Citation: Erhan Deniz, Muhammet Kamali, Semra Korkmaz. A certain subclass of bi-univalent functions associated with Bell numbers and q−Srivastava Attiya operator[J]. AIMS Mathematics, 2020, 5(6): 7259-7271. doi: 10.3934/math.2020464
[1] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with $ \mathfrak{q} $-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
[2] | A. A. Azzam, Daniel Breaz, Shujaat Ali Shah, Luminiţa-Ioana Cotîrlă . Study of the fuzzy $ q- $spiral-like functions associated with the generalized linear operator. AIMS Mathematics, 2023, 8(11): 26290-26300. doi: 10.3934/math.20231341 |
[3] | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061 |
[4] | Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized $ q $-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656 |
[5] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[6] | Mohammad Faisal Khan . Certain new applications of Faber polynomial expansion for some new subclasses of $ \upsilon $-fold symmetric bi-univalent functions associated with $ q $-calculus. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521 |
[7] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of $ q $-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[8] | Halit Orhan, Nanjundan Magesh, Chinnasamy Abirami . Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves. AIMS Mathematics, 2020, 5(5): 4412-4423. doi: 10.3934/math.2020281 |
[9] | Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with $ q $-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336 |
[10] | Gangadharan Murugusundaramoorthy, Luminiţa-Ioana Cotîrlă . Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial. AIMS Mathematics, 2022, 7(5): 8733-8750. doi: 10.3934/math.2022488 |
Let A be the class of all analytic functions of the form
f(z)=z+∞∑k=2akzk | (1.1) |
in the open unit disk D ={z∈C:|z|<1} normalized by the conditions f(0)=0 and f′(0)=1. The well-known Koebe one-quarter theorem [8] ensures that the image of D under every univalent function f∈A contains a disk of radius 1/4. Thus, every univalent function f has an inverse f−1 satisfying f−1(f(z)) =z, (z∈D) and
f−1(f(w))=w,(|w|<r0(f), r0(f)≥1/4) |
where
f−1(w)=w−a2w2+(2a22−a3)w3−⋯. | (1.2) |
A function f∈A is said to be bi-univalent in D if both f and g to D are univalent in D, where g is the analytic continuation of f−1 to the unit disk D. Let Σ denote the class of bi-univalent functions defined in the unit disk D given by 1.1. For a brief history of functions in the class Σ, see [3,4,16,19]. Later, Srivastava et al.'s [24,26,27,28] gave very important contributions to this theory. Recently, for coefficient estimates of the functions in some particular subclasses of bi-univalent functions, one may see [6,7,10,15,20,25,29,30].
For analytic functions f and g in D, f is said to be subordinate to g if there exists an analytic function w such that w(0)=0, |w(z)|<1 and f(z)=g(w(z)). This subordination is denote by f(z)≺g(z). In particular, when g is univalent in D,
f(z)≺g(z)⟺f(0)=g(0) and f(D)⊂g(D) (z∈D). |
The q−difference operator, which was introduced by Jackson [13], is defined by
∂qf(z)=f(qz)−f(z)(q−1)z, (z≠0) | (1.3) |
for q∈(0,1). It is clear that limq→1−∂qf(z)=f′(z) and ∂qf(0)=f′(0), where f′ is the ordinary derivative of the function. For more properties of ∂q see [9,11,12].
Thus, for function f∈A we have
∂qf(z)=1+∞∑k=2[k]qakzk−1, | (1.4) |
where [k]q is given by
[k]q=1−qk1−q, [0]q=0 | (1.5) |
and the q− factorial is defined by
[k]q!={k∏n=1[n]q,k∈N1,k=0. | (1.6) |
As q→1−, then we get [k]q→k. Thus, if we choose the function g(z)=zk, while q→1, then we have
∂qg(z)=∂qzk=[k]qzk−1=g′(z), | (1.7) |
where g′ is the ordinary derivative.
In order to derive our main results, we have to recall here the following lemmas.
Lemma 1.1. ( [8]) If p∈P then |pk|≤2 for each k, where P is the family of all functions p analytic in D for which Rep(z)>0,
p(z)=1+p1z+p2z2+p3z3+⋯ | (1.8) |
for z∈D.
Lemma 1.2. ( [17]) If the function p∈P is given by the series 1.8, then
2p2=p21+x(4−p21),4p3=p31+2(4−p21)p1x−p1(4−p21)x2+2(4−p21)(1−|x|2)z |
for some x,z with |x|≤1 and |z|≤1.
For a fixed non-negative integer n, the Bell numbers Bn count the possible disjoint partitions of a set with n elements into non-empty subsets or, equivalently, the number of equivalence relations on it. The numbers Bn are named the Bell numbers after Eric Temple Bell (1883−1960) (see [1,2]) who called then the "exponential numbers". The Bell numbers Bn (n≧0) are generated by the function eez−1 as follows: eez−1=∑∞n=0Bn (zn/n!) (z∈R). The Bell numbers Bn satisfy the following recurrence relation involving binomial coefficients: Bn+1=∑nk=0(nk)Bk. Clearly, we have B0=B1=1, B2=2, B3=5, B4=15, B5=52 and B6=203. We now consider the function φ(z):=eez−1 with its domain of definition as the open unit disk D. Recently Srivastava and co-auhors studied geometric properties and coefficients bounds for starlike functions related to the Bell numbers (see [5,14]).
On the other hand, Shah and Noor [21] introduced the q−analogue of the Hurwitz Lerch zeta function by the following series:
ϕq(s,b;z)=∞∑k=0zk[k+b]sq, | (1.9) |
where b∈C∖Z−0, s∈C when |z|<1, and Re(s)>1 when |z|=1. The a normalized form of 1.9 as follows:
ψq(s,b;z)=[1+b]sq{ϕq(s,b;z)−[b]−sq}=z+∞∑k=2([1+b]q[k+b]q)szk. | (1.10) |
From 1.10 and 1.1, Shah and Noor [21] defined the q−Srivastava Attiya operator Jsq,bf(z):A→A by
Jsq,bf(z)=ψq(s,b;z)∗f(z)=z+∞∑k=2([1+b]q[k+b]q)sakzk | (1.11) |
where ∗ denotes convolution (or the Hadamard product).
We note that:
(i) If q→1−, then the function ϕq(s,b;z) reduces to the Hurwitz-Lerch zeta function and the operator Jsq,b coincides with the Srivastava-Attiya operator (see [22,23]).
(ii) J1q,0f(z)=∫z0f(t)tdqt (q−Alexander operator).
(iii) J1q,bf(z)=[1+b]qzb∫z0tb−1f(t)dqt (q−Bernardi operator [18]).
(iv) J1q,1f(z)=[2]qz∫z0tb−1f(t)dqt (q−Libera operator [18]).
In present paper, we defined a general subclass ΣHsq,b(τ,λ,μ) of bi-univalent functions related to the Bell numbers by using q−Srivastava Attiya operator. Using the principles of subordination, the estimates for the coefficients |a2|, |a3| and |a3−δa22| of the functions of the form 1.1 in the class ΣHsq,b(τ,λ,μ) have been obtained. For some particular choices of τ, λ, μ and s the bounds determined.
Let Ω be the class of analytic functions of the form
w(z)=w1z+w2z2+w3z3+... |
in the unit disk D satisfying the condition |w(z)|<1. There is an important relation between the classes Ω and P as follows:
w∈Ω ⇔ 1+w(z)1−w(z)∈P or p∈P ⇔ p(z)−1p(z)+1∈Ω. | (2.1) |
Define the functions p and s in P given by
p(z)=1+u(z)1−u(z)=1+p1z+p2z2+p3z3+⋯ |
and
s(z)=1+v(z)1−v(z)=1+s1z+s2z2+s3z3+⋯. |
It follows that
u(z)=p(z)−1p(z)+1=p12z+12(p2−p212)z2+⋯ | (2.2) |
and
v(z)=s(z)−1s(z)+1=s12z+12(s2−s212)z2+⋯. | (2.3) |
Definition 2.1. A function f∈Σ is said to be in the class ΣHsq,b(τ,λ,μ) if the following conditions hold true for all z,w∈D:
1+1τ[(1−λ)[Jsq,bf(z)z]μ+λ∂q(Jsq,bf(z))(Jsq,bf(z)z)μ−1−1]≺φ(z) |
and
1+1τ[(1−λ)[Jsq,bg(w)w]μ+λ∂q(Jsq,bg(w))(Jsq,bg(w)w)μ−1−1]≺φ(w) |
where φ(z)=eez−1, g(w)=f−1(w), τ∈C∖{0}, μ>0, 0<q<1 and λ≥0.
