Citation: Mohammed Aly Abdou, Loubna Ouahid, Saud Owyed, A. M. Abdel-Baset, Mustafa Inc, Mehmet Ali Akinlar, Yu-Ming Chu. Explicit solutions to the Sharma-Tasso-Olver equation[J]. AIMS Mathematics, 2020, 5(6): 7272-7284. doi: 10.3934/math.2020465
[1] | R. Hirota, Exact solutions of the KdV equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192-1-1192-3. doi: 10.1103/PhysRevLett.27.1192 |
[2] | M. Wadati, K. Konno, Simple derivation of Bucklund transformation from Riccati form of inverse method, Prog. Theor. Phys., 53 (1975), 1652-1656. doi: 10.1143/PTP.53.1652 |
[3] | F. Cariello, M. Tabor, Similarity reductions from extended Painlev expansions for nonintegrable evolution equations, Physica D: Nonlinear Phenomena, 53 (2003), 59-70. |
[4] | M. J. Abolowitz, P. A. Clarkson, Solitons nonlinear evolution equations and inverse scattering, London: Combridge University Press, 1991. |
[5] | M. A. Abdou, A. Elhanbaly, Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method, Commun. Nonliner. Sci., 12 (2007), 1229-1241. doi: 10.1016/j.cnsns.2006.01.013 |
[6] | S. A. El-Wakil, M. A. Abdou, A. Elhanbaly, New solitons and periodic wave solutions for nonlinear evolution equations, Phys. Lett. A, 353 (2006), 40-47. doi: 10.1016/j.physleta.2005.12.055 |
[7] | S. A. El-Wakil, M. A. Abdou, The extended mapping method and its applications for nonlinear evolutions equations, Phys. Lett. A, 358 (2006), 275-282. doi: 10.1016/j.physleta.2006.05.040 |
[8] | M. A. Abdou, S. Zhang, New periodic wave solution via extended mapping method, Commun. Nonliner. Sci., 14 (2009), 2-11. doi: 10.1016/j.cnsns.2007.06.010 |
[9] | M. A. Abdou, On the variational iteration method, Phys. Lett. A, 366 (2007), 61-68. doi: 10.1016/j.physleta.2007.01.073 |
[10] | E. M. Abulwafa, M. A. Abdou, A. A. Mahmoud, The solution of nonlinear coagulation problem with mass loss, Chaos, Solitons Fractals, 29 (2006), 313-330. doi: 10.1016/j.chaos.2005.08.044 |
[11] | H. Ji-Huan, Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B, 20 (2006), 1141-1199. doi: 10.1142/S0217979206033796 |
[12] | H. Ji-Huan, Non perturbative method for strongly nonlinear problems, dissertation, de Verlag im Internet GmbH, Berlin, 2006. |
[13] | M. Abdou, A. Elhanbaly, Decomposition method for solving a system of coupled fractional time nonlinear equations, Phys. Scripta, 73 (2006), 338-348. doi: 10.1088/0031-8949/73/4/005 |
[14] | S. A. El-Wakil, M. A. Abdou, New applications of the homotopy analysis method, Zeitschrift fur Naturforschung, 63 (2008), 1-8. |
[15] | S. A. El-Wakil, E. M.Abulwafa, A. Elhanbaly, et al. The extended homogeneous balance method and its applications for a class of nonlinear evolution equations, Chaos, Solitons Fractals, 33 (2007), 1512-1522. doi: 10.1016/j.chaos.2006.03.010 |
[16] | S. A. El-Wakil, M. A. Abdou, New exact travelling wave solutions using Modified extended tanh function method, Chaos, Solitons Fractals, 31 (2007), 840-852. doi: 10.1016/j.chaos.2005.10.032 |
[17] | I. Liu, K. Yang, The extended F-expansion method and exact solutions of nonlinear PDEs, Chaos, Solitons Fractals, 22 (2004), 111-121. doi: 10.1016/j.chaos.2003.12.069 |
[18] | M. A. Abdou, An improved generalized F-expansion method and its applicatuions, J. Comput. Appl. Math., 214 (2008), 202-208. doi: 10.1016/j.cam.2007.02.030 |
[19] | M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons Fractals, 31 (2007), 95-104. doi: 10.1016/j.chaos.2005.09.030 |
[20] | M. A. Abdou, Further improved F-expansion and new exact solutions for nonlinear evolution equations, J. Nonlinear Dynamics, 52 (2007), 277-288. |
[21] | H. Ji-Huan, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Exp function method, Chaos, Solitons Fractals, 34 (2007), 1421-1429. doi: 10.1016/j.chaos.2006.05.072 |
[22] | S. A. El-Wakil, M. A. Abdou, A. Hendi, New periodic wave solutions via Exp-function method, Phys. Lett. A, 372 (2008), 830-840. doi: 10.1016/j.physleta.2007.08.033 |
[23] | M. A. Abdou, Generalized solitary and periodic solutions for nonlinear partial differential equations by the Exp-function method, J. Nonlinear Dynamics, 52 (2008), 1-9. doi: 10.1007/s11071-007-9250-1 |
[24] | M. S. Osman, D. Lu, M. M. A. Khater, et al. Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927-1-162927-5. doi: 10.1016/j.ijleo.2019.06.027 |
[25] | S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. New optical soliton solutions of nolinear evolution equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063-1068. doi: 10.1088/0253-6102/71/9/1063 |
[26] | M. A. Abdou, On the quantum Zakharov Kuznetsov equation, Int. J. Nonlinear Sci., 26 (2018), 89-96. |
[27] | S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms, Aims Math., Available from: http://www.aimspress.com/journal/Math,2020, accepted and in press. |
