In this paper, the fuzzy counterparts of the collineations defined in classical projective spaces are defined in a 3-dimensional fuzzy projective space derived from a 4-dimensional fuzzy vector space. The properties of fuzzy projective space $ (\lambda, \mathcal{S}) $ left invariant under the fuzzy collineations are characterized depending on the membership degrees of the given fuzzy projective space and also depending on the pointwise invariant of the lines. Moreover, some relations between membership degrees of the fuzzy projective space are presented according to which are of the base point, base line, and base plane invariant under a fuzzy collineation. Specifically, when all membership degrees of $ (\lambda, \mathcal{S}) $ are distinct, the base point, base line, and base plane of $ (\lambda, \mathcal{S}) $ are invariant under the fuzzy collineation $ \bar{f} $. Conversely, if none of the base point, base line, or base plane remain invariant, then the system becomes crisp in $ (\lambda, \mathcal{S}) $. Additionally, some relations between the membership degrees of the fuzzy projective space, concerning the invariance of the base point, base line, and base plane, are presented.
Citation: Elif Altintas Kahriman. Fuzzy collineations of 3-dimensional fuzzy projective space from 4-dimensional fuzzy vector space[J]. AIMS Mathematics, 2024, 9(9): 26182-26194. doi: 10.3934/math.20241279
In this paper, the fuzzy counterparts of the collineations defined in classical projective spaces are defined in a 3-dimensional fuzzy projective space derived from a 4-dimensional fuzzy vector space. The properties of fuzzy projective space $ (\lambda, \mathcal{S}) $ left invariant under the fuzzy collineations are characterized depending on the membership degrees of the given fuzzy projective space and also depending on the pointwise invariant of the lines. Moreover, some relations between membership degrees of the fuzzy projective space are presented according to which are of the base point, base line, and base plane invariant under a fuzzy collineation. Specifically, when all membership degrees of $ (\lambda, \mathcal{S}) $ are distinct, the base point, base line, and base plane of $ (\lambda, \mathcal{S}) $ are invariant under the fuzzy collineation $ \bar{f} $. Conversely, if none of the base point, base line, or base plane remain invariant, then the system becomes crisp in $ (\lambda, \mathcal{S}) $. Additionally, some relations between the membership degrees of the fuzzy projective space, concerning the invariance of the base point, base line, and base plane, are presented.
[1] | K. S. Abdukhalikov, The dual of a fuzzy subspace, Fuzzy Sets Syst., 7 (1996), 375–381. https://doi.org/10.1016/0165-0114(96)84977-3 doi: 10.1016/0165-0114(96)84977-3 |
[2] | K. Abdulhalikov, C. Kim, Fuzzy linear maps, J. Math. Anal., 220 (1998), 1–12. https://doi.org/10.1006/jmaa.1997.5637 doi: 10.1006/jmaa.1997.5637 |
[3] | Z. Akça, A. Altıntaş, Fuzzy counterpart of klein quadric, Int. Electron. J. Geom., 16 (2023), 680–688. https://doi.org/10.36890/iejg.1343784 doi: 10.36890/iejg.1343784 |
[4] | Z. Akça, A. Bayar, S. Ekmekçi, H. V. Maldeghem, Fuzzy projective spreads of fuzzy projective spaces, Fuzzy Sets Syst., 157 (2006), 3237–3247. https://doi.org/10.1016/j.fss.2006.08.005 doi: 10.1016/j.fss.2006.08.005 |
[5] | Z. Akça, On the classification of fuzzy projective lines of fuzzy 3-dimensional projective space, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 55 (2007), 17–33. https://doi.org/10.1501/Commua1_0000000319 doi: 10.1501/Commua1_0000000319 |
[6] | E. Altıntaş, A. Bayar, Fuzzy collineations of fuzzy projective planes, Konuralp J. Math., 10 (2022), 166–170. Available from: https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/31498/939947 |
[7] | Z. R. Berardehi, C. Zhang, M. Taheri, M. Roohi, M. H. Khooban, Implementation of T-S fuzzy approach for the synchronization and stabilization of non-integer-order complex systems with input saturation at a guaranteed cost, Trans. Inst. Meas. Control, 45 (2023), 2536–2553. https://doi.org/10.1177/01423312231155273 doi: 10.1177/01423312231155273 |
[8] | Z. R. Berardehi, C. Zhang, M. Taheri, M. Roohi, M. H. Khooban, A fuzzy control strategy to synchronize fractional-Order nonlinear systems including input saturation Int. J. Intell. Syst., 1550256 (2023), 18. https://doi.org/10.1155/2023/1550256 |
[9] | E. Brown, K. E. Mellinger Kirkman's schoolgirls wearing hats and walking through fields of numbers Math. Mag., 82 (2009), 3–15. Available from: http://www.jstor.org/stable/27643152 |
[10] | F. Buekenhout, Handbook of incidence geometry, building and foundations, Amsterdam: Taylor & Francis, Ltd., 1995. |
[11] | H. S. M. Coxeter, Projective geometry, Springer-Verlag, 1974. Available from: https://books.google.com.tr/books?id=gjAAI4FW0tsC |
[12] | S. Ekmekçi, Z. Akça, A. Bayar, On the classification of fuzzy projective planes of fuzzy 3 dimensional projective space, Chaos Soliton Fract., 40 (2009), 2146–2151. https://doi.org/10.1016/j.chaos.2007.10.002 doi: 10.1016/j.chaos.2007.10.002 |
[13] | J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford Mathematical Monographs, 1998. |
[14] | D. R. Hughes, F. C. Piper, Projective planes, Springer-Verlag, New York: Heidelberg Berlin, 1973. |
[15] | A. K. Katsaras, D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal., 58 (1977), 135–146. https://doi.org/10.1016/0022-247X(77)90233-5 doi: 10.1016/0022-247X(77)90233-5 |
[16] | L. Kuijken, H. V. Maldeghem, E. E. Kerre, Fuzzy projective geometries from fuzzy vector spaces, Proc. 7th Int. Confer. IPMU, 1998, 1331–1338. http://hdl.handle.net/1854/LU-278376 |
[17] | L. Kuijken, H. V. Maldeghem, E. E. Kerre, Fuzzy projective geometries from fuzzy groups, Tatra Mt. Math. Publ., 16 (1999), 85–108. Available from: https://cage.ugent.be/hvm/artikels/78.pdf |
[18] | L. Kuijken, Fuzzy projective geometries, Math. Comput. Sci. Joint Conf., 1999. |
[19] | L. Kuijken, H. V. Maldeghem, Fibered geometries, Discrete Math., 255 (2002), 259–274. Available from: https://cage.ugent.be/hvm/artikels/112.pdf |
[20] | L. Kuijken, H. V. Maldeghem, On the definition and some conjectures of fuzzy projective planes by Gupta and Ray, and a new definition of fuzzy building geometries, Fuzzy Sets Syst., 138 (2003), 667–685. Available from: https://cage.ugent.be/hvm/artikels/121.pdf |
[21] | A. Rosenfeld, Fuzzy groups, J. Math. Anal., 35 (1971), 512–517. http://dx.doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5 |
[22] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |