Citation: Robert Reynolds, Allan Stauffer. Derivation of logarithmic integrals expressed in teams of the Hurwitz zeta function[J]. AIMS Mathematics, 2020, 5(6): 7252-7258. doi: 10.3934/math.2020463
[1] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9 Eds., Dover, New York, 1982. |
[2] | D. H. Bailey, J. M. Borwein, N. J. Calkin, et al. Experimental Mathematics in Action, A K Peters, Wellesley, MA, 2007. |
[3] | I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 6 Eds., Academic Press, USA, 2000. |
[4] | R. Reynolds, A. Stauffer, A method for evaluating definite integrals in terms of special functions with examples, Int. Math. Forum, 15 (2020), 235-244. doi: 10.12988/imf.2020.91272 |
[5] | K. S. Kölbig, The polygamma function $\psi^{(k)}(x)$ for $x=\frac{1}{4}$ and $x=\frac{3}{4}$, J. Comput. Appl. Math., 75 (1996), 43-46. |
[6] | K. S. Kölbig, The polygamma function and the derivatives of the cotangent function for rational arguments, Mathematical Physics and Mathematics, 1996, CERN-CN-96-005. |
[7] | W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3 Eds., Springer-Verlag, Berlin, Heidelberg, 1966. |
[8] | J. C. McDowell, The light from population III stars, Mon. Not. R. astr. Soc., 223 (1986), 763-786. doi: 10.1093/mnras/223.4.763 |
[9] | W. L. Grosshandler, A. T. Modak, Radiation from nonhomogeneous combustion products, Symposium (International) on Combustion, 18 (1981), 601-609. doi: 10.1016/S0082-0784(81)80065-3 |
[10] | G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999. |
[11] | O. Espinosa, V. H. Moll, A generalized polygamma function, Integr. Transf. Spec. Funct. 15 (2004), 101-115. doi: 10.1080/10652460310001600573 |