[28] | J. J. Yang, S. F. Tian, W. Q. Peng, et al. The N-coupled higher-order nonlinear Schrödinger equation: Riemann-Hilbert problem and multi-soliton solutions, Math. Meth. Appl. Sci., (2019), 1-15. |
[29] | W. Q. Peng, S. F. Tian, T. T. Zhang, Initial value problem for the pair transition coupled nonlinear Schrödinger equations via the Riemann-Hilbert method, Complex Analy. Operator Theory, 14 (2020), 1-15. doi: 10.1007/s11785-019-00958-3 |
[30] | T. Y. Xu, S. F. Tian, W. Q. Peng, Riemann-Hilbert approach for multisoliton solutions of generalized coupled fourth-order nonlinear Schrödinger equations, Math. Meth. Appl. Sci., 43 (2019), 865-880. |
[31] | W. Q. Peng, S. F. Tian, X. B. Wang, et al. Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations, J. Geom. Phys., 146 (2019), 103508-1-103508-9. doi: 10.1016/j.geomphys.2019.103508 |
[32] | S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056-1-106056-7. doi: 10.1016/j.aml.2019.106056 |
[33] | L. D. Zhang, S. F. Tian, W. Q. Peng, et al. The dynamics of lump, lumpoff and Rogue wave solutions of (2+1)-dimensional Hirota-Satsuma-Ito equations, East Asian J. Appl. Math., 10 (2020), 243-255. |
[34] | C. Q. Dai, J. F. Zhang, Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential, Nonlinear Dyn., 100 (2020), 1621-1628. doi: 10.1007/s11071-020-05603-9 |
[35] | G. Z. Wu, C. Q. Dai, Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation, Appl. Math. Lett., 106 (2020), 106365-1-106365-6. doi: 10.1016/j.aml.2020.106365 |
[36] | C. Q. Dai, Y. Fan, N. Zhang, Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method, Appl. Math. Lett., 96 (2019), 20-26. doi: 10.1016/j.aml.2019.04.009 |
[37] | C. Q. Dai, Y. Fan, Y. Y. Wang, Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials, Nonlinear Dyn., 98 (2019), 489-499. doi: 10.1007/s11071-019-05206-z |
[38] | B. H. Wang, P. H. Lu, C. Q. Dai, et al. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation, Results Phys., 17 (2020), 103036-1-103036-7. doi: 10.1016/j.rinp.2020.103036 |
[39] | B. Muatjetjeja, S. O. Mbusi, A. R. Adem, Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry, Symmetry, 12 (2020), 1-6. |
[40] | B. Muatjetjeja, A. R. Adem, S. Oscar. Mbusi, Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation, J. Appl. Anal., 25 (2019), 211-217. doi: 10.1515/jaa-2019-0022 |
[41] | A. R. Adem, B. Muatjetjeja, Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation, Appl. Math. Lett., 48 (2015), 109-117. doi: 10.1016/j.aml.2015.03.019 |
[42] | A. R. Adem, C. M. Khalique, Conserved quantities and solutions of a (2 + 1)-dimensional Haragus-Courcelle-Il'ichev model, Comput. Math. Appl., 71 (2016), 1129-1136. doi: 10.1016/j.camwa.2016.01.021 |
[43] | C. A Garzon, On exact solutions for a generalized Burgers-Sharma-Tasso-Olver equation with forcing term, Commun. Appl. Analy., 21 (2017), 127-134. |
[44] | A. H. Salas, Exact solutions to a generalized sharma-Tasso-Olver equation, Appl. Math. Sci., 5 (2011), 2289-2295. |
[45] | S. Owyed, M. A. Abdou, A. H. Abdel-Aty, et al. Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method, Chaos, Solitons Fractals, 131 (2020), 109474. |
[46] | M. A. Abdou, A. Soliman, New exact travelling wave solutions for fractal order space time FPDEs descring Transmisssion line, Results Phys., 9 (2018), 1497. |
[47] | M. A. Abdou, Fractional reduced differentional transform method and its applications, Int. J. Nonlinear Sci., 26 (2018), 55-64. |
[48] | M. A. Abdou, New exact solutions for space-time fractal order nonlinear dynamics of microtubules via the generalized Kudryashov method, Acta (2018), submitted. |
[49] | M. A. Abdou, An anylatical approach for space-time fractal order nonlinear dynamics of microtubules, Waves in random media and complex media, Available from: https://doi.org/10.1080/17455030.2018.1517951. |
[50] | M. A. Abdou, On the fractional order space-time nonlinear equations arising in plasma physics, Indian J. Phys., 93 (2019), 537-541. doi: 10.1007/s12648-018-1342-x |
[51] | M. A. Abdou, A new analytical method for space-time fractional nonlinear differential equations arising in plasma physics, J. Ocean Eng. Sci., 2 (2017), 1-5. doi: 10.1016/j.joes.2016.11.001 |
[52] | S. Owyed, M. A. Abdou, Abdel-Haleem Abdel-Aty, et al. New optical soliton solutions of nolinear evolution equation describing nonlinear dispersion, Commun. Theor. Phys., 71 (2019), 1063-1068. doi: 10.1088/0253-6102/71/9/1063 |
[53] | Luu Vu Cam Hoan, S. Owyed, M. Inc, et al. New explicit optical solitons of fractional nonlinear evolution equation via three different methods, Results Phy., (2020), doi: https://doi.org/10.1016/j.rinp.2020.103209. |