Remark 2.1. We note that, for suitable choices parameters, the class ΣHsq,b(τ,λ,μ) reduces to the following classes.
1) Let λ=1 in ΣHsq,b(τ,λ,μ). Then a function f∈Σ is said to be in the class ΣHsq,b(τ,μ) if the following subordinations hold for all z,w∈D:
1+1τ[∂q(Jsq,bf(z))(Jsq,bf(z)z)μ−1−1]≺φ(z) |
and
1+1τ[∂q(Jsq,bg(w))(Jsq,bg(w)w)μ−1−1]≺φ(w) |
2) Let λ=1 and τ=1 in ΣHsq,b(τ,λ,μ). Then a function f∈Σ is said to be in the class ΣHsq,b(μ) if the following subordinations hold for all z,w∈D:
∂q(Jsq,bf(z))(Jsq,bf(z)z)μ−1≺φ(z) |
and
∂q(Jsq,bf(w))(Jsq,bf(w)w)μ−1≺φ(w). |
3) Let μ=1 in ΣHsq,b(τ,λ,μ). Then a function f∈Σ is said to be in the class ΣHsq,b(τ,λ) if the following subordinations hold for all z,w∈D:
1+1τ[(1−λ)Jsq,bf(z)z+λ∂q(Jsq,bf(z))−1]≺φ(z) |
and
1+1τ[(1−λ)Jsq,bg(w)w+λ∂q(Jsq,bg(w))−1]≺φ(w). |
4) Let μ=1 and τ=1 in ΣHsq,b(τ,λ,μ). Then a function f∈Σ is said to be in the class ΣHsq,b(λ) if the following subordinations hold for all z,w∈D:
(1−λ)Jsq,bf(z)z+λ∂q(Jsq,bf(z))≺φ(z) |
and
(1−λ)Jsq,bg(w)w+λ∂q(Jsq,bg(w))≺φ(w) |
5) Let μ=1, τ=1 and λ=0 in ΣHsq,b(τ,λ,μ). Then a function f∈Σ is said to be in the class ΣHsq,b if the following subordinations hold for all z,w∈D:
Jsq,bf(z)z≺φ(z) |
and
Jsq,bg(w)w≺φ(w). |
6) Let s=0 in ΣHsq,b(τ,λ,μ). Then a function f∈Σ is said to be in the class ΣH(τ,λ,μ) if the following subordinations hold for all z,w∈D:
1+1τ[(1−λ)[f(z)z]μ+λ∂q(f(z))(f(z)z)μ−1−1]≺φ(z) |
and
1+1τ[(1−λ)[g(w)w]μ+λ∂q(g(w))(g(w)w)μ−1−1]≺φ(w). |
The following theorem derives the estimates for the coefficients |a2| and |a3| for the functions given by 1.1 that belong to the class ΣHsq,b(τ,λ,μ).
Theorem 2.1. Let f given by (1.1) be in the class ΣHsq,b(τ,λ,μ). Then
|a2|≤|([2+b]q[1+b]q)s|min{|τ|μ+λq,√2|τ|μ(1+μ)+2λq(μ+q)} | (2.4) |
and
|a3|≤|([3+b]q[1+b]q)s||τ|μ+λq(1+q)min{1,|τ|(μ+λq(1+q))(μ+λq)2}. | (2.5) |
Proof. Let f∈ΣHsq,b(τ,λ,μ) and g=f−1. Then, there are analytic functions u,v∈Ω satisfying
1+1τ[(1−λ)[Jsq,bf(z)z]μ+λ∂q(Jsq,bf(z))(Jsq,bf(z)z)μ−1−1]=φ(u(z)) | (2.6) |
and
1+1τ[(1−λ)[Jsq,bg(w)w]μ+λ∂q(Jsq,bg(w))(Jsq,bg(w)w)μ−1−1]=φ(v(z)). | (2.7) |
In other words, by using 2.1 in 2.6 and 2.7 we write
1+1τ[(1−λ)[Jsq,bf(z)z]μ+λ∂q(Jsq,bf(z))(Jsq,bf(z)z)μ−1−1]=φ(p(z)−1p(z)+1)=eep(z)−1p(z)+1−1 | (2.8) |
and
1+1τ[(1−λ)[Jsq,bg(w)w]μ+λ∂q(Jsq,bg(w))(Jsq,bg(w)w)μ−1−1]=φ(s(z)−1s(z)+1)=ees(z)−1s(z)+1−1. | (2.9) |
From 2.8 and 2.9, we have
1+(μ+λq)τ([1+b]q[2+b]q)sa2z+1τ(((μ−1)(μ+2λq)2)([1+b]q[2+b]q)2sa22+(μ+λq(1+q))([1+b]q[3+b]q)sa3)z2⋯=1+p12z+p22z2+⋯ |
and
1−(μ+λq)τ([1+b]q[2+b]q)sa2w+1τ((λq(2q+μ+1)+μ(μ+3)2)([1+b]q[2+b]q)2sa22+(−μ−λq(1+q))([1+b]q[3+b]q)sa3)w2⋯1+s12z+s22z2+⋯. |
Comparing the coefficients on the both sides of above last equalities, we have the relations
1τ(μ+λq)a2([1+b]q[2+b]q)s=p12, | (2.10) |
1τ(((μ−1)(μ+2λq)2)([1+b]q[2+b]q)2sa22+(μ+λq(1+q))([1+b]q[3+b]q)sa3)=p22, | (2.11) |
−1τ(μ+λq)a2([1+b]q[2+b]q)s=s12 | (2.12) |
and
1τ((λq(2q+μ+1)+μ(μ+3)2)([1+b]q[2+b]q)2sa22−(μ+λq(1+q))([1+b]q[3+b]q)sa3)=s22. | (2.13) |
Therefore, from the Eqs 2.10 and 2.12, we find that
p1=−s1 | (2.14) |
and
[1τ(μ+λq)([1+b]q[2+b]q)s]2a22=18(p21+s21), | (2.15) |
which upon applying Lemma 1.1, yields
|a2|≤|([2+b]q[1+b]q)s||τ|μ+λq. |
On the other hand, by using 2.11 and 2.13, we obtain
1τ(μ2+μ+2λqμ+2λq2)([1+b]q[2+b]q)2sa22=p2+s22, | (2.16) |
which yields
|a2|≤|([2+b]q[1+b]q)s|√2|τ|μ2+μ+2λqμ+2λq2. |
We now, investigate the upper bound of |a3|. For this, by using 2.11 and 2.13, we have
2τ(μ+λq(1+q))(([1+b]q[2+b]q)2sa22−([1+b]q[3+b]q)sa3)=s2−p22. | (2.17) |
Therefore for substituting 2.15 in 2.17, we have
([1+b]q[3+b]q)sa3=τ2(p21+s21)8(μ+λq)2+τ(p2−s2)4(μ+λq(1+q)) | (2.18) |
or
a3=([3+b]q[1+b]q)sτ4(μ+λq(1+q))[(p2−s2)+τ(μ+λq(1+q))(μ+λq)2p21]. | (2.19) |
On the other hand, according to the Lemma 1.2 and 2.14, we write
2p2=p21+x(4−p21)2s2=s21+y(4−s21)}⟹p2−s2=4−p212(x−y) | (2.20) |
and so, from 2.19 and 2.20, we have
a3=([3+b]q[1+b]q)sτ4(μ+λq(1+q))[4−p212(x−y)+τ(μ+λq(1+q))(μ+λq)2p21]. | (2.21) |
If we apply triangle inequality to equation 2.21, we obtain
|a3|≤|([3+b]q[1+b]q)s||τ|4(μ+λq(1+q))[4−p212(|x|+|y|)+|τ|(μ+λq(1+q))(μ+λq)2p21]. |
Since the function p(eiθz) (θ∈R) is in the class P for any p∈P, there is no loss of generality in assuming p1>0. Write p1=p, p∈[0,2]. Thus, for |x|≤1 and |y|≤1 we obtain
|a3|≤|([3+b]q[1+b]q)s||τ|4(μ+λq(1+q))[4+(|τ|(μ+λq(1+q))(μ+λq)2−1)p2], |
which upon applying Lemma 1.1, yields upper bound of |a3|.
Theorem 2.2. If f(z) given by (1.1) be in the class ΣHsq,b(τ,λ,μ) and δ∈C, then
|a3−δa22|≤|τ|(|K+L|+|K−L|) |
where
K=(([3+b]q[1+b]q)s−δ([2+b]q[1+b]q)2s)1μ2+μ+2λqμ+2λq2,L=([3+b]q[1+b]q)s12(μ+λq+λq2). | (2.22) |
Proof. From the Eqs 2.16 and 2.18 we obtain
a22=([2+b]q[1+b]q)2sτ(p2+s2)2(μ2+μ+2λqμ+2λq2) | (2.23) |
and
a3=τ2([3+b]q[1+b]q)s(p2+s2μ2+μ+2λqμ+2λq2−s2−p22(μ+λq+λq2)). | (2.24) |
Therefore, by using the equalities 2.23 and 2.24 for δ∈C, we have
a3−δa22=τ2([3+b]q[1+b]q)s(p2+s2μ2+μ+2λqμ+2λq2−s2−p22(μ+λq+λq2))−δ([2+b]q[1+b]q)2sτ(p2+s2)2(μ2+μ+2λqμ+2λq2). |
After the necessary arrangements, we rewrite the above last equality as
a3−δa22=τ2((K+L)p2+(K−L)s2) | (2.25) |
where K and L are given by 2.22. Taking the absolute value of 2.25, from Lemma 1.1 we obtain the desired inequality.
Theorem 2.3. If f(z) given by (1.1) be in the class ΣHsq,b(τ,λ,μ) and δ∈C, then
|([1+b]q[3+b]q)sa3−δ([1+b]q[2+b]q)2sa22|≤2|τ|{12(μ+λq+λq2),0≤|Ψ(δ)|≤12(μ+λq+λq2)|Ψ(δ)|,|Ψ(δ)|≥12(μ+λq+λq2) |
where
Ψ(δ)=1−δμ2+μ+2λqμ+2λq2. |
Proof. From Eq 2.17, we write
([1+b]q[3+b]q)sa3−δ([1+b]q[2+b]q)2sa22=τ(p2−s2)4(μ+λq+λq2)+(1−δ)([1+b]q[2+b]q)2sa22. | (2.26) |
By substituting 2.16 in 2.26, we have
([1+b]q[3+b]q)sa3−δ([1+b]q[2+b]q)2sa22=τ(p2−s2)4(μ+λq+λq2)+(1−δ)τ(s2+p2)2(μ2+μ+2λqμ+2λq2)=τ2((Ψ(δ)+12(μ+λq+λq2))p2+(Ψ(δ)−12(μ+λq+λq2))s2) |
where
Ψ(δ)=1−δμ2+μ+2λqμ+2λq2. |
Therefore, we conclude that
|([1+b]q[3+b]q)sa3−δ([1+b]q[2+b]q)2sa22|≤2|τ|{12(μ+λq+λq2),0≤|Ψ(δ)|≤12(μ+λq+λq2)|Ψ(δ)|,|Ψ(δ)|≥12(μ+λq+λq2), |
which evidently complete the proof of the theorem.
Corollary 2.1. Let f given by (1.1) be in the class ΣHsq,b(τ,μ). Then
|a2|≤|([2+b]q[1+b]q)s|min{|τ|μ+q,√2|τ|μ(1+μ)+2q(μ+q)},|a3|≤|([3+b]q[1+b]q)s||τ|μ+q(1+q)min{1,|τ|(μ+q(1+q))(μ+q)2},|a3−δa22|≤|τ|(|K1+L1|+|K1−L1|) |
and
|([1+b]q[3+b]q)sa3−δ([1+b]q[2+b]q)2sa22|≤2|τ|{12(μ+q+q2),0≤|Ψ1(δ)|≤12(μ+q+q2)|Ψ1(δ)|,|Ψ1(δ)|≥12(μ+q+q2), |
where
K1=(([3+b]q[1+b]q)s−δ([2+b]q[1+b]q)2s)1μ2+μ+2qμ+2q2,L1=([3+b]q[1+b]q)s12(μ+q+q2),Ψ1(δ)=1−δμ2+μ+2qμ+2q2. |
Corollary 2.2. Let f given by (1.1) be in the class ΣHsq,b(τ,λ). Then
|a2|≤|([2+b]q[1+b]q)s|min{|τ|1+λq,√|τ|1+λq(1+q)},|a3|≤|([3+b]q[1+b]q)s||τ|1+λq(1+q)min{1,|τ|(1+λq(1+q))(1+λq)2},|a3−δa22|≤|τ|(|K2+L2|+|K2−L2|) |
and
|([1+b]q[3+b]q)sa3−δ([1+b]q[2+b]q)2sa22|≤2|τ|{12(1+λq+λq2),0≤|Ψ2(δ)|≤12(1+λq+λq2)|Ψ2(δ)|,|Ψ2(δ)|≥12(1+λq+λq2), |
where
K2=(([3+b]q[1+b]q)s−δ([2+b]q[1+b]q)2s)12(1+λq+2λq2),L2=([3+b]q[1+b]q)s12(1+λq+λq2),Ψ2(δ)=1−δ2(1+λq+λq2). |
Corollary 2.3. Let f given by (1.1) be in the class ΣH(τ,λ,μ). Then
|a2|≤min{|τ|μ+λq,√2|τ|μ(1+μ)+2λq(μ+q)},|a3|≤|τ|μ+λq(1+q)min{1,|τ|(μ+λq(1+q))(μ+λq)2} |
and
|a3−δa22|≤2|τ|{12(1+λq+λq2),0≤|Ψ3(δ)|≤12(1+λq+λq2)|Ψ3(δ)|,|Ψ3(δ)|≥12(1+λq+λq2), |
where
Ψ3(δ)=1−δ2(1+λq+λq2). |
In this paper, we defined a general subclass of bi-univalent functions related with q−Srivastava Attiya operator by using the Bell numbers and subordination. For the functions belonging to this class, we obtained non-sharp bounds for the initial coefficients and the Fekete-Szegö functional. Some interesting corollaries and applications of the results are also discussed.
The research was supported by the Commission for the Scientific Research Projects of Kyrgyz-Turkish Manas University, project number KTMU-BAP-2020.FB.04.
[1] | E. T. Bell, The iterated exponential integers, Ann. Math., 39 (1938), 539-557. |
[2] | E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 558-577. |
[3] | D. A. Brannan, J. G. Clunie, Aspects of Contemporary Complex Analysis, (Proceedings of the NATO Advanced Study Institute heald at the University of Durham, Durham; July 1-20, 1979), Academic Press: New York, NY, USA; London, UK, 1980. |
[4] | D. A. Brannan, T. S. Taha, On some classes of bi-unvalent functions, Stud. Univ. Babeş-Bolyai Math., 31 (1986), 70-77. |
[5] | N. E. Cho, S. Kumar, V. Kumar, et al. Starlike functions related to the Bell numbers, Symmetry, 219 (2019), 1-17. |
[6] | M. Çaǧlar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 66 (2017), 85-91. |
[7] | E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49-60. |
[8] | P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983. |
[9] | H. Exton, q-Hypergeometric Functions and Applications, Chichester, UK: Ellis Horwood Limited, 1983. |
[10] | B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573. |
[11] | G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge, UK: Cambridge University Press, 1990. |
[12] | H. A. Ghany, q-derivative of basic hypergeomtric series with respect to parameters, Int. J. Math. Anal., 3 (2009), 1617-1632. |
[13] | F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Society Edinburgh, 46 (1908), 253-281. |
[14] | V. Kumar, N. E. Cho, V. Ravichandran, et al. Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053-1064. |
[15] | A. Y. Lashin, Coefficient estimates for two subclasses of analytic and bi-Univalent functions, Ukr. Math. J., 70 (2019), 1484-1492. |
[16] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Am. Math. Soc., 18 (1967), 63-68. |
[17] | R. J. Libera, E. J. Zlotkıewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc., 87 (1983), 251-257. |
[18] | K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3-11. |
[19] |
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in|z|< 1, Arch. Ration. Mech. Anal., 32 (1969), 100-112. doi: 10.1007/BF00247676
![]() |
[20] | H. Orhan, N. Magesh, V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Math., 27 (2016), 889-897. |
[21] | S. A. Shah, K. I. Noor, Study on the q-analogue of a ceratin family of linear operators, Turk J. Math., 43 (2019), 2707-2714. |
[22] | H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integ. Transf. Spec. F., 18 (2007), 207-216. |
[23] | H. M. Srivastava, J. Choi, Series associated with zeta and related function, Dordrecht, the Netherlands: Kluwer Academic Publisher, 2001. |
[24] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. |
[25] | H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. |
[26] | Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math., 15 (2011), 2377-2386. |
[27] | Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994. |
[28] | Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461-11465. |
[29] | P. Zaprawa, Estimates of Initial Coefficients for Bi-Univalent Functions, Abst. Appl. Anal. Article ID 357480, 6. 2014. |
[30] | P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169-178. |
1. | H. M. Srivastava, Sarem H. Hadi, Maslina Darus, Some subclasses of p-valent $$\gamma $$-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator, 2023, 117, 1578-7303, 10.1007/s13398-022-01378-3 | |
2. | Hari Mohan Srivastava, Abbas Kareem Wanas, Rekha Srivastava, Applications of the q-Srivastava-Attiya Operator Involving a Certain Family of Bi-Univalent Functions Associated with the Horadam Polynomials, 2021, 13, 2073-8994, 1230, 10.3390/sym13071230 | |
3. | Abdullah Alatawi, Maslina Darus, Badriah Alamri, Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function, 2023, 15, 2073-8994, 785, 10.3390/sym15040785 | |
4. | Sarem H. Hadi, Maslina Darus, Firas Ghanim, Alina Alb Lupaş, Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator, 2023, 11, 2227-7390, 2479, 10.3390/math11112479 | |
5. | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla, Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions, 2024, 9, 2473-6988, 8134, 10.3934/math.2024395 | |
6. | Seon Hye An, Nak Eun Cho, SUBORDINATIONS BY CERTAIN UNIVALENT FUNCTIONS ASSOCIATED WITH A FAMILY OF MULTIPLIER TRANSFORMATIONS, 2024, 14, 2156-907X, 778, 10.11948/20230145 | |
7. | Abdullah Alsoboh, Ala Amourah, Maslina Darus, Carla Amoi Rudder, Investigating New Subclasses of Bi-Univalent Functions Associated with q-Pascal Distribution Series Using the Subordination Principle, 2023, 15, 2073-8994, 1109, 10.3390/sym15051109 | |
8. | Ibrahim S. Elshazly, Gangadharan Murugusundaramoorthy, Borhen Halouani, Alaa H. El-Qadeem, Kaliappan Vijaya, Bi-Starlike Function of Complex Order Involving Mathieu-Type Series in the Shell-Shaped Region, 2024, 13, 2075-1680, 747, 10.3390/axioms13110747 | |
9. | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish, Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with $ \mathfrak{q} $-Srivastava-Attiya operator, 2025, 10, 2473-6988, 7269, 10.3934/math.2025333 |