Research article

Local minimizers for variational obstacle avoidance on Riemannian manifolds

  • Received: 18 January 2022 Revised: 29 June 2022 Accepted: 29 June 2022 Published: 31 October 2022
  • Primary: 49K15, 53B20; Secondary: 53Z30

  • This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of bi-Jacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories—called $ Q $-local minimizers and $ \Omega $-local minimizers—and subsequently classified, with local uniqueness results obtained in both cases.

    Citation: Jacob R. Goodman. Local minimizers for variational obstacle avoidance on Riemannian manifolds[J]. Journal of Geometric Mechanics, 2023, 15(1): 59-72. doi: 10.3934/jgm.2023003

    Related Papers:

  • This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of bi-Jacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories—called $ Q $-local minimizers and $ \Omega $-local minimizers—and subsequently classified, with local uniqueness results obtained in both cases.



    加载中


    [1] M. Assif, R. Banavar, A. Bloch, M. Camarinha, L. Colombo, Variational collision avoidance problems on Riemannian manifolds, Proceedings of the IEEE International Conference on Decision and Control, 1 (2018), 2791–2796. https://doi.org/10.1109/CDC.2018.8619596 doi: 10.1109/CDC.2018.8619596
    [2] A. Bloch, M. Camarinha, L. Colombo, Variational obstacle avoidance problem on Riemannian manifolds, Proceedings of the IEEE International Conference on Decision and Control, (2017), 146–150. https://doi.org/10.1109/CDC.2017.8263657 doi: 10.1109/CDC.2017.8263657
    [3] A. Bloch, M. Camarinha, L. J. Colombo, Dynamic interpolation for obstacle avoidance on Riemannian manifolds, Int. J. Control., 94(2021), 588–600. https://doi.org/10.1080/00207179.2019.1603400 doi: 10.1080/00207179.2019.1603400
    [4] A. Bloch, M. Camarinha, L. Colombo, Variational point-obstacle avoidance on Riemannian manifolds, Math. Control. Signal., 33 (2021), 109–121. https://doi.org/10.1007/s00498-021-00276-0 doi: 10.1007/s00498-021-00276-0
    [5] A. Bloch, L. Colombo, R. Gupta, D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, Analysis and geometry in control theory and its applications, (2015), 35–64. https://doi.org/10.1016/j.ffa.2015.03.007 doi: 10.1016/j.ffa.2015.03.007
    [6] A. Bloch, R. Gupta, I. Kolmanovsky, Neighboring extremal optimal control for mechanical systems on Riemannian manifolds, J. Geom. Mech., 8 (2016), 257. https://doi.org/10.3934/jgm.2016007 doi: 10.3934/jgm.2016007
    [7] C. de Boor, Best approximation properties of spline functions of odd degree, J. Math. Mec., 12 (1963), 747–749. https://doi.org/10.1512/iumj.1963.12.12051 doi: 10.1512/iumj.1963.12.12051
    [8] W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Orlando, FL: Academic Press Inc., 1975.
    [9] M. Camarinha, F. Silva Leite, P. Crouch, Existence and uniqueness for Riemannian cubics with boundary conditions, Lecture Notes in Electrical Engineering, 695 (2021), 322–331. https://doi.org/10.1007/978-3-030-58653-9-31 doi: 10.1007/978-3-030-58653-9-31
    [10] M. Camarinha, F. Silva Leite, P. Crouch, On the geometry of Riemannian cubic polynomials, Differ.Geom. Appl., 15 (2001), 107–135. https://doi.org/10.1016/S0926-2245(01)00054-7 doi: 10.1016/S0926-2245(01)00054-7
    [11] M. Camarinha, F. Silva Leite, P.Crouch, Splines of class $C^k$ on non-euclidean spaces, Ima. J. Math. Control. I., 12 (1995), 399–410. https://doi.org/10.1093/imamci/12.4.399 doi: 10.1093/imamci/12.4.399
