Research article Special Issues

Limit theorems for nonparametric conditional U-statistics smoothed by asymmetric kernels

  • Received: 07 June 2024 Revised: 09 August 2024 Accepted: 20 August 2024 Published: 11 September 2024
  • MSC : 60F05, 60G15, 60K15, 62F40

  • $ U $-statistics represent a fundamental class of statistics used to model quantities derived from responses of multiple subjects. These statistics extend the concept of the empirical mean of a $ d $-variate random variable $ X $ by considering sums over all distinct $ m $-tuples of observations of $ X $. Within this realm, W. Stute [134] introduced conditional $ U $-statistics, a generalization of the Nadaraya-Watson estimators for regression functions, and demonstrated their strong point-wise consistency. This paper presented a first theoretical examination of the Dirichlet kernel estimator for conditional $ U $-statistics on the $ dm $-dimensional simplex. This estimator, being an extension of the univariate beta kernel estimator, effectively addressed boundary biases. Our analysis established its asymptotic normality and uniform strong consistency. Additionally, we introduced a beta kernel estimator specifically tailored for conditional $ U $-statistics, demonstrating both weak and strong uniform convergence. Our investigation considered the expansion of compact sets and various sequences of smoothing parameters. For the first time, we examined conditional $ U $-statistics based on mixed categorical and continuous regressors. We presented new findings on conditional $ U $-statistics smoothed by multivariate Bernstein kernels, previously unexplored in the literature. These results are derived under sufficiently broad conditions on the underlying distributions. The main ingredients used in our proof were truncation methods and sharp exponential inequalities tailored to the $ U $-statistics in connection with the empirical processes theory. Our theoretical advancements significantly contributed to the field of asymmetric kernel estimation, with potential applications in areas such as discrimination problems, $ \ell $-sample conditional $ U $-statistics, and the Kendall rank correlation coefficient. Finally, we conducted some simulations to demonstrate the small sample performances of the estimators.

    Citation: Salim Bouzebda, Amel Nezzal, Issam Elhattab. Limit theorems for nonparametric conditional U-statistics smoothed by asymmetric kernels[J]. AIMS Mathematics, 2024, 9(9): 26195-26282. doi: 10.3934/math.20241280

    Related Papers:

  • $ U $-statistics represent a fundamental class of statistics used to model quantities derived from responses of multiple subjects. These statistics extend the concept of the empirical mean of a $ d $-variate random variable $ X $ by considering sums over all distinct $ m $-tuples of observations of $ X $. Within this realm, W. Stute [134] introduced conditional $ U $-statistics, a generalization of the Nadaraya-Watson estimators for regression functions, and demonstrated their strong point-wise consistency. This paper presented a first theoretical examination of the Dirichlet kernel estimator for conditional $ U $-statistics on the $ dm $-dimensional simplex. This estimator, being an extension of the univariate beta kernel estimator, effectively addressed boundary biases. Our analysis established its asymptotic normality and uniform strong consistency. Additionally, we introduced a beta kernel estimator specifically tailored for conditional $ U $-statistics, demonstrating both weak and strong uniform convergence. Our investigation considered the expansion of compact sets and various sequences of smoothing parameters. For the first time, we examined conditional $ U $-statistics based on mixed categorical and continuous regressors. We presented new findings on conditional $ U $-statistics smoothed by multivariate Bernstein kernels, previously unexplored in the literature. These results are derived under sufficiently broad conditions on the underlying distributions. The main ingredients used in our proof were truncation methods and sharp exponential inequalities tailored to the $ U $-statistics in connection with the empirical processes theory. Our theoretical advancements significantly contributed to the field of asymmetric kernel estimation, with potential applications in areas such as discrimination problems, $ \ell $-sample conditional $ U $-statistics, and the Kendall rank correlation coefficient. Finally, we conducted some simulations to demonstrate the small sample performances of the estimators.



    加载中


    [1] A. Abadie, G. W. Imbens, Large sample properties of matching estimators for average treatment effects, Econometrica, 74 (2006), 235–267. https://doi.org/10.1111/j.1468-0262.2006.00655.x doi: 10.1111/j.1468-0262.2006.00655.x
    [2] S. Abrams, P. Janssen, J. Swanepoel, N. Veraverbeke, Nonparametric estimation of risk ratios for bivariate data, J. Nonparametr. Stat., 34 (2022), 940–963. https://doi.org/10.1080/10485252.2022.2085265 doi: 10.1080/10485252.2022.2085265
    [3] J. Aitchison, I. J. Lauder, Kernel density estimation for compositional data, J. Roy. Statist. Soc. Ser. C, 34 (1985), 129–137. https://doi.org/10.2307/2347365 doi: 10.2307/2347365
    [4] M. A. Arcones, The asymptotic accuracy of the bootstrap of $U$-quantiles, Ann. Statist., 23 (1995), 1802–1822. https://doi.org/10.1214/aos/1176324324 doi: 10.1214/aos/1176324324
    [5] M. A. Arcones, A Bernstein-type inequality for $U$-statistics and $U$-processes, Statist. Probab. Lett., 22 (1995), 239–247. https://doi.org/10.1016/0167-7152(94)00072-G doi: 10.1016/0167-7152(94)00072-G
    [6] M. A. Arcones, The Bahadur-Kiefer representation for $U$-quantiles, Ann. Statist., 24 (1996), 1400–1422. https://doi.org/10.1214/aos/1032526976 doi: 10.1214/aos/1032526976
    [7] M. A. Arcones, E. Giné, Limit theorems for $U$-processes, Ann. Probab., 21 (1993), 1494–1542. https://doi.org/10.1214/aop/1176989128 doi: 10.1214/aop/1176989128
    [8] M. A. Arcones, Y. Wang, Some new tests for normality based on $U$-processes, Statist. Probab. Lett., 76 (2006), 69–82. https://doi.org/10.1016/j.spl.2005.07.003 doi: 10.1016/j.spl.2005.07.003
    [9] G. J. Babu, Y. P. Chaubey, Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors, Statist. Probab. Lett., 76 (2006), 959–969. https://doi.org/10.1016/j.spl.2005.10.031 doi: 10.1016/j.spl.2005.10.031
    [10] G. J. Babu, A. J. Canty, Y. P. Chaubey, Application of Bernstein polynomials for smooth estimation of a distribution and density function, J. Statist. Plann. Inference, 105 (2002), 377–392. https://doi.org/10.1016/S0378-3758(01)00265-8 doi: 10.1016/S0378-3758(01)00265-8
    [11] M. Belalia, On the asymptotic properties of the Bernstein estimator of the multivariate distribution function, Statist. Probab. Lett., 110 (2016), 249–256. https://doi.org/10.1016/j.spl.2015.10.004 doi: 10.1016/j.spl.2015.10.004
    [12] M. Belalia, T. Bouezmarni, F. C. Lemyre, A. Taamouti, Testing independence based on Bernstein empirical copula and copula density, J. Nonparametr. Stat., 29 (2017), 346–380. https://doi.org/10.1080/10485252.2017.1303063 doi: 10.1080/10485252.2017.1303063
    [13] D. Z. Bello, M. Valk, G. B. Cybis, Towards $U$-statistics clustering inference for multiple groups, J. Stat. Comput. Simul., 94 (2024), 204–222. https://doi.org/10.1080/00949655.2023.2239978 doi: 10.1080/00949655.2023.2239978
    [14] N. Berrahou, S. Bouzebda, L. Douge, Functional Uniform-in-Bandwidth moderate deviation principle for the local empirical processes involving functional data, Math. Meth. Statist., 33 (2024), 26–69. https://doi.org/10.3103/S1066530724700030 doi: 10.3103/S1066530724700030
    [15] N. Berrahou, S. Bouzebda, L. Douge, A nonparametric distribution-free test of independence among continuous random vectors based on $L_1$-norm, arXiv: 2105.02164v3, 2024.
    [16] K. Bertin, N. Klutchnikoff, Minimax properties of beta kernel estimators, J. Statist. Plann. Inference, 141 (2011), 2287–2297. https://doi.org/10.1016/j.jspi.2011.01.009 doi: 10.1016/j.jspi.2011.01.009
    [17] K. Bertin, C. Genest, N. Klutchnikoff, F. Ouimet, Minimax properties of Dirichlet kernel density estimators, J. Multivariate Anal., 195 (2023), 105158. https://doi.org/10.1016/j.jmva.2023.105158 doi: 10.1016/j.jmva.2023.105158
    [18] S. Borovkova, R. Burton, H. Dehling, Limit theorems for functionals of mixing processes with applications to $U$-statistics and dimension estimation, Trans. Amer. Math. Soc., 353 (2001), 4261–4318.
    [19] Y. V. Borovskikh, $U$-statistics in Banach spaces, Boston: De Gruyter, 1996. https://doi.org/10.1515/9783112313954
    [20] T. Bouezmarni, J.-M. Rolin, Consistency of the beta kernel density function estimator, Canad. J. Statist., 31 (2003), 89–98. https://doi.org/10.2307/3315905 doi: 10.2307/3315905
    [21] T. Bouezmarni, J. V. K. Rombouts, Nonparametric density estimation for multivariate bounded data, J. Statist. Plann. Inference, 140 (2010), 139–152. https://doi.org/10.1016/j.jspi.2009.07.013 doi: 10.1016/j.jspi.2009.07.013
    [22] T. Bouezmarni, F. C. Lemyre, A. El Ghouch, Estimation of a bivariate conditional copula when a variable is subject to random right censoring, Electron. J. Stat., 13 (2019), 5044–5087. https://doi.org/10.1214/19-EJS1645 doi: 10.1214/19-EJS1645
    [23] S. Bouzebda, General tests of conditional independence based on empirical processes indexed by functions, Jpn. J. Stat. Data Sci., 6 (2023), 115–177. https://doi.org/10.1007/s42081-023-00193-3 doi: 10.1007/s42081-023-00193-3
    [24] S. Bouzebda, Limit theorems in the nonparametric conditional single-index U-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 12 (2024), 1996. https://doi.org/10.3390/math12131996 doi: 10.3390/math12131996
    [25] S. Bouzebda, Weak convergence of the conditional single index $U$-statistics for locally stationary functional time series, AIMS Mathematics, 9 (2024), 14807–14898. https://doi.org/10.3934/math.2024720 doi: 10.3934/math.2024720
    [26] S. Bouzebda, S. Didi, Additive regression model for stationary and ergodic continuous time processes, Comm. Statist. Theory Methods, 46 (2017), 2454–2493. https://doi.org/10.1080/03610926.2015.1048882 doi: 10.1080/03610926.2015.1048882
    [27] S. Bouzebda, A. A. Ferfache, Asymptotic properties of $M$-estimators based on estimating equations and censored data in semi-parametric models with multiple change points, J. Math. Anal. Appl., 497 (2021), 124883. https://doi.org/10.1016/j.jmaa.2020.124883 doi: 10.1016/j.jmaa.2020.124883
    [28] S. Bouzebda, A. Keziou, A new test procedure of independence in copula models via $\chi^2$-divergence, Comm. Statist. Theory Methods, 39 (2010), 1–20. https://doi.org/10.1080/03610920802645379 doi: 10.1080/03610920802645379
    [29] S. Bouzebda, A. Keziou, A semiparametric maximum likelihood ratio test for the change point in copula models, Stat. Methodol., 14 (2013), 39–61. https://doi.org/10.1016/j.stamet.2013.02.003 doi: 10.1016/j.stamet.2013.02.003
    [30] S. Bouzebda, A. Nezzal, Asymptotic properties of conditional $U$-statistics using delta sequences, Comm. Statist. Theory Methods, 53 (2024), 4602–4657. https://doi.org/10.1080/03610926.2023.2179887 doi: 10.1080/03610926.2023.2179887
    [31] S. Bouzebda, A. Nezzal, Uniform in number of neighbors consistency and weak convergence of $k$NN empirical conditional processes and $k$NN conditional $U$-processes involving functional mixing data, AIMS Mathematics, 9 (2024), 4427–4550. https://doi.org/10.3934/math.2024218 doi: 10.3934/math.2024218
    [32] S. Bouzebda, N. Taachouche, On the variable bandwidth kernel estimation of conditional $U$-statistics at optimal rates in sup-norm, Phys. A, 625 (2023), 129000. https://doi.org/10.1016/j.physa.2023.129000 doi: 10.1016/j.physa.2023.129000
    [33] S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency with rates for conditional $U$-statistics estimators with general kernels on manifolds, Math. Meth. Stat., 33 (2024), 95 –153. https://doi.org/10.3103/S1066530724700066 doi: 10.3103/S1066530724700066
    [34] S. Bouzebda, S. Didi, L. El Hajj, Multivariate wavelet density and regression estimators for stationary and ergodic continuous time processes: Asymptotic results, Math. Meth. Stat., 24 (2015), 163–199. https://doi.org/10.3103/S1066530715030011 doi: 10.3103/S1066530715030011
    [35] S. Bouzebda, A. Nezzal, T. Zari, Uniform consistency for functional conditional $U$-statistics using delta-sequences, Mathematics, 11 (2023), 161. https://doi.org/10.3390/math11010161 doi: 10.3390/math11010161
    [36] B. M. Brown, S. X. Chen, Beta-Bernstein smoothing for regression curves with compact support, Scand. J. Statist., 26 (1999), 47–59. https://doi.org/10.1111/1467-9469.00136 doi: 10.1111/1467-9469.00136
    [37] Q. Cao, Z. C. Guo, Y. Ying, Generalization bounds for metric and similarity learning, Mach. Learn., 102 (2016), 115–132. https://doi.org/10.1007/s10994-015-5499-7 doi: 10.1007/s10994-015-5499-7
    [38] A. Charpentier, A. Oulidi, Beta kernel quantile estimators of heavy-tailed loss distributions, Stat. Comput., 20 (2010), 35–55. https://doi.org/10.1007/s11222-009-9114-2 doi: 10.1007/s11222-009-9114-2
    [39] L. Chen, A. T. K. Wan, S. Zhang, Y. Zhou, Distributed algorithms for U-statistics-based empirical risk minimization, J. Mach. Learn. Res., 24 (2023), 1–43.
    [40] S. X. Chen, Beta kernel estimators for density functions, Comput. Statist. Data Anal., 31 (1999), 131–145. https://doi.org/10.1016/S0167-9473(99)00010-9 doi: 10.1016/S0167-9473(99)00010-9
    [41] S. X. Chen, Beta kernel smoothers for regression curves, Statist. Sinica, 10 (2000), 73–91.
    [42] S. X. Chen, Probability density function estimation using gamma kernels, Ann. Inst. Statist. Math., 52 (2000), 471–480. https://doi.org/10.1023/A:1004165218295 doi: 10.1023/A:1004165218295
    [43] T. C. Cheng, A. Biswas, Maximum trimmed likelihood estimator for multivariate mixed continuous and categorical data, Comput. Statist. Data Anal., 52 (2008), 2042–2065. https://doi.org/10.1016/j.csda.2007.06.026 doi: 10.1016/j.csda.2007.06.026
    [44] R. F. Cintra, M. Valk, D. M. Filho, A model-free-based control chart for batch process using $U$-statistics, J. Process Contr., 132 (2023), 103097. https://doi.org/10.1016/j.jprocont.2023.103097 doi: 10.1016/j.jprocont.2023.103097
    [45] G. B. Cybis, M. Valk, S. R. C. Lopes, Clustering and classification problems in genetics through $U$-statistics, J. Stat. Comput. Simul., 88 (2018), 1882–1902. https://doi.org/10.1080/00949655.2017.1374387 doi: 10.1080/00949655.2017.1374387
    [46] V. H. de la Peña, E. Giné, Decoupling, In: Probability and its applications, New York: Springer, 1999. https://doi.org/10.1007/978-1-4612-0537-1
    [47] H. Dehling, R. Fried, Asymptotic distribution of two-sample empirical $U$-quantiles with applications to robust tests for shifts in location, J. Multivariate Anal., 105 (2012), 124–140. https://doi.org/10.1016/j.jmva.2011.08.014 doi: 10.1016/j.jmva.2011.08.014
    [48] M. Denker, G. Keller, On $U$-statistics and v.mise'statistics for weakly dependent processes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete., 64 (1983), 505–522. https://doi.org/10.1007/BF00534953 doi: 10.1007/BF00534953
    [49] A. Derumigny, J. D. Fermanian, On kernel-based estimation of conditional Kendall's tau: Finite-distance bounds and asymptotic behavior, Depend. Model., 7 (2019), 292–321. https://doi.org/10.1515/demo-2019-0016 doi: 10.1515/demo-2019-0016
    [50] A. Desgagné, C. Genest, F. Ouimet, Asymptotics for non-degenerate multivariate $U$-statistics with estimated nuisance parameters under the null and local alternative hypotheses, arXiv: 2401.11272, 2024. https://doi.org/10.48550/arXiv.2401.11272
    [51] L. Devroye, A course in density estimation, Birkhauser Boston Inc., 1978.
    [52] L. Devroye, C. S. Penrod, Distribution-free lower bounds in density estimation, Ann. Statist., 12 (1984), 1250–1262. https://doi.org/10.1214/aos/1176346790 doi: 10.1214/aos/1176346790
    [53] J. Dony, D. M. Mason, Uniform in bandwidth consistency of conditional $U$-statistics, Bernoulli, 14 (2008), 1108–1133. https://doi.org/10.3150/08-BEJ136 doi: 10.3150/08-BEJ136
    [54] M. Dwass, The large-sample power of rank order tests in the two-sample problem, Ann. Math. Statist., 27 (1956), 352–374.
    [55] P. P. B. Eggermont, V. N. LaRiccia, Maximum penalized likelihood estimation, In: Springer series in statistics, New York: Springer, 2001. https://doi.org/10.1007/978-1-0716-1244-6
    [56] Z. C. Elmezouar, F. Alshahrani, I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Strong consistency rate in functional single index expectile model for spatial data, AIMS Mathematics, 9 (2024), 5550–5581. https://doi.org/10.3934/math.2024269 doi: 10.3934/math.2024269
    [57] V. A. Epanechnikov, Non-parametric estimation of a multidimensional probability density, Theory Probab. Appl., 14 (1969), 153–158.
    [58] L. Faivishevsky, J. Goldberger, Ica based on a smooth estimation of the differential entropy, In: Proceedings of the 21st international conference on neural information processing systems, Curran Associates Inc., 2008,433–440.
    [59] A. A. Filippova, Mises theorem on the limit behaviour of functionals derived from empirical distribution functions, Dokl. Akad. Nauk SSSR, 129 (1959), 44–47.
    [60] E. W. Frees, Infinite order $U$-statistics, Scand. J. Statist., 1989, 29–45.
    [61] B. Funke, M. Hirukawa, Bias correction for local linear regression estimation using asymmetric kernels via the skewing method, Econom. Stat., 20 (2021), 109–130. https://doi.org/10.1016/j.ecosta.2020.01.004 doi: 10.1016/j.ecosta.2020.01.004
    [62] B. Funke, M. Hirukawa, Density derivative estimation using asymmetric kernels, J. Nonparametr. Stat., 2023, 1–24. https://doi.org/10.1080/10485252.2023.2291430
    [63] T. Gasser, H. G. Müller, Kernel estimation of regression functions, In: Lecture notes in mathematics, Berlin, Heidelberg: Springer, 757 (2006), 23–68. https://doi.org/10.1007/BFb0098489
    [64] W. Gawronski, Strong laws for density estimators of Bernstein type, Period. Math. Hung., 16 (1985), 23–43. https://doi.org/10.1007/BF01855801 doi: 10.1007/BF01855801
    [65] W. Gawronski, U. Stadtmüller, On density estimation by means of Poisson's distribution, Scand. J. Statist., 7 (1980), 90–94.
    [66] S. S. Ghannadpour, S. E. Kalkhoran, H. Jalili, M. Behifar, Delineation of mineral potential zone using u-statistic method in processing satellite remote sensing images, Int. J. Mining Geo-Eng., 57 (2023), 445–453. https://doi.org/10.22059/IJMGE.2023.364690.595097 doi: 10.22059/IJMGE.2023.364690.595097
    [67] S. Ghosal, A. Sen, A. W. van der Vaart, Testing monotonicity of regression, Ann. Statist., 28 (2000), 1054–1082. https://doi.org/10.1214/aos/1015956707 doi: 10.1214/aos/1015956707
    [68] E. Giné, D. M. Mason, Laws of the iterated logarithm for the local U-statistic process, J. Theor. Probab., 20 (2007), 457–485. https://doi.org/10.1007/s10959-007-0067-0 doi: 10.1007/s10959-007-0067-0
    [69] Z. Guan, Efficient and robust density estimation using Bernstein type polynomials, J. Nonparametr. Stat., 28 (2016), 250–271. https://doi.org/10.1080/10485252.2016.1163349 doi: 10.1080/10485252.2016.1163349
    [70] E. Guerre, I. Perrigne, Q. Vuong, Optimal nonparametric estimation of first-price auctions, Econometrica, 68 (2000), 525–574. https://doi.org/10.1111/1468-0262.00123 doi: 10.1111/1468-0262.00123
    [71] P. R. Halmos, The theory of unbiased estimation, Ann. Math. Statist., 17 (1946), 34–43. https://doi.org/10.1214/aoms/1177731020 doi: 10.1214/aoms/1177731020
    [72] B. E. Hansen, Uniform convergence rates for kernel estimation with dependent data, Econometric Theory, 24 (2008), 726–748.
    [73] W. Härdle, Applied nonparametric regression, Cambridge University Press, 1990. https://doi.org/10.1017/CCOL0521382483
    [74] M. Harel, M. L. Puri, Conditional $U$-statistics for dependent random variables, In: Probability theory and extreme value theory, New York: De Gruyter Mouton, 2 (2003), 533–549. https://doi.org/10.1515/9783110917826.533
    [75] C. Heilig, D. Nolan, Limit theorems for the infinite-degree $U$-process, Statist. Sinica, 11 (2001), 289–302.
    [76] R. Helmers, M. Hušková, Bootstrapping multivariate $U$-quantiles and related statistics, J. Multivariate Anal., 49 (1994), 97–109. https://doi.org/10.1006/jmva.1994.1016 doi: 10.1006/jmva.1994.1016
    [77] M. Hirukawa, Asymmetric kernel smoothing: Theory and applications in economics and finance, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-5466-2
    [78] M. Hirukawa, M. Sakudo, Another bias correction for asymmetric kernel density estimation with a parametric start, Statist. Probab. Lett., 145 (2019), 158–165. https://doi.org/10.1016/j.spl.2018.09.002 doi: 10.1016/j.spl.2018.09.002
    [79] M. Hirukawa, I. Murtazashvili, A. Prokhorov, Uniform convergence rates for nonparametric estimators smoothed by the beta kernel, Scand. J. Stat., 49 (2022), 1353–1382. https://doi.org/10.1111/sjos.12573 doi: 10.1111/sjos.12573
    [80] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statist., 19 (1948), 293–325. https://doi.org/10.1214/aoms/1177730196 doi: 10.1214/aoms/1177730196
    [81] B. Huang, Y. Liu, L. Peng, Distributed inference for two-sample $U$-statistics in massive data analysis, Scand. J. Stat., 50 (2023), 1090–1115. https://doi.org/10.1111/sjos.12620 doi: 10.1111/sjos.12620
    [82] G. Igarashi, Bias reductions for beta kernel estimation, J. Nonparametr. Stat., 28 (2016), 1–30. https://doi.org/10.1080/10485252.2015.1112011 doi: 10.1080/10485252.2015.1112011
    [83] G. Igarashi, Y. Kakizawa, Limiting bias-reduced Amoroso kernel density estimators for non-negative data, Comm. Statist. Theory Methods, 47 (2018), 4905–4937. https://doi.org/10.1080/03610926.2017.1380832 doi: 10.1080/03610926.2017.1380832
    [84] G. Igarashi, Y. Kakizawa, Multiplicative bias correction for asymmetric kernel density estimators revisited, Comput. Statist. Data Anal., 141 (2020), 40–61. https://doi.org/10.1016/j.csda.2019.06.010 doi: 10.1016/j.csda.2019.06.010
    [85] S. Janson, A functional limit theorem for random graphs with applications to subgraph count statistics, Random Structures Algorithms, 1 (1990), 15–37. https://doi.org/10.1002/rsa.3240010103 doi: 10.1002/rsa.3240010103
    [86] S. Janson, Asymptotic normality for $m$-dependent and constrained $U$-statistics, with applications to pattern matching in random strings and permutations, Adv. Appl. Probab., 55 (2023), 841–894. https://doi.org/10.1017/apr.2022.51 doi: 10.1017/apr.2022.51
    [87] E. Joly, G. Lugosi, Robust estimation of $U$-statistics, Stochastic Process. Appl., 126 (2016), 3760–3773. https://doi.org/10.1016/j.spa.2016.04.021 doi: 10.1016/j.spa.2016.04.021
    [88] M. C. Jones, Corrigendum: "Variable kernel density estimates and variable kernel density estimates" [Austral. J. Statist. 32 (1991). 3,361–371], Austral. J. Statist., 33 (1991), 119. https://doi.org/10.1111/j.1467-842X.1991.tb00418.x doi: 10.1111/j.1467-842X.1991.tb00418.x
    [89] Y. Kakizawa, Bernstein polynomial probability density estimation, J. Nonparametr. Stat., 16 (2004), 709–729. https://doi.org/10.1080/1048525042000191486 doi: 10.1080/1048525042000191486
    [90] M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), 81–93.
    [91] I. Kim, A. Ramdas, Dimension-agnostic inference using cross U-statistics, Bernoulli, 30 (2024), 683–711. https://doi.org/10.3150/23-BEJ1613 doi: 10.3150/23-BEJ1613
    [92] V. S. Koroljuk, Y. V. Borovskich, Theory of $U$-statistics, In: Mathematics and its applications, Dordrecht: Springer, 273 (2013). https://doi.org/10.1007/978-94-017-3515-5
    [93] S. Kotz, N. Balakrishnan, N. L. Johnson, Continuous multivariate distributions: Models and applications, John Wiley & Sons, Inc., 2000.
    [94] D. Kristensen, Uniform convergence rates of kernel estimators with heterogeneous dependent data, Econometric Theory, 25 (2009), 1433–1445. https://doi.org/10.1017/S0266466609090744 doi: 10.1017/S0266466609090744
    [95] T. Le Minh, $U$-statistics on bipartite exchangeable networks, ESAIM Probab. Stat., 27 (2023), 576–620. https://doi.org/10.1051/ps/2023010 doi: 10.1051/ps/2023010
    [96] A. Leblanc, On estimating distribution functions using Bernstein polynomials, Ann. Inst. Stat. Math., 64 (2012), 919–943. https://doi.org/10.1007/s10463-011-0339-4 doi: 10.1007/s10463-011-0339-4
    [97] A. Leblanc, On the boundary properties of Bernstein polynomial estimators of density and distribution functions, J. Statist. Plann. Inference, 142 (2012), 2762–2778. https://doi.org/10.1016/j.jspi.2012.03.016 doi: 10.1016/j.jspi.2012.03.016
    [98] A. J. Lee, $U$-statistics: Theory and practice, New York: Routledge, 1990. https://doi.org/10.1201/9780203734520
    [99] E. L. Lehmann, A general concept of unbiasedness, Ann. Math. Statist., 22 (1951), 587–592. https://doi.org/10.1214/aoms/1177729549 doi: 10.1214/aoms/1177729549
    [100] E. L. Lehmann, Elements of large-sample theory, In: Springer texts in statistics, New York: Springer, 1999. https://doi.org/10.1007/b98855
    [101] C. Y. Leung, The effect of across-location heteroscedasticity on the classification of mixed categorical and continuous data, J. Multivariate Anal., 84 (2003), 369–386. https://doi.org/10.1016/S0047-259X(02)00057-X doi: 10.1016/S0047-259X(02)00057-X
    [102] H. Li, C. Ren, L. Li, $U$-processes and preference learning, Neural Comput., 26 (2014), 2896–2924. https://doi.org/10.1162/NECO_a_00674 doi: 10.1162/NECO_a_00674
    [103] F. Lim, V. M. Stojanovic, On U-statistics and compressed sensing I: Non-asymptotic average-case analysis, IEEE Trans. Signal Process., 61 (2013), 2473–2485. https://doi.org/10.1109/TSP.2013.2247598 doi: 10.1109/TSP.2013.2247598
    [104] R. J. A. Little, M. D. Schluchter, Maximum likelihood estimation for mixed continuous and categorical data with missing values, Biometrika, 72 (1985), 497–512. https://doi.org/10.1093/biomet/72.3.497 doi: 10.1093/biomet/72.3.497
    [105] B. Liu, S. K. Ghosh, On empirical estimation of mode based on weakly dependent samples, Comput. Statist. Data Anal., 152 (2020), 107046. https://doi.org/10.1016/j.csda.2020.107046 doi: 10.1016/j.csda.2020.107046
    [106] C. Liu, D. B. Rubin, Ellipsoidally symmetric extensions of the general location model for mixed categorical and continuous data, Biometrika, 85 (1998), 673–688.
    [107] Q. Liu, J. Lee, M. Jordan, A kernelized stein discrepancy for goodness-of-fit tests, In: Proceedings of the 33rd international conference on international conference on machine learning, 48 (2016), 276–284.
    [108] D. Lu, L. Wang, J. Yang, The stochastic convergence of Bernstein polynomial estimators in a triangular array, J. Nonparametr. Stat., 34 (2022), 987–1014. https://doi.org/10.1080/10485252.2022.2107643 doi: 10.1080/10485252.2022.2107643
    [109] L. Lu, On the uniform consistency of the Bernstein density estimator, Statist. Probab. Lett., 107 (2015), 52–61. https://doi.org/10.1016/j.spl.2015.08.004 doi: 10.1016/j.spl.2015.08.004
    [110] H. G. Müller, Nonparametric regression analysis of longitudinal data, In: Lecture notes in statistics, New York: Springer, 46 (1988). https://doi.org/10.1007/978-1-4612-3926-0
    [111] H. G. Müller, Smooth optimum kernel estimators near endpoints, Biometrika, 78 (1991), 521–530. https://doi.org/10.1093/biomet/78.3.521 doi: 10.1093/biomet/78.3.521
    [112] E. A. Nadaraja, On a regression estimate, Teor. Verojatnost. Primenen., 9 (1964), 157–159.
    [113] E. A. Nadaraya, Nonparametric estimation of probability densities and regression curves, In: Mathematics and its applications, Dordrecht: Springer, 20 (1989). https://doi.org/10.1007/978-94-009-2583-0
    [114] K. W. Ng, G. L. Tian, M. L. Tang, Dirichlet and related distributions: Theory, methods and applications, John Wiley & Sons, Ltd., 2011. Chichester. Theory, methods and applications. (2011)
    [115] F. Ouimet, Asymptotic properties of Bernstein estimators on the simplex, J. Multivariate Anal., 185 (2021), 104784. https://doi.org/10.1016/j.jmva.2021.104784 doi: 10.1016/j.jmva.2021.104784
    [116] F. Ouimet, On the boundary properties of Bernstein estimators on the simplex, Open Statist., 3 (2022), 48–62. https://doi.org/10.1515/stat-2022-0111 doi: 10.1515/stat-2022-0111
    [117] F. Ouimet, R. Tolosana-Delgado, Asymptotic properties of Dirichlet kernel density estimators, J. Multivariate Anal., 187 (2022), 104832. https://doi.org/10.1016/j.jmva.2021.104832 doi: 10.1016/j.jmva.2021.104832
    [118] W. Peng, T. Coleman, L. Mentch, Rates of convergence for random forests via generalized U-statistics, Electron. J. Statist., 16 (2022), 232–292. https://doi.org/10.1214/21-EJS1958 doi: 10.1214/21-EJS1958
    [119] B. L. S. P. Rao, Nonparametric functional estimation, Academic Press, 1983. https://doi.org/10.1016/C2013-0-11326-8
    [120] B. L. S. P. Rao, Estimation of distribution and density functions by generalized Bernstein polynomials, Indian J. Pure Appl. Math., 36 (2005), 63–88.
    [121] B. L. S. P. Rao, A. Sen, Limit distributions of conditional $U$-statistics, J. Theor. Probab., 8 (1995), 261–301. https://doi.org/10.1007/BF02212880 doi: 10.1007/BF02212880
    [122] R. H. Randles, On the asymptotic normality of statistics with estimated parameters, Ann. Statist., 10 (1982), 462–474. https://doi.org/10.1214/aos/1176345787 doi: 10.1214/aos/1176345787
    [123] O. Renault, O. Scaillet, On the way to recovery: A nonparametric bias free estimation of recovery rate densities, J. Bank. Financ., 28 (2004), 2915–2931. https://doi.org/10.1016/j.jbankfin.2003.10.018 doi: 10.1016/j.jbankfin.2003.10.018
    [124] G. G. Roussas, Estimation of transition distribution function and its quantiles in Markov processes: strong consistency and asymptotic normality, In: Roussas, G. (eds) Nonparametric functional estimation and related topics. NATO ASI Series, Dordrecht: Springer, 335 (1991). https://doi.org/10.1007/978-94-011-3222-0_34
    [125] A. Sancetta, S. Satchell, The Bernstein copula and its applications to modeling and approximations of multivariate distributions, Econometric Theory, 20 (2004), 535–562.
    [126] A. Schick, Y. Wang, W. Wefelmeyer, Tests for normality based on density estimators of convolutions, Statist. Probab. Lett., 81 (2011), 337–343. https://doi.org/10.1016/j.spl.2010.10.022 doi: 10.1016/j.spl.2010.10.022
    [127] E. F. Schuster, Incorporating support constraints into nonparametric estimators of densities, Comm. Statist. Theory Methods, 14 (1985), 1123–1136. https://doi.org/10.1080/03610928508828965 doi: 10.1080/03610928508828965
    [128] A. Sen, Uniform strong consistency rates for conditional $U$-statistics, Sankhya, 56 (1994), 179–194.
    [129] R. J. Serfling, Approximation theorems of mathematical statistics, New York: John Wiley & Sons, Inc., 1980.
    [130] B. W. Silverman, Density estimation for statistics and data analysis, New York: Routledge, 1998. https://doi.org/10.1201/9781315140919
    [131] Y. Song, X. Chen, K. Kato, Approximating high-dimensional infinite-order $U$-statistics: Statistical and computational guarantees, Electron. J. Statist., 13 (2019), 4794–4848. https://doi.org/10.1214/19-EJS1643 doi: 10.1214/19-EJS1643
    [132] M. Spiess, Estimation of a two-equation panel model with mixed continuous and ordered categorical outcomes and missing data, J. Roy. Statist. Soc. Ser. C, 55 (2006), 525–538. https://doi.org/10.1111/j.1467-9876.2006.00551.x doi: 10.1111/j.1467-9876.2006.00551.x
    [133] U. Stadmüller, Asymptotic distributions of smoothed histograms, Metrika, 30 (1983), 145–158. https://doi.org/10.1007/BF02056918 doi: 10.1007/BF02056918
    [134] W. Stute, Conditional $U$-statistics, Ann. Probab., 19 (1991), 812–825. https://doi.org/10.1214/aop/1176990452 doi: 10.1214/aop/1176990452
    [135] W. Stute, Almost sure representations of the product-limit estimator for truncated data, Ann. Statist., 21 (1993), 146–156. https://doi.org/10.1214/aos/1176349019 doi: 10.1214/aos/1176349019
    [136] W. Stute, $L^p$-convergence of conditional $U$-statistics, J. Multivariate Anal., 51 (1994), 71–82. https://doi.org/10.1006/jmva.1994.1050 doi: 10.1006/jmva.1994.1050
    [137] W. Stute, Universally consistent conditional $U$-statistics, Ann. Statist., 22 (1994), 460–473. https://doi.org/10.1214/aos/1176325378 doi: 10.1214/aos/1176325378
    [138] W. Stute, Symmetrized NN-conditional $U$-statistics, In: Research developments in probability and statistics, 1996,231–237.
    [139] K. K. Sudheesh, S. Anjana, M. Xie, U-statistics for left truncated and right censored data, Statistics, 57 (2023), 900–917. https://doi.org/10.1080/02331888.2023.2217314 doi: 10.1080/02331888.2023.2217314
    [140] R. A. Tapia, J. R. Thompson, Nonparametric probability density estimation, In: Johns Hopkins series in the mathematical sciences, Routledge: Johns Hopkins University Press, 1978.
    [141] A. Tenbusch, Two-dimensional Bernstein polynomial density estimators, Metrika, 41 (1994), 233–253. https://doi.org/10.1007/BF01895321 doi: 10.1007/BF01895321
    [142] A. Tenbusch, Nonparametric curve estimation with Bernstein estimates, Metrika, 45 (1997), 1–30. https://doi.org/10.1007/BF02717090 doi: 10.1007/BF02717090
    [143] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes—with applications to statistics, In: Springer series in statistics, Springer Cham, 2023. https://doi.org/10.1007/978-3-031-29040-4
    [144] R. A. Vitale, Bernstein polynomial approach to density function estimation, In: Statistical inference and related topics, Academic Press, 1975, 87–99. https://doi.org/10.1016/B978-0-12-568002-8.50011-2
    [145] D. Vogel, M. Wendler, Studentized $U$-quantile processes under dependence with applications to change-point analysis, Bernoulli, 23 (2017), 3114–3144. https://doi.org/10.3150/16-BEJ838 doi: 10.3150/16-BEJ838
    [146] R. V. Mises, On the asymptotic distribution of differentiable statistical functions, Ann. Math. Statist., 18 (1947), 309–348. https://doi.org/10.1214/aoms/1177730385 doi: 10.1214/aoms/1177730385
    [147] M. P. Wand, M. C. Jones, Kernel smoothing, New York: Chapman and Hall/CRC, 1994. https://doi.org/10.1201/b14876
    [148] L. Wang, D. Lu, On the rates of asymptotic normality for Bernstein density estimators in a triangular array, J. Math. Anal. Appl., 511 (2022), 126063. https://doi.org/10.1016/j.jmaa.2022.126063 doi: 10.1016/j.jmaa.2022.126063
    [149] L. Wang, D. Lu, Application of Bernstein polynomials on estimating a distribution and density function in a triangular array, Methodol. Comput. Appl. Probab., 25 (2023), 56. https://doi.org/10.1007/s11009-023-10032-3 doi: 10.1007/s11009-023-10032-3
    [150] G. S.Watson, Smooth regression analysis, Sankhya, 26 (1964), 359–372.
    [151] M. Wendler, $U$-processes, $U$-quantile processes and generalized linear statistics of dependent data, Stochastic Process. Appl., 122 (2012), 787–807. https://doi.org/10.1016/j.spa.2011.11.010 doi: 10.1016/j.spa.2011.11.010
    [152] W. W. Göttingen, Statistical density estimation: A survey, Vandenhoeck & Ruprecht, 1978.
    [153] A. Yatchew, An elementary estimator of the partial linear model, Econom. Lett., 57 (1997), 135–143. https://doi.org/10.1016/S0165-1765(97)00218-8 doi: 10.1016/S0165-1765(97)00218-8
    [154] X. F. Yin, Z. F. Hao, Adaptive kernel density estimation using beta kernel, In: 2007 International conference on machine learning and cybernetics, IEEE, 2007. https://doi.org/10.1109/ICMLC.2007.4370716
    [155] S. Zhang, R. J. Karunamuni, Boundary performance of the beta kernel estimators, J. Nonparametr. Stat., 22 (2010), 81–104. https://doi.org/10.1080/10485250903124984 doi: 10.1080/10485250903124984
    [156] W. Zhou, Generalized spatial U-quantiles: Theory and applications, The University of Texas at Dallas, 2005.
    [157] W. Zhou, R. Serfling, Generalized multivariate rank type test statistics via spatial U-quantiles, Statist. Probab. Lett., 78 (2008), 376–383. https://doi.org/10.1016/j.spl.2007.07.010 doi: 10.1016/j.spl.2007.07.010
    [158] W. Zhou, R. Serfling, Multivariate spatial U-quantiles: A Bahadur-Kiefer representation, a Theil-Sen estimator for multiple regression, and a robust dispersion estimator, J. Statist. Plann. Inference, 138 (2008), 1660–1678. https://doi.org/10.1016/j.jspi.2007.05.043 doi: 10.1016/j.jspi.2007.05.043
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(408) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog