$ U $-statistics represent a fundamental class of statistics used to model quantities derived from responses of multiple subjects. These statistics extend the concept of the empirical mean of a $ d $-variate random variable $ X $ by considering sums over all distinct $ m $-tuples of observations of $ X $. Within this realm, W. Stute [
Citation: Salim Bouzebda, Amel Nezzal, Issam Elhattab. Limit theorems for nonparametric conditional U-statistics smoothed by asymmetric kernels[J]. AIMS Mathematics, 2024, 9(9): 26195-26282. doi: 10.3934/math.20241280
$ U $-statistics represent a fundamental class of statistics used to model quantities derived from responses of multiple subjects. These statistics extend the concept of the empirical mean of a $ d $-variate random variable $ X $ by considering sums over all distinct $ m $-tuples of observations of $ X $. Within this realm, W. Stute [
[1] | A. Abadie, G. W. Imbens, Large sample properties of matching estimators for average treatment effects, Econometrica, 74 (2006), 235–267. https://doi.org/10.1111/j.1468-0262.2006.00655.x doi: 10.1111/j.1468-0262.2006.00655.x |
[2] | S. Abrams, P. Janssen, J. Swanepoel, N. Veraverbeke, Nonparametric estimation of risk ratios for bivariate data, J. Nonparametr. Stat., 34 (2022), 940–963. https://doi.org/10.1080/10485252.2022.2085265 doi: 10.1080/10485252.2022.2085265 |
[3] | J. Aitchison, I. J. Lauder, Kernel density estimation for compositional data, J. Roy. Statist. Soc. Ser. C, 34 (1985), 129–137. https://doi.org/10.2307/2347365 doi: 10.2307/2347365 |
[4] | M. A. Arcones, The asymptotic accuracy of the bootstrap of $U$-quantiles, Ann. Statist., 23 (1995), 1802–1822. https://doi.org/10.1214/aos/1176324324 doi: 10.1214/aos/1176324324 |
[5] | M. A. Arcones, A Bernstein-type inequality for $U$-statistics and $U$-processes, Statist. Probab. Lett., 22 (1995), 239–247. https://doi.org/10.1016/0167-7152(94)00072-G doi: 10.1016/0167-7152(94)00072-G |
[6] | M. A. Arcones, The Bahadur-Kiefer representation for $U$-quantiles, Ann. Statist., 24 (1996), 1400–1422. https://doi.org/10.1214/aos/1032526976 doi: 10.1214/aos/1032526976 |
[7] | M. A. Arcones, E. Giné, Limit theorems for $U$-processes, Ann. Probab., 21 (1993), 1494–1542. https://doi.org/10.1214/aop/1176989128 doi: 10.1214/aop/1176989128 |
[8] | M. A. Arcones, Y. Wang, Some new tests for normality based on $U$-processes, Statist. Probab. Lett., 76 (2006), 69–82. https://doi.org/10.1016/j.spl.2005.07.003 doi: 10.1016/j.spl.2005.07.003 |
[9] | G. J. Babu, Y. P. Chaubey, Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors, Statist. Probab. Lett., 76 (2006), 959–969. https://doi.org/10.1016/j.spl.2005.10.031 doi: 10.1016/j.spl.2005.10.031 |
[10] | G. J. Babu, A. J. Canty, Y. P. Chaubey, Application of Bernstein polynomials for smooth estimation of a distribution and density function, J. Statist. Plann. Inference, 105 (2002), 377–392. https://doi.org/10.1016/S0378-3758(01)00265-8 doi: 10.1016/S0378-3758(01)00265-8 |
[11] | M. Belalia, On the asymptotic properties of the Bernstein estimator of the multivariate distribution function, Statist. Probab. Lett., 110 (2016), 249–256. https://doi.org/10.1016/j.spl.2015.10.004 doi: 10.1016/j.spl.2015.10.004 |
[12] | M. Belalia, T. Bouezmarni, F. C. Lemyre, A. Taamouti, Testing independence based on Bernstein empirical copula and copula density, J. Nonparametr. Stat., 29 (2017), 346–380. https://doi.org/10.1080/10485252.2017.1303063 doi: 10.1080/10485252.2017.1303063 |
[13] | D. Z. Bello, M. Valk, G. B. Cybis, Towards $U$-statistics clustering inference for multiple groups, J. Stat. Comput. Simul., 94 (2024), 204–222. https://doi.org/10.1080/00949655.2023.2239978 doi: 10.1080/00949655.2023.2239978 |
[14] | N. Berrahou, S. Bouzebda, L. Douge, Functional Uniform-in-Bandwidth moderate deviation principle for the local empirical processes involving functional data, Math. Meth. Statist., 33 (2024), 26–69. https://doi.org/10.3103/S1066530724700030 doi: 10.3103/S1066530724700030 |
[15] | N. Berrahou, S. Bouzebda, L. Douge, A nonparametric distribution-free test of independence among continuous random vectors based on $L_1$-norm, arXiv: 2105.02164v3, 2024. |