    [12] R.S. Chandrasekaran, L. Colombo, M. Camarinha, R. Banavar, A. Bloch, Variational collision and obstacle avoidance of multi-agent systems on Riemannian manifolds, 2020 European Control Conference (ECC), (2020), 1689–1694. https://doi.org/10.23919/ECC51009.2020.9143986 doi: 10.23919/ECC51009.2020.9143986
    [13] D. Chang, S. Shadden, J. Marsden, R. Olfati-Saber, Collision avoidance for multiple agent systems, 42nd IEEE International Conference on Decision and Control, (2003), 539–543.
    [14] L. Colombo, J. Goodman, A Decentralized Strategy for Variational Collision Avoidance on Complete Riemannian Manifolds, Portuguese Conference on Automatic Control, (2020), 363–372. https://doi.org/10.1007/978-3-030-58653-9-35 doi: 10.1007/978-3-030-58653-9-35
    [15] P. Crouch, F. Silva Leite, Geometry and the Dynamic Interpolation Problem, Proceedings of American Control Conference, (1991), 1131–1137. https://doi.org/10.23919/ACC.1991.4791552 doi: 10.23919/ACC.1991.4791552
    [16] P. Crouch, F. Silva Leite, The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces, J.Dyn.Control.Syst., 1 (1995), 177–202. https://doi.org/10.1007/BF02254638 doi: 10.1007/BF02254638
    [17] R. Giambò, F. Giannoni, P. Piccione, An analytical theory for Riemannian cubic polynomials, Ima.J.Math.Control.I., 19 (2002), 445–460. https://doi.org/10.1093/imamci/19.4.445 doi: 10.1093/imamci/19.4.445
    [18] R. Giambò, F. Giannoni, P. Piccione, Optimal Control on Riemannian Manifolds by Interpolation, Math.Control.Signal., 16 (2004), 278–296. https://doi.org/10.1007/s00498-003-0139-3 doi: 10.1007/s00498-003-0139-3
    [19] J. Goodman, L. Colombo, Collision Avoidance of Multiagent Systems on Riemannian Manifolds, SIAM.J.Control.Optim., 60 (2021), 168–188. https://doi.org/10.1137/21M1411056 doi: 10.1137/21M1411056
    [20] J. Goodman, L. Colombo, Variational Obstacle Avoidance with Applications to Interpolation Problems in Hybrid Systems, Proceedings of the 7th IFAC Workshop on Lagrangian and Hamiltonian Methods in Nonlinear Control, 54 (2021), 82–87. https://doi.org/10.1016/j.ifacol.2021.11.059 doi: 10.1016/j.ifacol.2021.11.059
    [21] I. Hussein, A. Bloch, Dynamic interpolation on Riemannian manifolds: an application to interferometric imaging, Proceedings of the 2004 American Control Conference, (2004), 413–418. https://doi.org/10.23919/ACC.2004.1383683 doi: 10.23919/ACC.2004.1383683
    [22] J. Jost, Riemannian Geometry and Geometric Analysis, Berlin : Springer, 2008.
    [23] D. E. Koditschek, E. Rimon, Robot navigation functions on manifolds with boundary. Adv.Appl.Math., 11 (1990), 412–442. https://doi.org/10.1016/0196-8858(90)90017-S doi: 10.1016/0196-8858(90)90017-S
    [24] L. Machado, F. Silva Leite, K. Krakowski, Higher-order smoothing splines versus least squares problems on Riemannian manifolds, J.Dyn.Control.Syst., 16 (2010), 121–148. https://doi.org/10.1007/s10883-010-9080-1 doi: 10.1007/s10883-010-9080-1
    [25] J. Milnor, Morse Theory, Princeton, NJ: Princeton Univ. Press, 2002.
    [26] L. Noakes, G. Heinzinger, B. Paden, Cubic splines on curved spaces, Ima. J. Math. Control. I., 6 (1989), 465–473. https://doi.org/10.1093/imamci/6.4.465 doi: 10.1093/imamci/6.4.465
    [27] W. Ring, B. Wirth, Optimization methods on Riemannian manifolds and their application to shape space, SIAM.J.Optimiz., 22 (2012), 596–627. https://doi.org/10.1137/11082885X doi: 10.1137/11082885X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1500) PDF downloads(52) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog