Research article

A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian

  • Received: 06 October 2022 Revised: 31 January 2023 Accepted: 15 February 2023 Published: 03 March 2023
  • 37K58, 70S05, 53D10, 35R01, 83D05

  • We derive the equations of motion of an action-dependent version of the Einstein-Hilbert Lagrangian as a specific instance of the Herglotz variational problem. Action-dependent Lagrangians lead to dissipative dynamics, which cannot be obtained with the standard method of Lagrangian field theory. First-order theories of this kind are relatively well understood, but examples of singular or higher-order action-dependent field theories are scarce. This work constitutes an example of such a theory. By casting the problem in clear geometric terms, we are able to obtain a Lorentz invariant set of equations, which contrasts with previous attempts.

    Citation: Jordi Gaset, Arnau Mas. A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian[J]. Journal of Geometric Mechanics, 2023, 15(1): 357-374. doi: 10.3934/jgm.2023014

    Related Papers:

  • We derive the equations of motion of an action-dependent version of the Einstein-Hilbert Lagrangian as a specific instance of the Herglotz variational problem. Action-dependent Lagrangians lead to dissipative dynamics, which cannot be obtained with the standard method of Lagrangian field theory. First-order theories of this kind are relatively well understood, but examples of singular or higher-order action-dependent field theories are scarce. This work constitutes an example of such a theory. By casting the problem in clear geometric terms, we are able to obtain a Lorentz invariant set of equations, which contrasts with previous attempts.



    加载中


    [1] K. Grabowska, J. Grabowski, A geometric approach to contact Hamiltonians and contact Hamilton–Jacobi theory, J. Phys. A-Math. Theor., 55 (2022), 435204. https://doi.org/10.1088/1751-8121/ac9adb doi: 10.1088/1751-8121/ac9adb
    [2] J. Gaset, X. Gràcia, M. Muñoz-Lecanda, X. Rivas, N. Román-Roy, New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries, Int. J. Geom. Methods. M., 17 (2020), 2050090. https://doi.org/10.1142/S0219887820500905 doi: 10.1142/S0219887820500905
    [3] A. Bravetti, Contact geometry and thermodynamics, Int. J. Geom. Methods. M., 16 (2019), 1940003. https://doi.org/10.1142/s0219887819400036 doi: 10.1142/s0219887819400036
    [4] R. Mrugala, J. D. Nulton, J. C. Schön, P. Salamon, Contact structure in thermodynamic theory, Rep. Math. Phys., 29 (1991), 109–121. https://doi.org/10.1016/0034-4877(91)90017-H doi: 10.1016/0034-4877(91)90017-H
    [5] A. A. Simoes, M. de León, M. L. Valcázar, D. M. de Diego, Contact geometry for simple thermodynamical systems with friction, P. Roy. Soc. A-Math. Phy., 476 (2020), 20200244. https://doi.org/10.1098/rspa.2020.0244 doi: 10.1098/rspa.2020.0244
    [6] F. M. Ciaglia, H. Cruz, G. Marmo, Contact manifolds and dissipation, classical and quantum, Ann. Phys-New. York., 398 (2018), 159–179. https://doi.org/10.1016/j.aop.2018.09.012 doi: 10.1016/j.aop.2018.09.012
    [7] S. I. Goto, Contact geometric descriptions of vector fields on dually flat spaces and their applications in electric circuit models and nonequilibrium statistical mechanics, J. Math. Phys., 57 (2016). https://doi.org/10.1063/1.4964751 doi: 10.1063/1.4964751
    [8] M. J. Lazo, J. Paiva, J. T. S. Amaral, G. S. F. Frederico, Action principle for action-dependent Lagrangians toward nonconservative gravity: Accelerating universe without dark energy, Phys. Rev. D., 95 (2017), 101501. https://doi.org/10.1103/PhysRevD.95.101501 doi: 10.1103/PhysRevD.95.101501
    [9] D. Sloan, New action for cosmology, Phys. Rev. D., 102 (2021), 043524. 10.1103/PhysRevD.103.043524 doi: 10.1103/PhysRevD.103.043524
    [10] J. Gaset, A. Marín-Salvador, Application of Herglotz's variational principle to electromagnetic systems with dissipation, Int. J. Geom. Methods. M., 19 (2022), 2250156. https://doi.org/10.1142/S0219887822501560 doi: 10.1142/S0219887822501560
    [11] H. Geiges, An Introduction to Contact Topology, Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511611438
    [12] M. Lainz, M. de León, Contact Hamiltonian Systems, J. Math. Phys., 60 (2019), 102902. https://doi.org/10.1063/1.5096475 doi: 10.1063/1.5096475
    [13] M. de León, M. Lainz, A review on contact Hamiltonian and Lagrangian systems, arXiv: 2011.05579 [math-ph].
    [14] M. de León, M. Lainz, Singular Lagrangians and precontact Hamiltonian systems, Int. J. Geom. Methods. M., 16 (2019), 1950158. https://doi.org/10.1142/S0219887819501585 doi: 10.1142/S0219887819501585
    [15] M. de León, J. Gaset, M. Laínz, M. C. Muñoz-Lecanda, N. Román-Roy, Higher-order contact mechanics, Ann. Phys-New. York., 425 (2021), 168396. https://doi.org/10.1016/j.aop.2021.168396 doi: 10.1016/j.aop.2021.168396
    [16] M. de León, J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, Time-dependent contact mechanics, Monatsh. Math., (2022). https://doi.org/10.1007/s00605-022-01767-1 doi: 10.1007/s00605-022-01767-1
    [17] J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, N. Román-Roy, A contact geometry framework for field theories with dissipation, Ann. Phys-New. York., 414 (2020), 168092. https://doi.org/10.1016/j.aop.2020.168092 doi: 10.1016/j.aop.2020.168092
    [18] J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, N. Román-Roy, A K-contact Lagrangian formulation for nonconservative field theories, Rep. Math. Phys., 87 (2021), 347–368. https://doi.org/10.1016/S0034-4877(21)00041-02 doi: 10.1016/S0034-4877(21)00041-02
    [19] B. Georgieva, R. Guenther, T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911–3927. https://doi.org/10.1063/1.1597419 doi: 10.1063/1.1597419
    [20] M. de León, J. Gaset, M. C. Muñoz-Lecanda, X. Rivas, N. Román-Roy, Multicontact formulation for non-conservative field theories, J. Phys. A-Math. Theor., (2023).
    [21] G. J. Olmo, D. Rubiera-Garcia, A. Wojnar, Stellar structure models in modified theories of gravity: lessons and challenges, Phys. Rep., 876 (2020), 1–75. https://doi.org/10.1016/j.physrep.2020.07.001 doi: 10.1016/j.physrep.2020.07.001
    [22] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, I. Sawicki, Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A, Phys. Rev. Lett., 119 (2017), 1–6. https://doi.org/10.1103/PhysRevLett.119.251301 doi: 10.1103/PhysRevLett.119.251301
    [23] J. A. P. Paiva, M. J. Lazo, V. T. Zanchin, Generalized nonconservative gravitational field equations from Herglotz action principle, Phys. Rev. D., 105 (2022), 124023. https://doi.org/10.1103/PhysRevD.105.124023 doi: 10.1103/PhysRevD.105.124023
    [24] A. Mas Dorca, A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian, Universitat Autònoma de Barcelona.
    [25] G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, 1930.
    [26] M. León de, M. Lainz, M. C. Muñoz-Lecanda, The Herglotz Principle and Vakonomic Dynamics, In: Geometric Science of Information, 12829 (2021), 183–190. https://doi.org/10.1007/978-3-030-80209-7-21
    [27] M. J. Lazo, J. Paiva, J. T. S. Amaral, G. S. F. Frederico, An action principle for action-dependent Lagrangians: Toward an action principle to non-conservative systems, J. Math. Phys., 59 (2018), 032902. https://doi.org/10.1063/1.5019936 doi: 10.1063/1.5019936
    [28] G. Xavier, J. Marín-Solano, M. C. Muñoz-Lecanda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127–148.
    [29] J. Gaset, M. Lainz, A. Mas, X. Rivas, The Herglotz variational principle for dissipative field theories, arXiv: 2211.17058 [math-ph].
    [30] S. M. Carroll, Lecture Notes on General Relativity, arXiv: gr-qc/9712019.
    [31] J. Gaset, N. Román-Roy, Multisymplectic unified formalism for Einstein-Hilbert gravity, J. Math. Phys., 59 (2018). https://doi.org/10.1063/1.4998526 doi: 10.1063/1.4998526
    [32] M. E. Rosado, M. J. Muñoz, Second-order Lagrangians admitting a first-order Hamiltonian formalism, Ann. Mat. Pur. Appl., 197 (2018), 357–397. https://doi.org/10.1007/s10231-017-0683-y doi: 10.1007/s10231-017-0683-y
    [33] M. de León, J. Gaset, M. Lainz, Inverse problem and equivalent contact systems, J. Geom. Phys., 176 (2022), 104500. https://doi.org/10.1016/j.geomphys.2022.104500 doi: 10.1016/j.geomphys.2022.104500
    [34] G. Jordi R. Narciso, New symplectic approach to the Metric-Affine (Einstein-Palatini) action for gravity, J. Geom. Phys., 11 (2019), 361-396. https://doi.org/10.3934/jgm.2019019 doi: 10.3934/jgm.2019019
    [35] D. Vey, Multisymplectic formulation of vielbein gravity: Ⅰ. De Donder–Weyl formulation, Hamiltonian (n-1)-forms, Classical. Quant. Grav., 32 (2015), 095005. https://doi.org/10.1088/0264-9381/32/9/095005 doi: 10.1088/0264-9381/32/9/095005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(939) PDF downloads(89) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog