In this study, a fourth-order nonlinear wave equation with variable coefficients was investigated. Through appropriate choice of the free parameters and using the simplified linear superposition principle (LSP) and velocity resonance (VR), the examined equation can be considered as Hirota–Satsuma–Ito, Calogero–Bogoyavlenskii–Schiff and Jimbo–Miwa equations. The main objective of this study was to obtain novel resonant multi-soliton solutions and investigate inelastic interactions of traveling waves for the above-mentioned equation. Novel resonant multi-soliton solutions along with their essential conditions were obtained by using simplified LSP, and the conditions guaranteed the existence of resonant solitons. Furthermore, the obtained solutions were used to investigate the dynamic and fission behavior of Y-type multi-soliton waves. For an accurate investigation of physical phenomena, appropriate free parameters were chosen to ascertain the impact on the speed of traveling waves and the initiation time of fission. Three-dimensional and contour plots of the obtained solutions are presented in
Citation: Chun-Ku Kuo, Dipankar Kumar, Chieh-Ju Juan. A study of resonance Y-type multi-soliton solutions and soliton molecules for new (2+1)-dimensional nonlinear wave equations[J]. AIMS Mathematics, 2022, 7(12): 20740-20751. doi: 10.3934/math.20221136
In this study, a fourth-order nonlinear wave equation with variable coefficients was investigated. Through appropriate choice of the free parameters and using the simplified linear superposition principle (LSP) and velocity resonance (VR), the examined equation can be considered as Hirota–Satsuma–Ito, Calogero–Bogoyavlenskii–Schiff and Jimbo–Miwa equations. The main objective of this study was to obtain novel resonant multi-soliton solutions and investigate inelastic interactions of traveling waves for the above-mentioned equation. Novel resonant multi-soliton solutions along with their essential conditions were obtained by using simplified LSP, and the conditions guaranteed the existence of resonant solitons. Furthermore, the obtained solutions were used to investigate the dynamic and fission behavior of Y-type multi-soliton waves. For an accurate investigation of physical phenomena, appropriate free parameters were chosen to ascertain the impact on the speed of traveling waves and the initiation time of fission. Three-dimensional and contour plots of the obtained solutions are presented in
[1] | A. M. Wazwaz, Partial differential equations and solitary waves theory, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-00251-9 |
[2] | R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543043 |
[3] | S. W. Yao, L. Akinyemib, M. Mirzazadeh, M. Inc, K. Hosseini, M. Şenol, Dynamics of optical solitons in higher-order Sasa–Satsuma equation, Results Phys., 30 (2021), 104825. https://doi.org/10.1016/j.rinp.2021.104825 doi: 10.1016/j.rinp.2021.104825 |
[4] | M. N. Rasoulizadeh, O. Nikan, Z. Avazzadeh, The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation, Math. Sci., 15 (2021), 365–376. https://doi.org/10.1007/s40096-021-00375-8 doi: 10.1007/s40096-021-00375-8 |
[5] | M. M. A. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. A. Akbar, M. Inc, Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod, Mod. Phys. Lette. B, 35 (2021), 2150381. https://doi.org/10.1142/S0217984921503814 doi: 10.1142/S0217984921503814 |
[6] | O. Nikan, A. Golbabai, T. Nikazad, Solitary wave solution of the nonlinear KdV–Benjamin–Bona–Mahony–Burgers model via two meshless methods, Eur. Phys. J. Plus, 134 (2019), 367. https://doi.org/10.1140/epjp/i2019-12748-1 doi: 10.1140/epjp/i2019-12748-1 |
[7] | W. X. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 9 (2019), 1319–1332. https://doi.org/10.11948/2156-907X.20180227 doi: 10.11948/2156-907X.20180227 |
[8] | W. X. Ma, N-soliton solutions and the Hirota conditions in (1+1)-dimensions, Int. J. Nonlin. Sci. Numer. Simula., 23 (2022), 123–133. https://doi.org/10.1515/ijnsns-2020-0214 doi: 10.1515/ijnsns-2020-0214 |
[9] | W. X. Ma, E. G. Fan, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61 (2011), 950–959. https://doi.org/10.1016/j.camwa.2010.12.043 doi: 10.1016/j.camwa.2010.12.043 |
[10] | W. X. Ma, Y. Zhang, Y. N. Tang, J. Y. Tu, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., 218 (2012), 7174–7183. https://doi.org/10.1016/j.amc.2011.12.085 doi: 10.1016/j.amc.2011.12.085 |
[11] | Ö. Ünsal, W. X. Ma, Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations, Comput. Math. Appl., 71 (2016), 1242–1247. https://doi.org/10.1016/j.camwa.2016.02.006 doi: 10.1016/j.camwa.2016.02.006 |
[12] | H. Q. Zhang, W. X. Ma, Resonant multiple wave solutions for a (3+1)-dimensional nonlinear evolution equation by linear superposition principle, Comput. Math. Appl., 73 (2017), 2339–2343. https://doi.org/10.1016/j.camwa.2017.03.014 doi: 10.1016/j.camwa.2017.03.014 |
[13] | C. K. Kuo, W. X. Ma, An effective approach for constructing novel KP-like equations, Waves Random Complex, 32 (2020), 629–640. https://doi.org/10.1080/17455030.2020.1792580 doi: 10.1080/17455030.2020.1792580 |
[14] | C. K. Kuo, Y. C. Chen, C. W. Wu, W. N. Chao, Novel solitary and resonant multi-soliton solutions to the (3+1)-dimensional potential-YTSF equation, Mod. Phys. Lett. B, 35 (2021), 2150326. https://doi.org/10.1142/S0217984921503280 doi: 10.1142/S0217984921503280 |
[15] | C. K. Kuo, Novel resonant multi-soliton solutions and inelastic interactions to the (3+1)-and (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equations via the simplified linear superposition principle, Eur. Phys. J. Plus, 136 (2021), 77. https://doi.org/10.1140/epjp/s13360-020-01062-8 doi: 10.1140/epjp/s13360-020-01062-8 |
[16] | C. K. Kuo, B. Ghanbari, Resonant multi-soliton solutions to new (3+1)-dimensional Jimbo–Miwa equations by applying the linear superposition principle, Nonlinear Dyn., 96 (2019), 459–464. https://doi.org/10.1007/s11071-019-04799-9 doi: 10.1007/s11071-019-04799-9 |
[17] | C. K. Kuo, Resonant multi-soliton solutions to the (2+1)-dimensional Sawada–Kotera equations via the simplified form of the linear superposition principle, Phys. Scr., 94 (2019), 085218. |
[18] | C. K. Kuo, Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified linear superposition principle, Mod. Phys. Lett. B, 33 (2019), 1950299. https://doi.org/10.1142/S0217984919502993 doi: 10.1142/S0217984919502993 |
[19] | C. K. Kuo, W. X. Ma, A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equations via the linear superposition principle, Nonlinear Anal., 190 (2020), 111592. https://doi.org/10.1016/j.na.2019.111592 doi: 10.1016/j.na.2019.111592 |
[20] | Z. Zhang, S. X. Yang, B. Li, Soliton molecules, asymmetric solitons and hybrid solutions for (2+1)-dimensional fifth-order KdV equation, Chinese Phys. Lett., 36 (2019), 120501. |
[21] | S. X. Yang, Z. Zhang, B. Li, Soliton molecules and some novel types of hybrid solutions to (2+1)-dimensional variable coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Adv. Math. Phys., 2020 (2020), 2670710. https://doi.org/10.1155/2020/2670710 doi: 10.1155/2020/2670710 |
[22] | W. T. Li, J. H. Li, B. Li, Soliton molecules, asymmetric solitons and some new types of hybrid solutions in (2+1)-dimensional Sawada–Kotera model, Mod. Phys. Lett. B, 34 (2020), 2050141. https://doi.org/10.1142/S0217984920501419 doi: 10.1142/S0217984920501419 |
[23] | Z. Zhang, X. Y. Yang, B. Li, Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation, Nonlinear Dyn., 100 (2020), 1551–1557. https://doi.org/10.1007/s11071-020-05570-1 doi: 10.1007/s11071-020-05570-1 |
[24] | X. Y. Yang, R. Fan, B. Li, Soliton molecules and some novel interaction solutions to the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation, Phys. Scr., 95 (2020), 045213. https://doi.org/10.1088/1402-4896/ab6483 doi: 10.1088/1402-4896/ab6483 |
[25] | J. J. Dong, B. Li, M. Yuen, Soliton molecules and mixed solutions of the (2+1)-dimensional bidirectional Sawada–Kotera equation, Commun. Theor. Phys., 72 (2020), 025002. |
[26] | B. Wang, Z. Zhang, B. Li, Soliton molecules and some hybrid solutions for the nonlinear Schrödinger equation, Chinese Phys. Lette., 37 (2020), 030501. |
[27] | Z. Zhang, Q. Guo, B. Li, J. C. Chen, A new class of nonlinear superposition between lump waves and other waves for Kadomtsev–Petviashvili Ⅰ equation, Commun. Nonlinear Sci. Numer. Simulat., 101 (2021), 105866. https://doi.org/10.1016/j.cnsns.2021.105866 doi: 10.1016/j.cnsns.2021.105866 |
[28] | S. Y. Lou, Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance, J. Phys. Commun., 4 (2020), 014002. |
[29] | C. K. Kuo, A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-dimensional Kudryashov–Sinelshchikov equation, Chaos Soliton. Fract., 152 (2021), 111480. https://doi.org/10.1016/j.chaos.2021.111480 doi: 10.1016/j.chaos.2021.111480 |
[30] | S. T. Chen, W. X. Ma, Lump solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation, Comput. Math. Appl., 76 (2018), 1680–1685. https://doi.org/10.1016/j.camwa.2018.07.019 doi: 10.1016/j.camwa.2018.07.019 |
[31] | W. X. Ma, Comment on the (3+1) dimensional Kadomtsev–Petviashvili equations, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 2663–2666. https://doi.org/10.1016/j.cnsns.2010.10.003 doi: 10.1016/j.cnsns.2010.10.003 |
[32] | A. M. Wazwaz, Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations, Appl. Math. Comput., 203 (2008), 592–597. https://doi.org/10.1016/j.amc.2008.05.004 doi: 10.1016/j.amc.2008.05.004 |
[33] | H. C. Ma, H. F. Wu, W. X. Ma, A. Ping. Deng, Localized interaction solutions of the (2+1)-dimensional Ito Equation, Opt. Quant. Electron., 53 (2021), 303. https://doi.org/10.1007/s11082-021-02909-9 doi: 10.1007/s11082-021-02909-9 |
[34] | W. X. Ma, X. L. Yong, X. Lü, Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations, Wave Motion, 103 (2021), 102719. https://doi.org/10.1016/j.wavemoti.2021.102719 doi: 10.1016/j.wavemoti.2021.102719 |
[35] | W. X. Ma, N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, Math. Comput. Simulat., 190 (2021), 270–279. https://doi.org/10.1016/j.matcom.2021.05.020 doi: 10.1016/j.matcom.2021.05.020 |
[36] | B. Günay, C. K. Kuo, W. X. Ma, An application of the exponential rational function method to exact solutions to the Drinfeld-Sokolov system, Results Phys., 29 (2021), 104733. https://doi.org/10.1016/j.rinp.2021.104733 doi: 10.1016/j.rinp.2021.104733 |
[37] | Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new (3+1)-dimensional Kadomtsev–Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves, Math. Comput. Simulat., 187 (2021), 505–519. https://doi.org/10.1016/j.matcom.2021.03.012 doi: 10.1016/j.matcom.2021.03.012 |
[38] | B. Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 106822. https://doi.org/10.1016/j.aml.2020.106822 doi: 10.1016/j.aml.2020.106822 |
[39] | R. Hirota, M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Jpn., 52 (1983), 744–748. https://doi.org/10.1143/JPSJ.52.744 doi: 10.1143/JPSJ.52.744 |
[40] | R. Hirota, J. Satsuma, N-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Jpn., 40 (1976), 611–612. https://doi.org/10.1143/JPSJ.40.611 doi: 10.1143/JPSJ.40.611 |
[41] | A. M. Wazwaz, Multiple-soliton solutions for extended (3+1)-dimensional Jimbo–Miwa equations, Appl. Math. Lett., 64 (2017), 21–26. https://doi.org/10.1016/j.aml.2016.08.005 doi: 10.1016/j.aml.2016.08.005 |
[42] | A. M. Wazwaz, A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: Multiple soliton solutions and a variety of solitonic solutions, Waves Random Complex, 28 (2018), 533–543. https://doi.org/10.1080/17455030.2017.1367440 doi: 10.1080/17455030.2017.1367440 |
[43] | W. X. Ma, J. Li, C. M. Khalique, A Study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)-Dimensionals, Complexity, 2018 (2018), 905958. https://doi.org/10.1155/2018/9059858 doi: 10.1155/2018/9059858 |
[44] | Z. Zhang, Z. Q. Qi, B. Li, Fusion and fission phenomena for (2+ 1)-dimensional fifth- order KdV system, Appl. Math. Lett., 116 (2021), 107004. https://doi.org/10.1016/j.aml.2020.107004 doi: 10.1016/j.aml.2020.107004 |
[45] | Y. Kodama, KP solitons and the Grassmannians: Combinatorics and geometry of two-dimensional wave patterns, Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-4094-8 |