Research article

The dressing field method in gauge theories - geometric approach

  • Received: 14 May 2021 Revised: 19 September 2022 Accepted: 26 September 2022 Published: 29 January 2023
  • Primary: 53Z05; Secondary: 70S05, 70S10, 70S15

  • Recently, T. Masson, J. Francois, S. Lazzarini, C. Fournel and J. Attard have introduced a new method of the reduction of gauge symmetries called the dressing field method. In this paper we analyse this method from the fiber bundle point of view and we show the geometric implications for a principal bundle underlying a given gauge theory.We show how the existence of a dressing field satisfying certain conditions naturally leads to the reduction of the principal bundle and, as a consequence, to the reduction of the configuration and phase bundle of the system.

    Citation: Marcin Zając. The dressing field method in gauge theories - geometric approach[J]. Journal of Geometric Mechanics, 2023, 15(1): 128-146. doi: 10.3934/jgm.2023007

    Related Papers:

  • Recently, T. Masson, J. Francois, S. Lazzarini, C. Fournel and J. Attard have introduced a new method of the reduction of gauge symmetries called the dressing field method. In this paper we analyse this method from the fiber bundle point of view and we show the geometric implications for a principal bundle underlying a given gauge theory.We show how the existence of a dressing field satisfying certain conditions naturally leads to the reduction of the principal bundle and, as a consequence, to the reduction of the configuration and phase bundle of the system.



    加载中


    [1] J. Attard, Conformal Gauge Theories, Cartan Geometry and Transitive Lie Algebroids, PhD thesis, Université d'Aix-Marseille, 2018.
    [2] J. Attard, J. Franis, S. Lazzarini, T. Masson, The Dressing Field Method of Gauge Symmetry Reduction, a Review with Examples, Foundations of Mathematics and Physics One Century After Hilbert, Springer, Cham, 377–415, 2018.
    [3] C. Campos, M. de León, D.M. de Diego, M. Vaquero, Hamilton-Jacobi theory in Cauchy data space, Rep. Math. Phys., 76 (2015), 359–387. https://doi.org/10.1016/S0034-4877(15)30038-0 doi: 10.1016/S0034-4877(15)30038-0
    [4] J. F. Cariñena, M. Crampin, L. A. Ibort, On the multisymplectic formalism for first order theories, Differ. Geom. Appl., 1 (1991), 354–374. https://doi.org/10.1016/0926-2245(91)90013-Y doi: 10.1016/0926-2245(91)90013-Y
    [5] S. S. Chern, W. H. Chen, K. S. Lam, Lectures on differential geometry, World Scientific Publishing Co., 1999.
    [6] O. Esen, H. Gümral, Lifts, jets and reduced dynamics, Int. J. Geom. Methods Mod. Phys., 8 (2011), 331–344. https://doi.org/10.1142/S0219887811005166 doi: 10.1142/S0219887811005166
    [7] T. Eguchi, P. B. Gilkey, A. J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rep., 66 (1980), 213–393. https://doi.org/10.1016/0370-1573(80)90130-1 doi: 10.1016/0370-1573(80)90130-1
    [8] J. M. Figueroa-O'Farrill, Gauge theory, Lecture notes, Available from: https://empg.maths.ed.ac.uk/Activities/GT/.
    [9] C. Fournel, J. Franis, S. Lazzarini, T. Masson, Gauge invariant composite fields out of connections, with examples, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450016. https://doi.org/10.1142/S0219887814500169 doi: 10.1142/S0219887814500169
    [10] J. Franis, Reduction of gauge symmetries: a new geometrical approach, PhD thesis, Université d'Aix-Marseille, 2014.
    [11] J. Franis, S. Lazzarini, T. Masson, Residual Weyl symmetry out of conformal geometry and its BRST structure, J. High Energy Phys., 9 (2015), 195. https://doi.org/10.1007/JHEP09(2015)195 doi: 10.1007/JHEP09(2015)195
    [12] K. Grabowska, A Tulczyjew triple for classical fields, J. Phys. A: Math. Theor., 45 (2012), 145207. https://doi.org/10.1088/1751-8113/45/14/145207 doi: 10.1088/1751-8113/45/14/145207
    [13] K. Grabowska, L. Vitagliano, Tulczyjew triples in higher derivative field theory, J. Geom. Mech., 7 (2015), 1–33. https://doi.org/10.3934/jgm.2015.7.1 doi: 10.3934/jgm.2015.7.1
    [14] V. N. Gribov, Quantization of non-abelian gauge theories, Nucl. Phys. B, 139 (1978), 1–19. https://doi.org/10.1016/0550-3213(78)90175-X doi: 10.1016/0550-3213(78)90175-X
    [15] G. S. Guralnik, C. R. Hagen, T. W. B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett., 13 (1964), 585–587. https://doi.org/10.1103/PhysRevLett.13.585 doi: 10.1103/PhysRevLett.13.585
    [16] P. W. Higgs, Broken symmetry and the mass of gauge bosons, Phys. Rev. Lett., 13 (1964), 508–509. https://doi.org/10.1103/PhysRevLett.13.508 doi: 10.1103/PhysRevLett.13.508
    [17] J. Kijowski, W. Szczyrba, A canonical structure for classical field theories, Commun. Math. Phys., 46 (1976), 183–206. https://doi.org/10.1007/BF01608496 doi: 10.1007/BF01608496
    [18] M. de León, P. D. Prieto-Martínez, N. Román-Roy, S. Vilarino, Hamilton-Jacobi theory in multisymplectic classical field theories, J. Math. Phys., 58 (2017), 092901. https://doi.org/10.1063/1.5004260 doi: 10.1063/1.5004260
    [19] M. de León, S. Vilarino, Methods of Differential Geometry in Classical Field Theories: k-Symplectic and k-Cosymplectic Approaches, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016.
    [20] M. de León, M. Zając, Hamilton-Jacobi theory for gauge field theories, J. Geom. Phys. 152 (2020), 103636. https://doi.org/10.1016/j.geomphys.2020.103636 doi: 10.1016/j.geomphys.2020.103636
    [21] T. Masson, J. C. Wallet, A Remark on the Spontaneous Symmetry Breaking Mechanism in the Standard Model, arXiv : 1001.1176., 2011.
    [22] K. Nomizu, Lie groups and differential geometry, Publications of the Mathematical Society of Japan, 1956.
    [23] N. Roman-Roy, A. M. Rey, M. Salgado, S. Vilariño, On the k-symplectic, k-cosymplectic and multisymplectic formalism of classical field theories, J. Geom. Mech., 3 (2011), 113–137. https://doi.org/10.3934/jgm.2011.3.113 doi: 10.3934/jgm.2011.3.113
    [24] G. Sardanashvily, Gauge theory in jet manifolds, Hadronic Press Monographs in Applied Mathematics, Hadronic Press, Inc., Palm Harbor, FL, 1993.
    [25] G. Sardanashvily, Generalized Hamiltonian formalism for field theory. Constraint systems, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
    [26] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989.
    [27] I. M. Singer, Some remark on the gribov ambiguity, Comm. Math. Phys., 60 (1978), 712. https://doi.org/10.1007/BF01609471 doi: 10.1007/BF01609471
    [28] S. Sternberg, Group Theory and Physics, Cambridge University Press, 1994.
    [29] J. Śniatycki, O. Esen, De Donder form for second order gravity, J. Geom. Mech., 12 (2020), 85–106. https://doi.org/10.3934/jgm.2020005 doi: 10.3934/jgm.2020005
    [30] A. Trautman, Fiber Bundles, Gauge Field and Gravitation, Gen. Relativ. Gravit., 1 (1980), 287–308. New York, (1979).
    [31] E. Witten, The problem of gauge theory. Geometry and analysis, Adv. Lect. Math., 18 (2011), 371–382.
    [32] C. Yang, Selected Papers (1945-1980), with Commentary, World Scientific Publishing Company, 2005.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1285) PDF downloads(36) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog