In this paper, we build a novel nonlinear diffusion online game addiction model with unsustainable control. The existence and boundedness of a solution are investigated by a $ C_0 $-semigroup and differential inclusion. Simultaneously, we study the global asymptotic stability of steady states of the model. Finally, a concrete example is theoretically analyzed and numerically simulated.
Citation: Kaihong Zhao. Global stability of a novel nonlinear diffusion online game addiction model with unsustainable control[J]. AIMS Mathematics, 2022, 7(12): 20752-20766. doi: 10.3934/math.20221137
In this paper, we build a novel nonlinear diffusion online game addiction model with unsustainable control. The existence and boundedness of a solution are investigated by a $ C_0 $-semigroup and differential inclusion. Simultaneously, we study the global asymptotic stability of steady states of the model. Finally, a concrete example is theoretically analyzed and numerically simulated.
[1] | World Health Organization, The 11th revision of the International Classification of Diseases (ICD-11), Geneva, 2018. |
[2] | W. Feng, D. E. Ramo, S. R. Chan, J. A. Bourgeois, Internet gaming disorder: Trends in prevalence 1998–2016, Addict. Behav., 75 (2017), 17–24. https://doi.org/10.1016/j.addbeh.2017.06.010 doi: 10.1016/j.addbeh.2017.06.010 |
[3] | Diagnostic and statistical manual of mental disorders (DSM-5), 5 Eds., Washington: American Psychiatric Association, 2013. https://doi.org/10.1176/appi.books.9780890425596 |
[4] | F. W. Paulus, S. Ohmann, A. von Gontard, C. Popow, Internet gaming disorder in children and adolescents: a systematic review, Dev. Med. Child Neurol., 60 (2018), 645–659. https://doi.org/10.1111/dmcn.13754 doi: 10.1111/dmcn.13754 |
[5] | Y. M. Guo, T. T. Li, Optimal control and stability analysis of an online game addiction model with two stages, Math. Methods Appl. Sci., 43 (2020), 4391–4408. https://doi.org/10.1002/mma.6200 doi: 10.1002/mma.6200 |
[6] | T. T. Li, Y. M. Guo, Stability and optimal control in a mathematical model of online game addiction, Filomat, 33 (2019), 5691–5711. https://doi.org/10.2298/FIL1917691L doi: 10.2298/FIL1917691L |
[7] | R. Viriyapong, M. Sookpiam, Education campaign and family understanding affect stability and qualitative behavior of an online game addiction model for children and youth in Thailand, Math. Methods Appl. Sci., 42 (2019), 6906–6916. https://doi.org/10.1002/mma.5796 doi: 10.1002/mma.5796 |
[8] | H. Seno, A mathematical model of population dynamics for the internet gaming addiction, Nonlinear Anal. Model. Control, 26 (2021), 861–883. https://doi.org/10.15388/namc.2021.26.24177 doi: 10.15388/namc.2021.26.24177 |
[9] | S. Djilali, S. Bentout, Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior, Math. Methods Appl. Sci., 44 (2021), 9128–9142. https://doi.org/10.1002/mma.7340 doi: 10.1002/mma.7340 |
[10] | S. Djilali, S. Bentout, Global dynamics of SVIR epidemic model with distributed delay and imperfect vaccine, Results Phys., 25 (2021), 104245. https://doi.org/10.1016/j.rinp.2021.104245 doi: 10.1016/j.rinp.2021.104245 |
[11] | Z. A. Khan, A. L. Alaoui, A. Zeb, M. Tilioua, S. Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, Results Phys., 27 (2021), 104477. https://doi.org/10.1016/j.rinp.2021.104477 doi: 10.1016/j.rinp.2021.104477 |
[12] | K. H. Zhao, Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms, Int. J. Control, 2022. https://doi.org/10.1080/00207179.2022.2078425 doi: 10.1080/00207179.2022.2078425 |
[13] | K. H. Zhao, Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays, Appl. Math. Comput., 437 (2023), 127540. https://doi.org/10.1016/j.amc.2022.127540 doi: 10.1016/j.amc.2022.127540 |
[14] | W. J. Li, L. H. Huang, J. C. Ji, Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy, Discrete Contin. Dyn. Syst. B, 25 (2020), 2639–2664. https://doi.org/10.3934/dcdsb.2020026 doi: 10.3934/dcdsb.2020026 |
[15] | Z. Y. Guo, L. H. Huang, X. F. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 9 (2012), 97–110. https://doi.org/10.3934/mbe.2012.9.97 doi: 10.3934/mbe.2012.9.97 |
[16] | X. B. Zhang, H. Y. Zhao, Global stability of a diffusive predator-prey model with discontinuous harvesting policy, Appl. Math. Lett., 109 (2020), 106539. https://doi.org/10.1016/j.aml.2020.106539 doi: 10.1016/j.aml.2020.106539 |
[17] | W. M. Ni, M. X. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Trans. Amer. Math. Soc., 357 (2005), 3953–3969. https://doi.org/10.1090/S0002-9947-05-04010-9 doi: 10.1090/S0002-9947-05-04010-9 |
[18] | O. Arino, S. Gauthier, J. P. Penot, A fixed point theorem for sequentially continuous mapping with applications to ordinary differential equations, Funkc. Ekvacioj, 27 (1984), 273–279. |
[19] | I. I. Vrabie, Compactness methods for nonlinear evolutions, 1 Ed., London: Longman Scientific and Technical, 1987. |
[20] | J. Simsen, C. B. Gentile, On $p$-Laplacian differential inclusions–Global existence, compactness properties and asymptotic behavior, Nonlinear Anal., 71 (2009), 3488–3500. https://doi.org/10.1016/j.na.2009.02.044 doi: 10.1016/j.na.2009.02.044 |
[21] | J. I. Díaz, I. I. Vrabie, Existence for reaction diffusion systems: a compactness method approach, J. Math. Anal. Appl., 88 (1994), 521–540. https://doi.org/10.1006/jmaa.1994.1443 doi: 10.1006/jmaa.1994.1443 |
[22] | H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Amsterdam: North-Holland Publishing Company, 1973. |
[23] | I. I. Vrabie, Compactness methods for nonlinear evolutions, 2 Eds., London: Longman Scientific and Technical, 1995. |
[24] | S. L. Hollis, R. H. Martin, M. Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744–761. https://doi.org/10.1137/0518057 doi: 10.1137/0518057 |
[25] | K. J. Brown, P. C. Dunne, R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, J. Differ. Equ., 40 (1981), 232–252. |
[26] | K. H. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control, Axioms, 11 (2022), 350. https://doi.org/10.3390/axioms11070350 doi: 10.3390/axioms11070350 |
[27] | K. H. Zhao, Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel, Fractal Fract., 6 (2022), 469. https://doi.org/10.3390/fractalfract6090469 doi: 10.3390/fractalfract6090469 |
[28] | H. Huang, K. H. Zhao, X. D. Liu, On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses, AIMS Math., 7 (2022), 19221–19236. https://doi.org/10.3934/math.20221055 doi: 10.3934/math.20221055 |