Research article Special Issues

New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities

  • Received: 21 July 2024 Revised: 14 August 2024 Accepted: 30 August 2024 Published: 10 September 2024
  • MSC : 35B35, 35C07, 35C08, 35C09

  • We have introduced various novel soliton waves and other analytic wave solutions for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. The modified extended direct algebraic method governs the transmission of various solitons with different effects. The combination of this system enables the obtaining of analytical soliton solutions with some unique behaviors, including bright, dark, and mixed dark-bright soliton solutions; singular soliton solutions; singular periodic, exponential, rational wave solutions; and Jacobi elliptic function solutions. These results realize the stability of the nonlinear waves' propagation in a high-nonlinear-dispersion medium that is illustrated using 2D and 3D visuals and contour graphical diagrams of the output solutions. This research focused on determining exact soliton solutions under certain parameter conditions and evaluating the stability and reliability of the soliton solutions based on the used modified extended direct algebraic method. This will be useful for many various domains in technology and physics, such as biology, optics, and plasma physical science. At the end, we use modulation instability analysis to assess the stability of the wave solutions obtained.

    Citation: Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed. New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities[J]. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278

    Related Papers:

  • We have introduced various novel soliton waves and other analytic wave solutions for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. The modified extended direct algebraic method governs the transmission of various solitons with different effects. The combination of this system enables the obtaining of analytical soliton solutions with some unique behaviors, including bright, dark, and mixed dark-bright soliton solutions; singular soliton solutions; singular periodic, exponential, rational wave solutions; and Jacobi elliptic function solutions. These results realize the stability of the nonlinear waves' propagation in a high-nonlinear-dispersion medium that is illustrated using 2D and 3D visuals and contour graphical diagrams of the output solutions. This research focused on determining exact soliton solutions under certain parameter conditions and evaluating the stability and reliability of the soliton solutions based on the used modified extended direct algebraic method. This will be useful for many various domains in technology and physics, such as biology, optics, and plasma physical science. At the end, we use modulation instability analysis to assess the stability of the wave solutions obtained.



