Citation: Jing-Feng Tian, Ming-Hu Ha, Hong-Jie Xing. Properties of the power-mean and their applications[J]. AIMS Mathematics, 2020, 5(6): 7285-7300. doi: 10.3934/math.2020466
[1] | Z. H. Yang, Y. M. Chu, An optimal inequalities chain for bivariate means, J. Math. Inequal., 9 (2015), 331-343. |
[2] | K. B. Stolarsky, Generalizations of the Logarithmic Mean, Math. Mag., 48 (1975), 87-92. doi: 10.1080/0025570X.1975.11976447 |
[3] | E. B. Leach, M. C. Sholander, Extended mean values, Amer. Math. Monthly, 85 (1978), 84-90. doi: 10.1080/00029890.1978.11994526 |
[4] | C. Gini, Diuna formula comprensiva delle media, Metron, 13 (1938), 3-22. |
[5] | Z. H. Yang, On the homogeneous functions with two parameters and its monotonicity, J. Inequal. Pure Appl. Math., 6 (2005), 1-11. |
[6] | Z. H. Yang, On the monotonicity and log-convexity of a four-parameter homogeneous mean, J. Inequal. Appl., 2008 (2008), 1-12. |
[7] | A. Witkowski, Comparison theorem for two-parameter means, Math. Inequal. Appl., 12 (2009), 11-20. |
[8] | F. Qi, Logarithmic convexities of the extended mean values, Proc. Amer. Math. Soc., 130 (2002), 1787-1796. |
[9] | Z. H. Yang, On the log-convexity of two-parameter homogeneous functions, Math. Inequal. Appl., 10 (2007), 499-516. |
[10] | Zs. Páles, Inequalities for sums of powers, J. Math. Anal. Appl., 131 (1988), 265-270. doi: 10.1016/0022-247X(88)90204-1 |
[11] | Zs. Páles, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271-281. doi: 10.1016/0022-247X(88)90205-3 |
[12] | L. Losonczi, Zs. Páles, Minkowki's inequality for two variable Gini means, Acta Sci. Math. Szeged, 62 (1996), 413-425. |
[13] | L. Losonczi, Zs. Páles, Minkowki's inequality for two variable difference means, Proc. Amer. Math. Soc., 126 (1998), 779-791. doi: 10.1090/S0002-9939-98-04125-2 |
[14] | E. Neuman, Zs. Páles, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., 278 (2003), 274-284. doi: 10.1016/S0022-247X(02)00319-0 |
[15] | Y. M. Li, B. Y. Long, Y. M. Chu, Sharp bounds by the power mean for the generalized Heronian mean, J. Inequal. Appl., 2012 (2012), 1-9. doi: 10.1186/1029-242X-2012-1 |
[16] | M. Raïsouli, J. Sándor, Sub-super-stabilizability of certain bivariate means via mean-convexity, J. Inequal. Appl., 2016 (2016), 1-13. doi: 10.1186/s13660-015-0952-5 |
[17] | Z. H. Yang, On converses of some comparison inequalities for homogeneous means, Hacet. J. Math. Stat., 46 (2017), 629-644. |
[18] | Z. H. Yang, New sharp bounds for identric mean in terms of logarithmic mean and arithmetic mean, J. Math. Inequal., 6 (2012), 533-543. |
[19] | A. Begea, J. Bukor, J. T. Tóhb, On (log-) convexity of power mean, Anna. Math. Inform., 42 (2013), 3-7. |
[20] | L. Matejíčka, Short note on convexity of power mean, Tamkang J. Math., 46 (2015), 423-426. doi: 10.5556/j.tkjm.46.2015.1808 |
[21] | I. Pinelis, L'Hospital type rules for oscillation, with applications, J. Inequal. Pure Appl. Math., 2 (2001), 1-24. |
[22] | G. D. Anderson, M. Vamanamurthy, M. Vuorinen, Monotonicity rules in calculus, Amer. Math. Monthly, 113 (2006), 805-816. doi: 10.1080/00029890.2006.11920367 |
[23] | Z. H. Yang, A new way to prove L'Hospital Monotone Rules with applications, arXiv:1409.6408, 2014. Available from: https://arxiv.org/abs/1409.6408. |
[24] | Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604. doi: 10.1016/j.jmaa.2015.03.043 |
[25] | Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729-735. |
[26] | Z. H. Yang, W. Zhang, Y. M. Chu, Sharp Gautschi inequality for parameter 0 < p < 1 with applications, Math. Inequal. Appl., 20 (2017), 1107-1120. |
[27] | Z. H. Yang, J. F. Tian, The monotonicity rules for the ratio of two Laplace transforms with applications, J. Math. Anal. Appl., 470 (2019), 821-845. doi: 10.1016/j.jmaa.2018.10.034 |
[28] | Z. H. Yang, K. F. Tin, Q. Gao, The monotonicity of ratios involving arctangent function with applications, Open Math., 17 (2019), 1450-1467. doi: 10.1515/math-2019-0098 |
[29] | Z. H. Yang, Estimates for Neuman-Sándor mean by power means and their relative errors, J. Math. Inequal., 7 (2013), 711-726. |
[30] | Z. H. Yang, Some monotonictiy results for the ratio of two-parameter symmetric homogeneous functions, Int. J. Math. Math. Sci., 2009 (2019), 1-12. |
[31] | Z. H. Yang, Log-convexity of ratio of the two-parameter symmetric homogeneous functions and an application, J. Inequal. Spec. Func., 2010 (2010), 16-29. |