[16] | K. Bertin, N. Klutchnikoff, Minimax properties of beta kernel estimators, J. Statist. Plann. Inference, 141 (2011), 2287–2297. https://doi.org/10.1016/j.jspi.2011.01.009 doi: 10.1016/j.jspi.2011.01.009 |
[17] | K. Bertin, C. Genest, N. Klutchnikoff, F. Ouimet, Minimax properties of Dirichlet kernel density estimators, J. Multivariate Anal., 195 (2023), 105158. https://doi.org/10.1016/j.jmva.2023.105158 doi: 10.1016/j.jmva.2023.105158 |
[18] | S. Borovkova, R. Burton, H. Dehling, Limit theorems for functionals of mixing processes with applications to $U$-statistics and dimension estimation, Trans. Amer. Math. Soc., 353 (2001), 4261–4318. |
[19] | Y. V. Borovskikh, $U$-statistics in Banach spaces, Boston: De Gruyter, 1996. https://doi.org/10.1515/9783112313954 |
[20] | T. Bouezmarni, J.-M. Rolin, Consistency of the beta kernel density function estimator, Canad. J. Statist., 31 (2003), 89–98. https://doi.org/10.2307/3315905 doi: 10.2307/3315905 |
[21] | T. Bouezmarni, J. V. K. Rombouts, Nonparametric density estimation for multivariate bounded data, J. Statist. Plann. Inference, 140 (2010), 139–152. https://doi.org/10.1016/j.jspi.2009.07.013 doi: 10.1016/j.jspi.2009.07.013 |
[22] | T. Bouezmarni, F. C. Lemyre, A. El Ghouch, Estimation of a bivariate conditional copula when a variable is subject to random right censoring, Electron. J. Stat., 13 (2019), 5044–5087. https://doi.org/10.1214/19-EJS1645 doi: 10.1214/19-EJS1645 |
[23] | S. Bouzebda, General tests of conditional independence based on empirical processes indexed by functions, Jpn. J. Stat. Data Sci., 6 (2023), 115–177. https://doi.org/10.1007/s42081-023-00193-3 doi: 10.1007/s42081-023-00193-3 |
[24] | S. Bouzebda, Limit theorems in the nonparametric conditional single-index U-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 12 (2024), 1996. https://doi.org/10.3390/math12131996 doi: 10.3390/math12131996 |
[25] | S. Bouzebda, Weak convergence of the conditional single index $U$-statistics for locally stationary functional time series, AIMS Mathematics, 9 (2024), 14807–14898. https://doi.org/10.3934/math.2024720 doi: 10.3934/math.2024720 |
[26] | S. Bouzebda, S. Didi, Additive regression model for stationary and ergodic continuous time processes, Comm. Statist. Theory Methods, 46 (2017), 2454–2493. https://doi.org/10.1080/03610926.2015.1048882 doi: 10.1080/03610926.2015.1048882 |
[27] | S. Bouzebda, A. A. Ferfache, Asymptotic properties of $M$-estimators based on estimating equations and censored data in semi-parametric models with multiple change points, J. Math. Anal. Appl., 497 (2021), 124883. https://doi.org/10.1016/j.jmaa.2020.124883 doi: 10.1016/j.jmaa.2020.124883 |
[28] | S. Bouzebda, A. Keziou, A new test procedure of independence in copula models via $\chi^2$-divergence, Comm. Statist. Theory Methods, 39 (2010), 1–20. https://doi.org/10.1080/03610920802645379 doi: 10.1080/03610920802645379 |
[29] | S. Bouzebda, A. Keziou, A semiparametric maximum likelihood ratio test for the change point in copula models, Stat. Methodol., 14 (2013), 39–61. https://doi.org/10.1016/j.stamet.2013.02.003 doi: 10.1016/j.stamet.2013.02.003 |
[30] | S. Bouzebda, A. Nezzal, Asymptotic properties of conditional $U$-statistics using delta sequences, Comm. Statist. Theory Methods, 53 (2024), 4602–4657. https://doi.org/10.1080/03610926.2023.2179887 doi: 10.1080/03610926.2023.2179887 |
[31] | S. Bouzebda, A. Nezzal, Uniform in number of neighbors consistency and weak convergence of $k$NN empirical conditional processes and $k$NN conditional $U$-processes involving functional mixing data, AIMS Mathematics, 9 (2024), 4427–4550. https://doi.org/10.3934/math.2024218 doi: 10.3934/math.2024218 |
[32] | S. Bouzebda, N. Taachouche, On the variable bandwidth kernel estimation of conditional $U$-statistics at optimal rates in sup-norm, Phys. A, 625 (2023), 129000. https://doi.org/10.1016/j.physa.2023.129000 doi: 10.1016/j.physa.2023.129000 |
[33] | S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency with rates for conditional $U$-statistics estimators with general kernels on manifolds, Math. Meth. Stat., 33 (2024), 95 –153. https://doi.org/10.3103/S1066530724700066 doi: 10.3103/S1066530724700066 |
[34] | S. Bouzebda, S. Didi, L. El Hajj, Multivariate wavelet density and regression estimators for stationary and ergodic continuous time processes: Asymptotic results, Math. Meth. Stat., 24 (2015), 163–199. https://doi.org/10.3103/S1066530715030011 doi: 10.3103/S1066530715030011 |
[35] | S. Bouzebda, A. Nezzal, T. Zari, Uniform consistency for functional conditional $U$-statistics using delta-sequences, Mathematics, 11 (2023), 161. https://doi.org/10.3390/math11010161 doi: 10.3390/math11010161 |
[36] | B. M. Brown, S. X. Chen, Beta-Bernstein smoothing for regression curves with compact support, Scand. J. Statist., 26 (1999), 47–59. https://doi.org/10.1111/1467-9469.00136 doi: 10.1111/1467-9469.00136 |
[37] | Q. Cao, Z. C. Guo, Y. Ying, Generalization bounds for metric and similarity learning, Mach. Learn., 102 (2016), 115–132. https://doi.org/10.1007/s10994-015-5499-7 doi: 10.1007/s10994-015-5499-7 |
[38] | A. Charpentier, A. Oulidi, Beta kernel quantile estimators of heavy-tailed loss distributions, Stat. Comput., 20 (2010), 35–55. https://doi.org/10.1007/s11222-009-9114-2 doi: 10.1007/s11222-009-9114-2 |
[39] | L. Chen, A. T. K. Wan, S. Zhang, Y. Zhou, Distributed algorithms for U-statistics-based empirical risk minimization, J. Mach. Learn. Res., 24 (2023), 1–43. |
[40] | S. X. Chen, Beta kernel estimators for density functions, Comput. Statist. Data Anal., 31 (1999), 131–145. https://doi.org/10.1016/S0167-9473(99)00010-9 doi: 10.1016/S0167-9473(99)00010-9 |
[41] | S. X. Chen, Beta kernel smoothers for regression curves, Statist. Sinica, 10 (2000), 73–91. |
[42] | S. X. Chen, Probability density function estimation using gamma kernels, Ann. Inst. Statist. Math., 52 (2000), 471–480. https://doi.org/10.1023/A:1004165218295 doi: 10.1023/A:1004165218295 |
[43] | T. C. Cheng, A. Biswas, Maximum trimmed likelihood estimator for multivariate mixed continuous and categorical data, Comput. Statist. Data Anal., 52 (2008), 2042–2065. https://doi.org/10.1016/j.csda.2007.06.026 doi: 10.1016/j.csda.2007.06.026 |
[44] | R. F. Cintra, M. Valk, D. M. Filho, A model-free-based control chart for batch process using $U$-statistics, J. Process Contr., 132 (2023), 103097. https://doi.org/10.1016/j.jprocont.2023.103097 doi: 10.1016/j.jprocont.2023.103097 |
[45] | G. B. Cybis, M. Valk, S. R. C. Lopes, Clustering and classification problems in genetics through $U$-statistics, J. Stat. Comput. Simul., 88 (2018), 1882–1902. https://doi.org/10.1080/00949655.2017.1374387 doi: 10.1080/00949655.2017.1374387 |
[46] | V. H. de la Peña, E. Giné, Decoupling, In: Probability and its applications, New York: Springer, 1999. https://doi.org/10.1007/978-1-4612-0537-1 |
[47] | H. Dehling, R. Fried, Asymptotic distribution of two-sample empirical $U$-quantiles with applications to robust tests for shifts in location, J. Multivariate Anal., 105 (2012), 124–140. https://doi.org/10.1016/j.jmva.2011.08.014 doi: 10.1016/j.jmva.2011.08.014 |
[48] | M. Denker, G. Keller, On $U$-statistics and v.mise'statistics for weakly dependent processes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete., 64 (1983), 505–522. https://doi.org/10.1007/BF00534953 doi: 10.1007/BF00534953 |
[49] | A. Derumigny, J. D. Fermanian, On kernel-based estimation of conditional Kendall's tau: Finite-distance bounds and asymptotic behavior, Depend. Model., 7 (2019), 292–321. https://doi.org/10.1515/demo-2019-0016 doi: 10.1515/demo-2019-0016 |
[50] | A. Desgagné, C. Genest, F. Ouimet, Asymptotics for non-degenerate multivariate $U$-statistics with estimated nuisance parameters under the null and local alternative hypotheses, arXiv: 2401.11272, 2024. https://doi.org/10.48550/arXiv.2401.11272 |
[51] | L. Devroye, A course in density estimation, Birkhauser Boston Inc., 1978. |
[52] | L. Devroye, C. S. Penrod, Distribution-free lower bounds in density estimation, Ann. Statist., 12 (1984), 1250–1262. https://doi.org/10.1214/aos/1176346790 doi: 10.1214/aos/1176346790 |
[53] | J. Dony, D. M. Mason, Uniform in bandwidth consistency of conditional $U$-statistics, Bernoulli, 14 (2008), 1108–1133. https://doi.org/10.3150/08-BEJ136 doi: 10.3150/08-BEJ136 |
[54] | M. Dwass, The large-sample power of rank order tests in the two-sample problem, Ann. Math. Statist., 27 (1956), 352–374. |
[55] | P. P. B. Eggermont, V. N. LaRiccia, Maximum penalized likelihood estimation, In: Springer series in statistics, New York: Springer, 2001. https://doi.org/10.1007/978-1-0716-1244-6 |
[56] | Z. C. Elmezouar, F. Alshahrani, I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Strong consistency rate in functional single index expectile model for spatial data, AIMS Mathematics, 9 (2024), 5550–5581. https://doi.org/10.3934/math.2024269 doi: 10.3934/math.2024269 |
[57] | V. A. Epanechnikov, Non-parametric estimation of a multidimensional probability density, Theory Probab. Appl., 14 (1969), 153–158. |
[58] | L. Faivishevsky, J. Goldberger, Ica based on a smooth estimation of the differential entropy, In: Proceedings of the 21st international conference on neural information processing systems, Curran Associates Inc., 2008,433–440. |
[59] | A. A. Filippova, Mises theorem on the limit behaviour of functionals derived from empirical distribution functions, Dokl. Akad. Nauk SSSR, 129 (1959), 44–47. |
[60] | E. W. Frees, Infinite order $U$-statistics, Scand. J. Statist., 1989, 29–45. |
[61] | B. Funke, M. Hirukawa, Bias correction for local linear regression estimation using asymmetric kernels via the skewing method, Econom. Stat., 20 (2021), 109–130. https://doi.org/10.1016/j.ecosta.2020.01.004 doi: 10.1016/j.ecosta.2020.01.004 |
[62] | B. Funke, M. Hirukawa, Density derivative estimation using asymmetric kernels, J. Nonparametr. Stat., 2023, 1–24. https://doi.org/10.1080/10485252.2023.2291430 |
[63] | T. Gasser, H. G. Müller, Kernel estimation of regression functions, In: Lecture notes in mathematics, Berlin, Heidelberg: Springer, 757 (2006), 23–68. https://doi.org/10.1007/BFb0098489 |
[64] | W. Gawronski, Strong laws for density estimators of Bernstein type, Period. Math. Hung., 16 (1985), 23–43. https://doi.org/10.1007/BF01855801 doi: 10.1007/BF01855801 |
[65] | W. Gawronski, U. Stadtmüller, On density estimation by means of Poisson's distribution, Scand. J. Statist., 7 (1980), 90–94. |
[66] | S. S. Ghannadpour, S. E. Kalkhoran, H. Jalili, M. Behifar, Delineation of mineral potential zone using u-statistic method in processing satellite remote sensing images, Int. J. Mining Geo-Eng., 57 (2023), 445–453. https://doi.org/10.22059/IJMGE.2023.364690.595097 doi: 10.22059/IJMGE.2023.364690.595097 |
[67] | S. Ghosal, A. Sen, A. W. van der Vaart, Testing monotonicity of regression, Ann. Statist., 28 (2000), 1054–1082. https://doi.org/10.1214/aos/1015956707 doi: 10.1214/aos/1015956707 |
[68] | E. Giné, D. M. Mason, Laws of the iterated logarithm for the local U-statistic process, J. Theor. Probab., 20 (2007), 457–485. https://doi.org/10.1007/s10959-007-0067-0 doi: 10.1007/s10959-007-0067-0 |
[69] | Z. Guan, Efficient and robust density estimation using Bernstein type polynomials, J. Nonparametr. Stat., 28 (2016), 250–271. https://doi.org/10.1080/10485252.2016.1163349 doi: 10.1080/10485252.2016.1163349 |
[70] | E. Guerre, I. Perrigne, Q. Vuong, Optimal nonparametric estimation of first-price auctions, Econometrica, 68 (2000), 525–574. https://doi.org/10.1111/1468-0262.00123 doi: 10.1111/1468-0262.00123 |
[71] | P. R. Halmos, The theory of unbiased estimation, Ann. Math. Statist., 17 (1946), 34–43. https://doi.org/10.1214/aoms/1177731020 doi: 10.1214/aoms/1177731020 |
[72] | B. E. Hansen, Uniform convergence rates for kernel estimation with dependent data, Econometric Theory, 24 (2008), 726–748. |
[73] | W. Härdle, Applied nonparametric regression, Cambridge University Press, 1990. https://doi.org/10.1017/CCOL0521382483 |
[74] | M. Harel, M. L. Puri, Conditional $U$-statistics for dependent random variables, In: Probability theory and extreme value theory, New York: De Gruyter Mouton, 2 (2003), 533–549. https://doi.org/10.1515/9783110917826.533 |
[75] | C. Heilig, D. Nolan, Limit theorems for the infinite-degree $U$-process, Statist. Sinica, 11 (2001), 289–302. |
[76] | R. Helmers, M. Hušková, Bootstrapping multivariate $U$-quantiles and related statistics, J. Multivariate Anal., 49 (1994), 97–109. https://doi.org/10.1006/jmva.1994.1016 doi: 10.1006/jmva.1994.1016 |
[77] | M. Hirukawa, Asymmetric kernel smoothing: Theory and applications in economics and finance, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-5466-2 |
[78] | M. Hirukawa, M. Sakudo, Another bias correction for asymmetric kernel density estimation with a parametric start, Statist. Probab. Lett., 145 (2019), 158–165. https://doi.org/10.1016/j.spl.2018.09.002 doi: 10.1016/j.spl.2018.09.002 |
[79] | M. Hirukawa, I. Murtazashvili, A. Prokhorov, Uniform convergence rates for nonparametric estimators smoothed by the beta kernel, Scand. J. Stat., 49 (2022), 1353–1382. https://doi.org/10.1111/sjos.12573 doi: 10.1111/sjos.12573 |
[80] | W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statist., 19 (1948), 293–325. https://doi.org/10.1214/aoms/1177730196 doi: 10.1214/aoms/1177730196 |
[81] | B. Huang, Y. Liu, L. Peng, Distributed inference for two-sample $U$-statistics in massive data analysis, Scand. J. Stat., 50 (2023), 1090–1115. https://doi.org/10.1111/sjos.12620 doi: 10.1111/sjos.12620 |
[82] | G. Igarashi, Bias reductions for beta kernel estimation, J. Nonparametr. Stat., 28 (2016), 1–30. https://doi.org/10.1080/10485252.2015.1112011 doi: 10.1080/10485252.2015.1112011 |
[83] | G. Igarashi, Y. Kakizawa, Limiting bias-reduced Amoroso kernel density estimators for non-negative data, Comm. Statist. Theory Methods, 47 (2018), 4905–4937. https://doi.org/10.1080/03610926.2017.1380832 doi: 10.1080/03610926.2017.1380832 |
[84] | G. Igarashi, Y. Kakizawa, Multiplicative bias correction for asymmetric kernel density estimators revisited, Comput. Statist. Data Anal., 141 (2020), 40–61. https://doi.org/10.1016/j.csda.2019.06.010 doi: 10.1016/j.csda.2019.06.010 |
[85] | S. Janson, A functional limit theorem for random graphs with applications to subgraph count statistics, Random Structures Algorithms, 1 (1990), 15–37. https://doi.org/10.1002/rsa.3240010103 doi: 10.1002/rsa.3240010103 |
[86] | S. Janson, Asymptotic normality for $m$-dependent and constrained $U$-statistics, with applications to pattern matching in random strings and permutations, Adv. Appl. Probab., 55 (2023), 841–894. https://doi.org/10.1017/apr.2022.51 doi: 10.1017/apr.2022.51 |
[87] | E. Joly, G. Lugosi, Robust estimation of $U$-statistics, Stochastic Process. Appl., 126 (2016), 3760–3773. https://doi.org/10.1016/j.spa.2016.04.021 doi: 10.1016/j.spa.2016.04.021 |
[88] | M. C. Jones, Corrigendum: "Variable kernel density estimates and variable kernel density estimates" [Austral. J. Statist. 32 (1991). 3,361–371], Austral. J. Statist., 33 (1991), 119. https://doi.org/10.1111/j.1467-842X.1991.tb00418.x doi: 10.1111/j.1467-842X.1991.tb00418.x |
[89] | Y. Kakizawa, Bernstein polynomial probability density estimation, J. Nonparametr. Stat., 16 (2004), 709–729. https://doi.org/10.1080/1048525042000191486 doi: 10.1080/1048525042000191486 |
[90] | M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), 81–93. |
[91] | I. Kim, A. Ramdas, Dimension-agnostic inference using cross U-statistics, Bernoulli, 30 (2024), 683–711. https://doi.org/10.3150/23-BEJ1613 doi: 10.3150/23-BEJ1613 |
[92] | V. S. Koroljuk, Y. V. Borovskich, Theory of $U$-statistics, In: Mathematics and its applications, Dordrecht: Springer, 273 (2013). https://doi.org/10.1007/978-94-017-3515-5 |
[93] | S. Kotz, N. Balakrishnan, N. L. Johnson, Continuous multivariate distributions: Models and applications, John Wiley & Sons, Inc., 2000. |
[94] | D. Kristensen, Uniform convergence rates of kernel estimators with heterogeneous dependent data, Econometric Theory, 25 (2009), 1433–1445. https://doi.org/10.1017/S0266466609090744 doi: 10.1017/S0266466609090744 |
[95] | T. Le Minh, $U$-statistics on bipartite exchangeable networks, ESAIM Probab. Stat., 27 (2023), 576–620. https://doi.org/10.1051/ps/2023010 doi: 10.1051/ps/2023010 |
[96] | A. Leblanc, On estimating distribution functions using Bernstein polynomials, Ann. Inst. Stat. Math., 64 (2012), 919–943. https://doi.org/10.1007/s10463-011-0339-4 doi: 10.1007/s10463-011-0339-4 |
[97] | A. Leblanc, On the boundary properties of Bernstein polynomial estimators of density and distribution functions, J. Statist. Plann. Inference, 142 (2012), 2762–2778. https://doi.org/10.1016/j.jspi.2012.03.016 doi: 10.1016/j.jspi.2012.03.016 |
[98] | A. J. Lee, $U$-statistics: Theory and practice, New York: Routledge, 1990. https://doi.org/10.1201/9780203734520 |
[99] | E. L. Lehmann, A general concept of unbiasedness, Ann. Math. Statist., 22 (1951), 587–592. https://doi.org/10.1214/aoms/1177729549 doi: 10.1214/aoms/1177729549 |
[100] | E. L. Lehmann, Elements of large-sample theory, In: Springer texts in statistics, New York: Springer, 1999. https://doi.org/10.1007/b98855 |
[101] | C. Y. Leung, The effect of across-location heteroscedasticity on the classification of mixed categorical and continuous data, J. Multivariate Anal., 84 (2003), 369–386. https://doi.org/10.1016/S0047-259X(02)00057-X doi: 10.1016/S0047-259X(02)00057-X |
[102] | H. Li, C. Ren, L. Li, $U$-processes and preference learning, Neural Comput., 26 (2014), 2896–2924. https://doi.org/10.1162/NECO_a_00674 doi: 10.1162/NECO_a_00674 |
[103] | F. Lim, V. M. Stojanovic, On U-statistics and compressed sensing I: Non-asymptotic average-case analysis, IEEE Trans. Signal Process., 61 (2013), 2473–2485. https://doi.org/10.1109/TSP.2013.2247598 doi: 10.1109/TSP.2013.2247598 |
[104] | R. J. A. Little, M. D. Schluchter, Maximum likelihood estimation for mixed continuous and categorical data with missing values, Biometrika, 72 (1985), 497–512. https://doi.org/10.1093/biomet/72.3.497 doi: 10.1093/biomet/72.3.497 |
[105] | B. Liu, S. K. Ghosh, On empirical estimation of mode based on weakly dependent samples, Comput. Statist. Data Anal., 152 (2020), 107046. https://doi.org/10.1016/j.csda.2020.107046 doi: 10.1016/j.csda.2020.107046 |
[106] | C. Liu, D. B. Rubin, Ellipsoidally symmetric extensions of the general location model for mixed categorical and continuous data, Biometrika, 85 (1998), 673–688. |
[107] | Q. Liu, J. Lee, M. Jordan, A kernelized stein discrepancy for goodness-of-fit tests, In: Proceedings of the 33rd international conference on international conference on machine learning, 48 (2016), 276–284. |
[108] | D. Lu, L. Wang, J. Yang, The stochastic convergence of Bernstein polynomial estimators in a triangular array, J. Nonparametr. Stat., 34 (2022), 987–1014. https://doi.org/10.1080/10485252.2022.2107643 doi: 10.1080/10485252.2022.2107643 |
[109] | L. Lu, On the uniform consistency of the Bernstein density estimator, Statist. Probab. Lett., 107 (2015), 52–61. https://doi.org/10.1016/j.spl.2015.08.004 doi: 10.1016/j.spl.2015.08.004 |
[110] | H. G. Müller, Nonparametric regression analysis of longitudinal data, In: Lecture notes in statistics, New York: Springer, 46 (1988). https://doi.org/10.1007/978-1-4612-3926-0 |
[111] | H. G. Müller, Smooth optimum kernel estimators near endpoints, Biometrika, 78 (1991), 521–530. https://doi.org/10.1093/biomet/78.3.521 doi: 10.1093/biomet/78.3.521 |
[112] | E. A. Nadaraja, On a regression estimate, Teor. Verojatnost. Primenen., 9 (1964), 157–159. |
[113] | E. A. Nadaraya, Nonparametric estimation of probability densities and regression curves, In: Mathematics and its applications, Dordrecht: Springer, 20 (1989). https://doi.org/10.1007/978-94-009-2583-0 |
[114] | K. W. Ng, G. L. Tian, M. L. Tang, Dirichlet and related distributions: Theory, methods and applications, John Wiley & Sons, Ltd., 2011. Chichester. Theory, methods and applications. (2011) |
[115] | F. Ouimet, Asymptotic properties of Bernstein estimators on the simplex, J. Multivariate Anal., 185 (2021), 104784. https://doi.org/10.1016/j.jmva.2021.104784 doi: 10.1016/j.jmva.2021.104784 |
[116] | F. Ouimet, On the boundary properties of Bernstein estimators on the simplex, Open Statist., 3 (2022), 48–62. https://doi.org/10.1515/stat-2022-0111 doi: 10.1515/stat-2022-0111 |
[117] | F. Ouimet, R. Tolosana-Delgado, Asymptotic properties of Dirichlet kernel density estimators, J. Multivariate Anal., 187 (2022), 104832. https://doi.org/10.1016/j.jmva.2021.104832 doi: 10.1016/j.jmva.2021.104832 |
[118] | W. Peng, T. Coleman, L. Mentch, Rates of convergence for random forests via generalized U-statistics, Electron. J. Statist., 16 (2022), 232–292. https://doi.org/10.1214/21-EJS1958 doi: 10.1214/21-EJS1958 |
[119] | B. L. S. P. Rao, Nonparametric functional estimation, Academic Press, 1983. https://doi.org/10.1016/C2013-0-11326-8 |
[120] | B. L. S. P. Rao, Estimation of distribution and density functions by generalized Bernstein polynomials, Indian J. Pure Appl. Math., 36 (2005), 63–88. |
[121] | B. L. S. P. Rao, A. Sen, Limit distributions of conditional $U$-statistics, J. Theor. Probab., 8 (1995), 261–301. https://doi.org/10.1007/BF02212880 doi: 10.1007/BF02212880 |
[122] | R. H. Randles, On the asymptotic normality of statistics with estimated parameters, Ann. Statist., 10 (1982), 462–474. https://doi.org/10.1214/aos/1176345787 doi: 10.1214/aos/1176345787 |
[123] | O. Renault, O. Scaillet, On the way to recovery: A nonparametric bias free estimation of recovery rate densities, J. Bank. Financ., 28 (2004), 2915–2931. https://doi.org/10.1016/j.jbankfin.2003.10.018 doi: 10.1016/j.jbankfin.2003.10.018 |
[124] | G. G. Roussas, Estimation of transition distribution function and its quantiles in Markov processes: strong consistency and asymptotic normality, In: Roussas, G. (eds) Nonparametric functional estimation and related topics. NATO ASI Series, Dordrecht: Springer, 335 (1991). https://doi.org/10.1007/978-94-011-3222-0_34 |
[125] | A. Sancetta, S. Satchell, The Bernstein copula and its applications to modeling and approximations of multivariate distributions, Econometric Theory, 20 (2004), 535–562. |
[126] | A. Schick, Y. Wang, W. Wefelmeyer, Tests for normality based on density estimators of convolutions, Statist. Probab. Lett., 81 (2011), 337–343. https://doi.org/10.1016/j.spl.2010.10.022 doi: 10.1016/j.spl.2010.10.022 |
[127] | E. F. Schuster, Incorporating support constraints into nonparametric estimators of densities, Comm. Statist. Theory Methods, 14 (1985), 1123–1136. https://doi.org/10.1080/03610928508828965 doi: 10.1080/03610928508828965 |
[128] | A. Sen, Uniform strong consistency rates for conditional $U$-statistics, Sankhya, 56 (1994), 179–194. |
[129] | R. J. Serfling, Approximation theorems of mathematical statistics, New York: John Wiley & Sons, Inc., 1980. |
[130] | B. W. Silverman, Density estimation for statistics and data analysis, New York: Routledge, 1998. https://doi.org/10.1201/9781315140919 |
[131] | Y. Song, X. Chen, K. Kato, Approximating high-dimensional infinite-order $U$-statistics: Statistical and computational guarantees, Electron. J. Statist., 13 (2019), 4794–4848. https://doi.org/10.1214/19-EJS1643 doi: 10.1214/19-EJS1643 |
[132] | M. Spiess, Estimation of a two-equation panel model with mixed continuous and ordered categorical outcomes and missing data, J. Roy. Statist. Soc. Ser. C, 55 (2006), 525–538. https://doi.org/10.1111/j.1467-9876.2006.00551.x doi: 10.1111/j.1467-9876.2006.00551.x |
[133] | U. Stadmüller, Asymptotic distributions of smoothed histograms, Metrika, 30 (1983), 145–158. https://doi.org/10.1007/BF02056918 doi: 10.1007/BF02056918 |
[134] | W. Stute, Conditional $U$-statistics, Ann. Probab., 19 (1991), 812–825. https://doi.org/10.1214/aop/1176990452 doi: 10.1214/aop/1176990452 |
[135] | W. Stute, Almost sure representations of the product-limit estimator for truncated data, Ann. Statist., 21 (1993), 146–156. https://doi.org/10.1214/aos/1176349019 doi: 10.1214/aos/1176349019 |
[136] | W. Stute, $L^p$-convergence of conditional $U$-statistics, J. Multivariate Anal., 51 (1994), 71–82. https://doi.org/10.1006/jmva.1994.1050 doi: 10.1006/jmva.1994.1050 |
[137] | W. Stute, Universally consistent conditional $U$-statistics, Ann. Statist., 22 (1994), 460–473. https://doi.org/10.1214/aos/1176325378 doi: 10.1214/aos/1176325378 |
[138] | W. Stute, Symmetrized NN-conditional $U$-statistics, In: Research developments in probability and statistics, 1996,231–237. |
[139] | K. K. Sudheesh, S. Anjana, M. Xie, U-statistics for left truncated and right censored data, Statistics, 57 (2023), 900–917. https://doi.org/10.1080/02331888.2023.2217314 doi: 10.1080/02331888.2023.2217314 |
[140] | R. A. Tapia, J. R. Thompson, Nonparametric probability density estimation, In: Johns Hopkins series in the mathematical sciences, Routledge: Johns Hopkins University Press, 1978. |
[141] | A. Tenbusch, Two-dimensional Bernstein polynomial density estimators, Metrika, 41 (1994), 233–253. https://doi.org/10.1007/BF01895321 doi: 10.1007/BF01895321 |
[142] | A. Tenbusch, Nonparametric curve estimation with Bernstein estimates, Metrika, 45 (1997), 1–30. https://doi.org/10.1007/BF02717090 doi: 10.1007/BF02717090 |
[143] | A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes—with applications to statistics, In: Springer series in statistics, Springer Cham, 2023. https://doi.org/10.1007/978-3-031-29040-4 |
[144] | R. A. Vitale, Bernstein polynomial approach to density function estimation, In: Statistical inference and related topics, Academic Press, 1975, 87–99. https://doi.org/10.1016/B978-0-12-568002-8.50011-2 |
[145] | D. Vogel, M. Wendler, Studentized $U$-quantile processes under dependence with applications to change-point analysis, Bernoulli, 23 (2017), 3114–3144. https://doi.org/10.3150/16-BEJ838 doi: 10.3150/16-BEJ838 |
[146] | R. V. Mises, On the asymptotic distribution of differentiable statistical functions, Ann. Math. Statist., 18 (1947), 309–348. https://doi.org/10.1214/aoms/1177730385 doi: 10.1214/aoms/1177730385 |
[147] | M. P. Wand, M. C. Jones, Kernel smoothing, New York: Chapman and Hall/CRC, 1994. https://doi.org/10.1201/b14876 |
[148] | L. Wang, D. Lu, On the rates of asymptotic normality for Bernstein density estimators in a triangular array, J. Math. Anal. Appl., 511 (2022), 126063. https://doi.org/10.1016/j.jmaa.2022.126063 doi: 10.1016/j.jmaa.2022.126063 |
[149] | L. Wang, D. Lu, Application of Bernstein polynomials on estimating a distribution and density function in a triangular array, Methodol. Comput. Appl. Probab., 25 (2023), 56. https://doi.org/10.1007/s11009-023-10032-3 doi: 10.1007/s11009-023-10032-3 |
[150] | G. S.Watson, Smooth regression analysis, Sankhya, 26 (1964), 359–372. |
[151] | M. Wendler, $U$-processes, $U$-quantile processes and generalized linear statistics of dependent data, Stochastic Process. Appl., 122 (2012), 787–807. https://doi.org/10.1016/j.spa.2011.11.010 doi: 10.1016/j.spa.2011.11.010 |
[152] | W. W. Göttingen, Statistical density estimation: A survey, Vandenhoeck & Ruprecht, 1978. |
[153] | A. Yatchew, An elementary estimator of the partial linear model, Econom. Lett., 57 (1997), 135–143. https://doi.org/10.1016/S0165-1765(97)00218-8 doi: 10.1016/S0165-1765(97)00218-8 |
[154] | X. F. Yin, Z. F. Hao, Adaptive kernel density estimation using beta kernel, In: 2007 International conference on machine learning and cybernetics, IEEE, 2007. https://doi.org/10.1109/ICMLC.2007.4370716 |
[155] | S. Zhang, R. J. Karunamuni, Boundary performance of the beta kernel estimators, J. Nonparametr. Stat., 22 (2010), 81–104. https://doi.org/10.1080/10485250903124984 doi: 10.1080/10485250903124984 |
[156] | W. Zhou, Generalized spatial U-quantiles: Theory and applications, The University of Texas at Dallas, 2005. |
[157] | W. Zhou, R. Serfling, Generalized multivariate rank type test statistics via spatial U-quantiles, Statist. Probab. Lett., 78 (2008), 376–383. https://doi.org/10.1016/j.spl.2007.07.010 doi: 10.1016/j.spl.2007.07.010 |
[158] | W. Zhou, R. Serfling, Multivariate spatial U-quantiles: A Bahadur-Kiefer representation, a Theil-Sen estimator for multiple regression, and a robust dispersion estimator, J. Statist. Plann. Inference, 138 (2008), 1660–1678. https://doi.org/10.1016/j.jspi.2007.05.043 doi: 10.1016/j.jspi.2007.05.043 |