    加载中


    [1] Y. Q. Chen, Z. T. Wu, P. Y. Xiao, W. D. Xiao, W. J. Liu, Application of femtosecond mode-locked SnTe thin films and generation of bound-state solitons, Opt. Lett., 49 (2024), 2437–2440. http://dx.doi.org/10.1364/OL.519940 doi: 10.1364/OL.519940
    [2] K. K. Ahmed, H. M. Ahmed, N. M. Badra, W. B. Rabie, Optical solitons retrieval for an extension of novel dual-mode of a dispersive non-linear Schrödinger equation, Optik, 307 (2024), 171835. http://dx.doi.org/10.1016/j.ijleo.2024.171835 doi: 10.1016/j.ijleo.2024.171835
    [3] K. L. Geng, B. W. Zhu, Q. H. Cao, C. Q. Dai, Y. Y. Wang, Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation, Nonlinear Dyn., 111 (2023), 16483–16496. http://dx.doi.org/10.1007/s11071-023-08719-w doi: 10.1007/s11071-023-08719-w
    [4] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Unveiling optical solitons and other solutions for fourth-order (2+1)-dimensional nonlinear Schrödinger equation by modified extended direct algebraic method, J. Opt., 2024, 1–13. http://dx.doi.org/10.1007/s12596-024-01690-8 doi: 10.1007/s12596-024-01690-8
    [5] E. M. E. Zayed, K. A. E. Alurrfi, A. H. Arnous, M. S. Hashemi, M. Bayram, Effects of high dispersion and generalized non-local laws on optical soliton perturbations in magneto-optic waveguides with sextic-power law refractive index, Nonlinear Dyn., 112 (2024), 8507–8525. http://dx.doi.org/10.1007/s11071-024-09518-7 doi: 10.1007/s11071-024-09518-7
    [6] W. B. Rabie, K. K. Ahmed, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. Eslami, New solitons and other exact wave solutions for coupled system of perturbed highly dispersive CGLE in birefringent fibers with polynomial nonlinearity law, Opt. Quantum Electron., 56 (2024), 1–22. http://dx.doi.org/10.1007/s11082-024-06644-9 doi: 10.1007/s11082-024-06644-9
    [7] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, M. Mirzazadeh, M. Eslami, et al., Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method, Nonlinear Anal. Model. Control, 29 (2024), 205–223. http://dx.doi.org/10.15388/namc.2024.29.34070 doi: 10.15388/namc.2024.29.34070
    [8] A. S. Khalifa, N. M. Badra, H. M. Ahmed, W. B. Rabie, Retrieval of optical solitons in fiber Bragg gratings for high-order coupled system with arbitrary refractive index, Optik, 287 (2023), 171116. http://dx.doi.org/10.1016/j.ijleo.2023.171116 doi: 10.1016/j.ijleo.2023.171116
    [9] H. Zhang, M. Gong, J. S. He, B. Malomed, Two-dimensional vector solitons in Bose-Einstein-condensate mixtures, Appl. Math. Comput., 469 (2024), 128536. http://dx.doi.org/10.1016/j.amc.2024.128536 doi: 10.1016/j.amc.2024.128536
    [10] F. Y. Liu, S. Y. Xu, H. Triki, A. Choudhuri, Q. Zhou, Spatiotemporal modulated solitons in a quasi-one-dimensional spin-1 Bose-Einstein condensates, Chaos Solitons Fract., 183 (2024), 114947. http://dx.doi.org/10.1016/j.chaos.2024.114947 doi: 10.1016/j.chaos.2024.114947
    [11] A. M. Dikandé, Using dark solitons from a Bose-Einstein condensate necklace to imprint soliton states in the spectral memory of a free boson gas, New J. Phys., 25 (2023), 103017. http://dx.doi.org/10.1088/1367-2630/acfcd5 doi: 10.1088/1367-2630/acfcd5
    [12] P. Gao, J. Liu, Quantum scattering treatment on the time-domain diffraction of a matter-wave soliton, Phys. Rev. A, 109 (2024), 013323. http://dx.doi.org/10.1103/PhysRevA.109.013323 doi: 10.1103/PhysRevA.109.013323
    [13] L. W. Zeng, J. C. Shi, M. R. Belić, D. Mihalache, J. B. Chen, J. W. Li, et al., Surface gap solitons in the Schrödinger equation with quintic nonlinearity and a lattice potential, Opt. Express, 31 (2023), 35471–35483. http://dx.doi.org/10.1364/OE.497973 doi: 10.1364/OE.497973
    [14] S. K. Sarkar, T. Mishra, P. Muruganandam, P. K. Mishra, Quench-induced chaotic dynamics of Anderson-localized interacting Bose-Einstein condensates in one dimension, Phys. Rev. A, 107 (2023), 053320. http://dx.doi.org/10.1103/PhysRevA.107.053320 doi: 10.1103/PhysRevA.107.053320
    [15] M. Alquran, Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrodinger equations, Opt. Quantum Electron., 53 (2021), 588. http://dx.doi.org/10.1007/s11082-021-03245-8 doi: 10.1007/s11082-021-03245-8
    [16] E. G. Çelik, N. Antar, Stabilization of self-steepening optical solitons in a periodic PT-symmetric potential, Chaos Solitons Fract., 185 (2024), 115125. http://dx.doi.org/10.1016/j.chaos.2024.115125 doi: 10.1016/j.chaos.2024.115125
    [17] A. S. Khalifa, W. B. Rabie, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. Hashemi, et al., Discovering novel optical solitons of two CNLSEs with coherent and incoherent nonlinear coupling in birefringent optical fibers, Opt. Quantum Electron., 56 (2024), 1340. http://dx.doi.org/10.1007/s11082-024-07237-2 doi: 10.1007/s11082-024-07237-2
    [18] A. R. Seadawy, N. Cheemaa, S. Althobaiti, S. Sayed, A. Biswas, Optical soliton perturbation with fractional temporal evolution by extended modified auxiliary equation mapping, Rev. Mex. Fís., 67 (2021), 403–414. http://dx.doi.org/10.31349/RevMexFis.67.403 doi: 10.31349/RevMexFis.67.403
    [19] S. U. Rehman, M. Bilal, J. Ahmad, Dynamics of soliton solutions in saturated ferromagnetic materials by a novel mathematical method, J. Magn. Magn. Mater., 538 (2021), 168245. http://dx.doi.org/10.1016/j.jmmm.2021.168245 doi: 10.1016/j.jmmm.2021.168245
    [20] M. Ozisik, A. Secer, M. Bayram, On solitary wave solutions for the extended nonlinear Schrödinger equation via the modified F-expansion method, Opt. Quantum Electron., 55 (2023), 215. https://doi.org/10.1007/s11082-022-04476-z doi: 10.1007/s11082-022-04476-z
    [21] H. H. Yi, Y. L. Yao, X. Zhang, G. L. Ma, High-order effect on the transmission of two optical solitons, Chinese Phys. B, 32 (2023), 100509. http://dx.doi.org/10.1088/1674-1056/aceeec doi: 10.1088/1674-1056/aceeec
    [22] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with $\beta $-derivative in optical fibers, Opt. Quantum Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1
    [23] M. I. Khan, A. Farooq, K. S. Nisar, N. A. Shah, Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method, Results Phys., 59 (2024), 107593. http://dx.doi.org/10.1016/j.rinp.2024.107593 doi: 10.1016/j.rinp.2024.107593
    [24] Y. Zhong, H. Triki, Q. Zhou, Bright and kink solitons of time-modulated cubic-quintic-septic-nonic nonlinear Schrödinger equation under space-time rotated PT-symmetric potentials, Nonlinear Dyn., 112 (2024), 1349–1364. http://dx.doi.org/10.1007/s11071-023-09116-z doi: 10.1007/s11071-023-09116-z
    [25] M. M. Al-Sawalha, H. Yasmin, R. Shah, A. H. Ganie, K. Moaddy, Unraveling the dynamics of singular stochastic solitons in stochastic fractional Kuramoto-Sivashinsky equation, Fractal Fract., 7 (2023), 1–24. http://dx.doi.org/10.3390/fractalfract7100753 doi: 10.3390/fractalfract7100753
    [26] L. A. Al-Essa, M. ur Rahman, Novel stochastic multi breather type, a-periodic, hybrid periodic and other type of waves of the Shrödinger-Hirota model with Wiener process, Opt. Quantum Electron., 56 (2024), 1141. http://dx.doi.org/10.1007/s11082-024-07042-x doi: 10.1007/s11082-024-07042-x
    [27] H. A. Alkhidhr, Characteristics of stochastic solutions for the chiral NLSE through Brownian motion process, AIP Adv., 13 (2023), 115320. http://dx.doi.org/10.1063/5.0180435 doi: 10.1063/5.0180435
    [28] W. W. Mohammed, C. Cesarano, N. I. Alqsair, R. Sidaoui, The impact of Brownian motion on the optical solutions of the stochastic ultra-short pulses mathematical model, Alex. Eng. J., 101 (2024), 186–192. http://dx.doi.org/10.1016/j.aej.2024.05.054 doi: 10.1016/j.aej.2024.05.054
    [29] S. Loomba, R. Pal, C. N. Kumar, Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity, Phys. Rev. A, 92 (2015), 033811. http://dx.doi.org/10.1103/PhysRevA.92.033811 doi: 10.1103/PhysRevA.92.033811
    [30] H. Triki, A. Choudhuri, Q. Zhou, A. Biswas, A. S. Alshomrani, Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction, Appl. Math. Comput., 371 (2020), 124951. http://dx.doi.org/10.1016/j.amc.2019.124951 doi: 10.1016/j.amc.2019.124951
    [31] A. S. Khalifa, H. M. Ahmed, N. M. Badra, W. B. Rabie, Exploring solitons in optical twin-core couplers with Kerr law of nonlinear refractive index using the modified extended direct algebraic method, Opt. Quantum Electron., 56 (2024), 1060. http://dx.doi.org/10.1007/s11082-024-06882-x doi: 10.1007/s11082-024-06882-x
    [32] A. H. Arnous, A. Biswas, Y. Yildirim, A. S. Alshomrani, Optical solitons with dispersive concatenation model having multiplicative white noise by the enhanced direct algebraic method, Contemp. Math., 5 (2024), 1122–1136. http://dx.doi.org/10.37256/cm.5220244123 doi: 10.37256/cm.5220244123
    [33] M. M. Roshid, M. M. Rahman, Bifurcation analysis, modulation instability and optical soliton solutions and their wave propagation insights to the variable coefficient nonlinear Schrödinger equation with Kerr law nonlinearity, Nonlinear Dyn., 112 (2024), 16355–16377. http://dx.doi.org/10.1007/s11071-024-09872-6 doi: 10.1007/s11071-024-09872-6
    [34] H. U. Rehman, A. U. Awan, A. M. Hassan, S. Razzaq, Analytical soliton solutions and wave profiles of the (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation, Results Phys., 52 (2023), 106769. http://dx.doi.org/10.1016/j.rinp.2023.106769 doi: 10.1016/j.rinp.2023.106769
    [35] C. Y. Ma, B. Gao, G. Wu, T. Zhang, X. J. Tian, Observation of dissipative bright soliton and dark soliton in an all‐normal dispersion fiber, Int. J. Opt., 2016 (2016), 3946525. http://dx.doi.org/10.1155/2016/3946525 doi: 10.1155/2016/3946525
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(302) PDF downloads(38) Cited by(1)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog