papers:

  • Data envelopment analysis (DEA) is a linear programming approach used to determine the relative efficiencies of multiple decision-making units (DMUs). A transportation problem (TP) is a special type of linear programming problem (LPP) which is used to minimize the total transportation cost or maximize the total transportation profit of transporting a product from multiple sources to multiple destinations. Because of the connection between the multi-objective TP (MOTP) and DEA, DEA-based techniques are more often used to handle practical TPs. The objective of this work is to investigate the TP with Fermatean fuzzy costs in the presence of numerous conflicting objectives. In particular, a Fermatean fuzzy DEA (FFDEA) method is proposed to solve the Fermatean fuzzy MOTP (FFMOTP). In this regard, every arc in FFMOTP is considered a DMU. Additionally, those objective functions that should be maximized will be used to define the outputs of DMUs, while those that should be minimized will be used to define the inputs of DMUs. As a consequence, two different Fermatean fuzzy effciency scores (FFESs) will be obtained for every arc by solving the FFDEA models. Therefore, unique FFESs will be obtained for every arc by finding the mean of these FFESs. Finally, the FFMOTP will be transformed into a single objective Fermatean fuzzy TP (FFTP) that can be solved by applying standard algorithms. A numerical example is illustrated to support the proposed method, and the results obtained by using the proposed method are compared to those of existing techniques. Moreover, the advantages of the proposed method are also discussed.



    加载中


    [1] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8 doi: 10.1016/0377-2217(78)90138-8
    [2] A. Charnes, W. W. Cooper, B. Golany, L. Seiford, J. Stutz, Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions, J. Econometrics, 30 (1985), 91–107. https://doi.org/10.1016/0304-4076(85)90133-2 doi: 10.1016/0304-4076(85)90133-2
    [3] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [4] L. Sahoo, An approach for solving fuzzy matrix games using signed distance method, J. Inf. Comput. Sci., 12 (2017), 73–80.
    [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [6] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [7] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA world congress and NAFIPS annual meeting, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [8] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intel. Hum. Comp., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
    [9] T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision making methods, Eng. Appl. Artif. Intel., 85 (2019), 112–121. https://doi.org/10.1016/j.engappai.2019.05.012 doi: 10.1016/j.engappai.2019.05.012
    [10] T. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making, Informatica, 30 (2019), 391–412.
    [11] L. Sahoo, Some score functions on Fermatean fuzzy sets and its application to bride selection based on TOPSIS method, Int. J. Fuzzy Syst. Appl., 10 (2021), 18–29. https://doi.org/10.4018/IJFSA.2021070102 doi: 10.4018/IJFSA.2021070102
    [12] L. Sahoo, Similarity measures for Fermatean fuzzy sets and its applications in group decision-making, Decis. Sci. Lett., 11 (2022), 167–180. https://doi.org/10.5267/j.dsl.2021.11.003 doi: 10.5267/j.dsl.2021.11.003
    [13] R. E. Bellman, L. A. Zadeh, Decision making in a fuzzy environment, Manage. Sci., 17 (1970), 141–164. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
    [14] H. J. Zimmerman, Fuzzy programming and linear programming with several objective functions, Fuzzy Set. Syst., 1 (1978), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3 doi: 10.1016/0165-0114(78)90031-3
    [15] T. Allahviranloo, F. H. Lotfi, M. L. Kiasary, N. A. Kiani, L. A. Zadeh, Solving fully fuzzy linear programming problem by the ranking function, Appl. Math. Sci., 2 (2008), 19–32.
    [16] M. Akram, I. Ullah, S. A. Edalatpanah, T. Allahviranloo, Fully Pythagorean fuzzy linear programming problems with equality constraints, Comput. Appl. Math., 40 (2021), 120. https://doi.org/ 10.1007/s40314-021-01503-9 doi: 10.1007/s40314-021-01503-9
    [17] M. Akram, I. Ullah, T. Allahviranloo, S. A. Edalatpanah, $LR$-type fully Pythagorean fuzzy linear programming problems with equality constraints, J. Inte. Fuzzy Syst., 41 (2021), 1975–1992. https://doi.org/ 10.3233/JIFS-210655 doi: 10.3233/JIFS-210655
    [18] M. Akram, G. Shahzadi, A. A. H. Ahmadini, Decision-making framework for an effective sanitizer to reduce COVID-19 under Fermatean fuzzy environment, J. Math., 2020 (2020), 3263407. https://doi.org/10.1155/2020/3263407 doi: 10.1155/2020/3263407
    [19] M. Akram, I. Ullah, M. G. Alharbi, Methods for solving $LR$-type Pythagorean fuzzy linear programming problems with mixed constraints, Math. Probl. Eng., 2021 (2021), 4306058. https://doi.org/10.1155/2021/4306058 doi: 10.1155/2021/4306058
    [20] M. Akram, S. M. U. Shah, M. A. Al-Shamiri, S. A. Edalatpanah, Fractional transportation problem under interval-valued Fermatean fuzzy sets, AIMS Mathematics, 7 (2022), 17327–17348. https://doi.org/ 10.3934/math.2022954 doi: 10.3934/math.2022954
    [21] M. A. Mehmood, M. Akram, M. G. Alharbi, S. Bashir, Solution of fully bipolar fuzzy linear programming models, Math. Probl. Eng., 2021 (2021), 9961891. https://doi.org/10.1155/2021/9961891 doi: 10.1155/2021/9961891
    [22] M. A. Mehmood, M. Akram, M. G. Alharbi, S. Bashir, Optimization of $LR$-type fully bipolar fuzzy linear programming problems, Math. Probl. Eng., 2021 (2021), 1199336. https://doi.org/10.1155/2021/1199336 doi: 10.1155/2021/1199336
    [23] J. Ahmed, M. G. Alharbi, M. Akram, S. Bashir, A new method to evaluate linear programming problem in bipolar single-valued neutrosophic environment, Comp. Model. Eng., 129 (2021), 881–906. https://doi.org/10.32604/cmes.2021.017222 doi: 10.32604/cmes.2021.017222
    [24] F. L. Hitchcock, The distribution of product from several resources to numerous localities, J. Math. Phys., 20 (1941), 224–230. https://doi.org/10.1002/sapm1941201224 doi: 10.1002/sapm1941201224
    [25] R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manage. Sci., 30 (1984), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078 doi: 10.1287/mnsc.30.9.1078
    [26] T. Ahn, A. Charnes, W. W. Cooper, Some statistical and DEA evaluations of relative efficiencies of public and private institutions of higher learning, Socio-Econ. Plan. Sci., 22 (1988), 259–269. https://doi.org/10.1016/0038-0121(88)90008-0 doi: 10.1016/0038-0121(88)90008-0
    [27] Y. Roll, W. D. Cook, B. Golany, Controlling factor weights in data envelopment analysis, IIE Trans., 23 (1991), 2–9. https://doi.org/10.1080/07408179108963835 doi: 10.1080/07408179108963835
    [28] J. K. Sengupta, A fuzzy systems approach in data envelopment analysis, Comput. Math. Appl., 24 (1992), 259–266. https://doi.org/10.1016/0898-1221(92)90203-T doi: 10.1016/0898-1221(92)90203-T
    [29] C. Kao, S. T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy Set. Syst., 113 (2000), 427–437. https://doi.org/10.1016/S0165-0114(98)00137-7 doi: 10.1016/S0165-0114(98)00137-7
    [30] S. Saati, M. Memariani, G. R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data, Fuzzy Optim. Decis. Ma., 1 (2002), 255–267. https://doi.org/10.1023/A:1019648512614 doi: 10.1023/A:1019648512614
    [31] S. Lertworasirikul, S. C. Fang, J. A. Joines, H. L. Nuttle, Fuzzy data envelopment analysis (DEA): A possibility approach, Fuzzy Set. Syst., 139 (2003), 379–394. https://doi.org/10.1016/S0165-0114(02)00484-0 doi: 10.1016/S0165-0114(02)00484-0
    [32] A. L. M. Zerafat, S. M. Saati, M. Mokhtaran, An alternative approach to assignment problem with nonhomogeneous costs using common set of weights in DEA, Far East J. Math. Sci., 10 (2003), 29–39.
    [33] W. W. Cooper, L. M. Seiford, K. Tone, Introduction to data envelopment analysis and its uses: With DEA-solver software and references, New York: Springer, 2006.
    [34] P. Zhou, B. W. Ang, K. L. Poh, A survey of data envelopment analysis in energy and environmental studies, Eur. J. Oper. Res., 189 (2008), 1–18. https://doi.org/10.1016/j.ejor.2007.04.042 doi: 10.1016/j.ejor.2007.04.042
    [35] P. Guo, Fuzzy data envelopment analysis and its applications to location problems, Inform. Sci., 179 (2009), 820–829. https://doi.org/10.1016/j.ins.2008.11.003 doi: 10.1016/j.ins.2008.11.003
    [36] F. H. Lotfi, G. R. Jahanshahloo, A. R. Vahidi, A. Dalirian, Efficiency and effectiveness in multi-activity network DEA model with fuzzy data, Appl. Math. Sci., 3 (2009), 2603–2618.
    [37] F. H. Lotfi, G. R. Jahanshahloo, M. Soltanifar, A. Ebrahimnejad, S. M. Mansourzadeh, Relationship between MOLP and DEA based on output-orientated CCR dual model, Expert Syst. Appl., 37 (2010), 4331–4336. https://doi.org/10.1016/j.eswa.2009.11.066 doi: 10.1016/j.eswa.2009.11.066
    [38] S. H. Mousavi-Avval, S. Rafiee, A. Mohammadi, Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis, Energy, 36 (2011), 909–916. https://doi.org/10.1016/j.energy.2010.12.020 doi: 10.1016/j.energy.2010.12.020
    [39] A. Amirteimoori, An extended transportation problem: A DEA-based approach, Cent. Eur. J. Oper. Res., 19 (2011), 513–521. https://doi.org/10.1007/s10100-010-0140-0 doi: 10.1007/s10100-010-0140-0
    [40] A. Amirteimoori, An extended shortest path problem: A data envelopment analysis approach, Appl. Math. Lett., 25 (2012), 1839–1843. https://doi.org/10.1016/j.aml.2012.02.042 doi: 10.1016/j.aml.2012.02.042
    [41] A. Nabavi-Pelesaraei, R. Abdi, S. Rafiee, H. G. Mobtaker, Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach, J. Clean. Prod., 65 (2014), 311–317. https://doi.org/10.1016/j.jclepro.2013.08.019 doi: 10.1016/j.jclepro.2013.08.019
    [42] Z. Zhu, K. Wang, B. Zhang, Applying a network data envelopment analysis model to quantify the eco-efficiency of products: A case study of pesticides, J. Clean. Prod., 69 (2014), 67–73. https://doi.org/10.1016/j.jclepro.2014.01.064 doi: 10.1016/j.jclepro.2014.01.064
    [43] M. Azadi, M. Jafarian, S. R. Farzipoor, S. M. Mirhedayatian, A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context, Comput. Oper. Res., 54 (2015), 274–285. https://doi.org/10.1016/j.cor.2014.03.002 doi: 10.1016/j.cor.2014.03.002
    [44] G. H. Shirdel, A. Mortezaee, A DEA-based approach for the multi-criteria assignment problem, Croat. Oper. Res. Rev., 6 (2015), 145–154. https://doi.org/10.17535/crorr.2015.0012 doi: 10.17535/crorr.2015.0012
    [45] A. Azar, M. Z. Mahmoudabadi, A. Emrouznejad, A new fuzzy additive model for determining the common set of weights in data envelopment analysis, J. Inte. Fuzzy Syst., 30 (2016), 61–69. https://doi.org/10.3233/IFS-151710 doi: 10.3233/IFS-151710
    [46] A. Mardania, E. Kazimieras, Zavadskasb, Streimikienec, A. Jusoha, M. Khoshnoudia, A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency, Renew. Sust. Energ. Rev., 70 (2017), 1298–1322. https://doi.org/10.1016/j.rser.2016.12.030 doi: 10.1016/j.rser.2016.12.030
    [47] A. Hatami-Marbini, A. Ebrahimnejad, S. Lozano, Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach, Comput. Ind. Eng., 105 (2017), 362–376. https://doi.org/10.1016/j.cie.2017.01.009 doi: 10.1016/j.cie.2017.01.009
    [48] A. Hatami-Marbini, S. Saati, Efficiency evaluation in two-stage data envelopment analysis under a fuzzy environment: A common weights approach, Appl. Soft Comput., 72 (2018), 156–165. https://doi.org/10.1016/j.asoc.2018.07.057 doi: 10.1016/j.asoc.2018.07.057
    [49] R. M. Rizk-Allaha A. E. Hassanienb, M. Elhoseny, A multi-objective transportation model under neutrosophic environment, Comput. Electr. Eng., 69 (2018), 705–719. https://doi.org/10.1016/j.compeleceng.2018.02.024 doi: 10.1016/j.compeleceng.2018.02.024
    [50] M. Tavana, K. Khalili-Damghani, A new two-stage Stackelberg fuzzy data envelopment analysis model, Measurement, 53 (2014), 277–296. https://doi.org/10.1016/j.measurement.2014.03.030 doi: 10.1016/j.measurement.2014.03.030
    [51] S. A. Edalatpanah, F. Smarandache, Data envelopment analysis for simplified neutrosophic sets, Neutrosophic Sets Sy., 29 (2019), 215–226. https://doi.org/10.5281/zenodo.3514433 doi: 10.5281/zenodo.3514433
    [52] J. Liu, J. Song, Q. Xu, Z. Tao, H. Chen, Group decision making based on DEA cross-efficiency with intuitionistic fuzzy preference relations, Fuzzy Optim. Decis. Ma., 18 (2019), 345–370. https://doi.org/10.1007/s10700-018-9297-0 doi: 10.1007/s10700-018-9297-0
    [53] S. A. Edalatpanah, Data envelopment analysis based on triangular neutrosophic numbers, CAAI T. Intell. Techno., 5 (2020), 94–98. https://doi.org/10.1049/trit.2020.0016 doi: 10.1049/trit.2020.0016
    [54] M. Bagheri, A. Ebrahimnejad, S. Razavyan, F. H. Lotfi, N. Malekmohammadi, Solving the fully fuzzy multi-objective transportation problem based on the common set of weights in DEA, J. Inte. Fuzzy Syst., 39 (2020), 3099–3124. https://doi.org/10.3233/JIFS-191560 doi: 10.3233/JIFS-191560
    [55] M. R. Soltani, S. A. Edalatpanah, F. M. Sobhani, S. E. Najafi, A novel two-stage DEA model in fuzzy environment: Application to industrial workshops performance measurement, Int. J. Comput. Int. Sys., 13 (2020), 1134–1152. https://doi.org/10.2991/ijcis.d.200731.002 doi: 10.2991/ijcis.d.200731.002
    [56] L. Sahoo, A new score function based Fermatean fuzzy transportation problem, Results Control Optim., 1 (2021), 100040. https://doi.org/10.1016/j.rico.2021.100040 doi: 10.1016/j.rico.2021.100040
    [57] S. Ghosh, S. K. Roy, A. Ebrahimnejad, J. L. Verdegay, Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem, Complex Intell. Syst., 7 (2021), 1009–1023. https://doi.org/10.1007/s40747-020-00251-3 doi: 10.1007/s40747-020-00251-3
    [58] A. Mondal, S. K. Roy, S. Midya, Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem, J. Amb. Intel. Hum. Comp., 2021, 1–25. https://doi.org/10.1007/s12652-021-03554-6 doi: 10.1007/s12652-021-03554-6
    [59] B. K. Giri, S. K. Roy, Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem, Int. J. Mach. Learn. Cyb., 13 (2022), 3089–3112. https://doi.org/10.1007/s13042-022-01582-y doi: 10.1007/s13042-022-01582-y
    [60] S. Ghosh, K-H. Kufer, S. K. Roy, G-W. Weber, Carbon mechanism on sustainable multi-objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment, Complex Intell. Syst., 8 (2022). https://doi.org/10.1007/s40747-022-00686-w doi: 10.1007/s40747-022-00686-w
    [61] M. Akram, S. M. U. Shah, T. Allahviranloo, A new method to determine the Fermatean fuzzy optimal solution of transportation problems, J. Intell. Fuzzy Syst., 2022. https://doi.org/10.3233/JIFS-221959 doi: 10.3233/JIFS-221959
    [62] M. Bagheri, A. Ebrahimnejad, S. Razavyan, F. H. Lotfi, N. Malekmohammadi, Fuzzy arithmetic DEA approach for fuzzy multi-objective transportation problem, Oper. Res., 22 (2022), 1479–1509. https://doi.org/10.1007/s12351-020-00592-4 doi: 10.1007/s12351-020-00592-4
    [63] Y. M. Wang, Y. Luo, L. Liang, Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises, Expert Syst. Appl., 36 (2009), 5205–5211. https://doi.org/10.1016/j.eswa.2008.06.102 doi: 10.1016/j.eswa.2008.06.102
    [64] A. Mahmoodirad, T. Allahviranloo, S. Niroomand, A new effective solution method for fully fuzzy transportation problem, Soft Comput., 23 (2019), 4521–4530. https://doi.org/10.1007/s00500-018-3115-z doi: 10.1007/s00500-018-3115-z
    [65] M. Ehrgott, Multi-criteria optimization, Berlin, Heidelberg: Springer, 2005.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1868) PDF downloads(173) Cited by(4)

Article outline

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog