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1. Introduction

Energy-optimal path planning on nonlinear spaces such as Riemannian manifolds has been an
active field of interest in the last decades due to its numerous applications in manufacturing, aerospace
technologies, and robotics [6, 21, 27].It is often the case that the desired paths must connect some set of knot
points—interpolating positions with given velocities and potentially higher order derivatives [15, 24]. For
such problems, the use of variationally defined curves has a rich history due to the regularity and optimal
nature of the solutions. In particular, the so-called Riemannian cubic splines [26] are a particularly ubiquitous
choice in interpolant, which themselves are composed of Riemannian cubic polynomials—the curves which
minimize the total squared (covariant) acceleration among all sufficiently regular curves satisfying some
boundary conditions in positions and velocities—that are glued together [7]. Riemannian cubic polynomials
carry a rich geometry with them which often parallels the theory of geodesics. This has been studied
extensively in the literature (see [17, 10] for a detailed account of Riemannian cubics and [18] for some
results with higher-order Riemannian polynomials).

It is often the case that—in addition to interpolating points—there are obstacles or regions in space
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which need to be avoided. In this case, a typical strategy is to augment the action functional with an
artificial potential term that grows large near the obstacles and small away from them (in that sense,
the minimizers are expected to avoid the obstacles) [23, 13, 5]. This strategy was used for instance
in [2, 3, 4], where necessary conditions for extrema in obstacle avoidance problems on Riemannian
manifolds were derived, and applications to interpolation problems on manifolds and to energy-minimum
problems on Lie groups and symmetric spaces endowed with a bi-invariant metric were studied. Similar
strategies have been implemented for collision avoidance problems for multiagent systems evolving
on Riemannian problems, as in [19, 12]. Existence of global minimizers and safety guarantees for the
obstacle avoidance problem were studied in [20]. What is currently lacking in the literature regarding
energy-optimal obstacle avoidance problems—and what this paper aims to address—is the derivation of
sufficient conditions for optimality and a comprehensive study of the local minimization properties of
the critical points.

In particular, the main contributions of this paper are as follows: (i) we investigate sufficient
conditions for a curve to be a minimizing trajectory in the variational obstacle avoidance problem.
This naturally leads to an extension of bi-Jacobi fields and biconjugate points as defined in [16] for
Riemannian cubics. Lemma 3.2 provides sufficient conditions for a critical point of the action functional
to be a local minimizer among the admissible set of curves (denoted along the paper as an Ω-local
minimizer). Proposition 2 provides additional necessary conditions for the sufficient conditions to hold
in terms of the so-called modified bi-Jacobi fields and biconjugate points. (ii) Robustness of the Ω-local
minimizers is shown in Proposition 3, and a local uniqueness condition is provided in Proposition 4. This
uniqueness condition is extended to the case of global minimizers in Corollary 1. (iii) A comprehensive
study of a different type of local minimizers (called Q-local minimizers) is provided along section 3.
In particular, a Morse index theorem is proven in Lemma 3.9, which is used in in Corollary 2 to show
that there are a finite number of points biconjugate to any fixed point along a critical point of the action.
Utilizing a local uniqueness condition obtained in [9] for the critical points of the action, we then obtain
a different local uniqueness result on the restrictions of the critical points to sufficiently small intervals
in Proposition 5. Finally, (iv) pairing this uniqueness with a global existence result obtained in [20], we
show in Proposition 6 that the critical points of the action are exactly the Q-local minimizers.

2. Riemannian manifolds

Let (Q, 〈·, ·〉) be an n-dimensional Riemannian manifold, where Q is an n-dimensional smooth
manifold and 〈·, ·〉 is a positive-definite symmetric covariant 2-tensor field called the Riemannian metric.
That is, to each point q ∈ Q we assign a positive-definite inner product 〈·, ·〉q : TqQ × TqQ→ R, where
TqQ is the tangent space of Q at q and 〈·, ·〉q varies smoothly with respect to q. The length of a tangent

vector is determined by its norm, defined by ‖vq‖ =
〈
vq, vq

〉1/2
with vq ∈ TqQ. Given a scalar field

f : Q→ R, the metric allows one to define the gradient vector field of f —denoted by grad f —implicitly
defined by the relation d f (q)Xq =

〈
grad f (q), Xq

〉
q

for all q ∈ Q, Xq ∈ TqQ.
A connection ∇ on Q is a map that assigns to any two smooth vector fields X and Y on Q a new

vector field ∇XY , playing a role similar to that of the directional derivative in classical real analysis. The
operator ∇X, which assigns to every vector field Y the vector field ∇XY , is called the covariant derivative
(of Y) with respect to X. A connection induces a number of important structures on Q, a particularly
ubiquitous such structure is the curvature endomorphism, which maps three vector fields X, Y and Z
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on Q to the vector field R(X,Y)Z := ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z. From an analytical perspective, the
curvature endomorphism measures the extent to which covariant derivatives commute with one another.
We further define the curvature tensor Rm on Q via Rm(X,Y,Z,W) := 〈R(X,Y)Z,W〉.

Given a curve q on Q (parameterized by t ∈ I ⊂ R and with velocity vector field q̇), there exists a
unique operator D

dt induced by ∇ (called the covariant derivative along q) which assigns to every vector
field W along q the vector field D

dt W (also along q) which agrees with the covariant derivative ∇q̇W̃ for

any extension W̃ of W to Q. A vector field X along q is said to be parallel along q if
DX
dt
≡ 0. For k ∈ N,

the kth-order covariant derivative of W along q, denoted by
Dk

dtk W, can then be inductively defined by

Dk

dtk W =
D
dt

(
Dk−1

dtk−1 W
)
.

It is well-known that the Riemannian metric induces a unique torsion-free and metric compatible
connection called the Riemannian connection, or the Levi-Civita connection. Along the remainder
of this paper, we will assume that ∇ is the Riemannian connection. For additional information on
connections and curvature, we refer the reader to [8, 25].

If we assume that Q is complete, then by the Hopf-Rinow theorem, any two points x and y in Q
can be connected by a (not necessarily unique) minimal-length curve γx,y. In particular, γx,y must
be a geodesic—that is, it verifies D

dt γ̇x,y ≡ 0. In this case, the Riemannian distance between x and

y can be defined by d(x, y) =

∫ 1

0

∥∥∥∥dγx,y

ds
(s)

∥∥∥∥ ds. Geodesics provide a map expq : TqQ → Q called

the Riemannian exponential map such that expq(v) = γ(1), where γ is the unique geodesic verifying
γ(0) = q and γ̇(0) = v. In particular, expq is a diffeomorphism from some star-shaped neighborhood of
0 ∈ TqQ to a convex open neighborhood B of q ∈ Q. If y ∈ B, we can write the Riemannian distance by
means of the Riemannian exponential as d(q, y) = ‖exp−1

q y‖.
Let Q be an m-dimensional Riemannian manifold and a < b ∈ R. Given ξ = (qa, va), η = (qb, vb) ∈

T Q, we denote the space of piece-wise smooth C1 curves γ : [a, b]→ Q satisfying γ(a) = qa, γ(b) =

qb, γ̇(a) = va, γ̇(b) = vb by Ωa,b
ξ,η. Along the paper, we will frequently drop the subscripts and superscripts

on Ωa,b
ξ,η unless otherwise necessary. Ω has the structure of a smooth manifold, and the tangent space

TxΩ consists of all piece-wise smooth C1 vector fields X along x satisfying X(a) = X(b) = D
dt X(a) =

D
dt X(b) = 0. Such a vector field can be viewed as the variational vector field of some variation of x,
which is a function α : (−ε, ε) × [a, b]→ Q such that:

1. α(r, ·) ∈ Ω for all r ∈ (−ε, ε),

2. α(0, t) = x(t) for all t ∈ [a, b],

3. d
dr

∣∣∣
r=0
α(r, t) = X(t) for all t ∈ [a, b].

Consider the norm ‖ · ‖TxΩ on TxΩ given by

‖X‖TxΩ =

∫ b

a

‖X‖2 +

∥∥∥∥∥DX
dt

∥∥∥∥∥2

+

∥∥∥∥∥∥D2X
dt2

∥∥∥∥∥∥2 dt

1/2

.

We let H̊2
x be the completion of TxΩ under ‖ · ‖TxΩ. Considering an orthonormal basis of parallel vector
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fields {Xi} along x and writing X = ξiXi for some ξi : [a, b]→ R, we have that

‖X‖TxΩ =

(∫ b

a

[
ξiξi + ξ̇iξ̇i + ξ̈iξ̈i

]
dt

)1/2

,

from which it is clear that H̊2
x can be identified with the Sobolev space H̊2([a, b],Rn) (as discussed for

instance in section 4.3 of [22]).

3. Necessary and sufficient conditions for the variational obstacle avoidance problem

Consider a complete and connected Riemannian manifold Q, and for some ξ, η ∈ T Q and T > 0, let
Ω0,T
ξ,η be defined as in the previous section. We define the function J : Ω→ R by:

J(q) =

T∫
0

(1
2

∣∣∣∣∣∣∣∣ Ddt
q̇(t)

∣∣∣∣∣∣∣∣2 + V(q(t))
)
dt. (3.1)

Variational obstacle avoidance problem: Find a curve q ∈ Ω minimizing the functional J, where
V : Q→ R is a smooth and non-negative function called the artificial potential.

In order to minimize the functional J among the set Ω, we want to find curves q ∈ Ω such that
J(q) ≤ J(q̃) for all admissible curves q̃ in a C1-neighborhood of q. Necessary conditions can be derived
by finding q such that the differential of J at q, dJ(q), vanishes identically. This is clearly equivalent
to dJ(q)W = 0 for all W ∈ TqΩ, which itself can be understood through variations—as discussed in
the previous section. The next result from [2] characterizes necessary conditions for optimality in the
variational obstacle avoidance problem.

Proposition 1. [2] A point q ∈ Ω is a critical point for the functional J if and only if it is a C∞-curve on
[0,T ] satisfying

D3q̇
dt3 + R

(Dq̇
dt
,

dq
dt

)dq
dt

+ grad V(q(t)) = 0. (3.2)

We will call solutions to equation (3.2) modified cubic polynomials. It is natural to ask: when are mod-
ified cubic polynomials minimizers of J? This can be understood both locally and globally—although
there is some discrepancy in how these terms are used. For that reason, we introduce the following
definitions:

Definition 3.1. A curve q ∈ Ω is a:

(i) Global minimizer of J on Ω iff J(q) ≤ J(q̃) for all q̃ ∈ Ω.

(ii) Ω-local minimizer of J on Ω iff J(q) ≤ J(q̃) for all q̃ in some C1 neighborhood of q (within Ω).

(iii) Q-local minimizer of J iff for any τ ∈ [0,T ], there exists an interval [a, b] ⊂ [0,T ] containing τ
such that q|[a,b] is a minimizer of J on Ω

[a,b]
ξ,η , where ξ = (q(a), q̇(a)), η = (q(b), q̇(b)) ∈ T Q.

It should be noted that we have slightly abused our notation in the definition of a Q-local minimizer.

Technically, we are concerned with minimizing the integral
∫ b

a

(
1
2

∣∣∣∣∣∣∣∣ D
dt q̇(t)

∣∣∣∣∣∣∣∣2 + V(q(t))
)
dt, which has

different limits of integration than J as defined in equation (3.1). We will continue to refer to integrals
of this form by J throughout the paper—and in every case, the limits of integration will match that of
the boundary conditions defined by the admissible set Ω

[a,b]
ξ,η on which J is being discussed.
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3.1. Ω-local minimizers of J

In order to understand when a critical point of J (that is, a modified cubic polynomial) is an Ω-local
minimizer of J, we utilize second variations, akin to the classical second derivative test from calculus.
In particular, for some modified cubic polynomial q, and some real numbers εr, εs > 0, we consider a
two-parameter variation α : (−εr, εr) × (−εs, εs) × [0,T ]→ Q of q such that:

1. α(r, s, ·) ∈ Ω for all (r, s) ∈ (−εr, εr) × (−εs, εs),

2. α(0, 0, t) = q(t) for all t ∈ [0,T ],

3. d
dr

∣∣∣
r=0
α(r, 0, ·) = X ∈ TqΩ,

4. d
ds

∣∣∣
s=0
α(0, s, ·) = Y ∈ TqΩ.

A particularly ubiquitous choice is given by α(r, s, t) = expq(t)(rX(t) + sY(t)). The second vari-

ation of J along a modified cubic polynomial q is then calculated as ∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

J(α(r, s, ·)) =

∂
∂r

∣∣∣∣
r=0

∂
∂s

∣∣∣∣
s=0

J(α(r, s, ·)). From [2] Theorem 3.1, we see that

∂

∂s
J(α) =

∫ T

0

〈
∂α

∂s
,

D4α

dt4 + R
(

D2

dt2α,
∂α

dt

)
∂α

dt
+ gradV(α)

〉
dt

+

l∑
i=1

[〈
D
dt
∂α

∂s
,

D2α

dt2

〉
−

〈
∂α

∂s
,

D3α

dt3

〉]t−i

t+i−1

,

and therefore,

∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

J(α) =

∫ T

0

〈
D
∂r
∂α

∂s

∣∣∣∣
(r,s)=(0,0)

,
D3q̇
dt3 + R

(Dq̇
dt
, q̇

)
q̇ + gradV(q)

〉
dt (3.3)

+

∫ T

0

〈
Y,

D
∂r

[
D4α

dt4 + R
(

D2

dt2α,
∂α

dt

)
∂α

dt

]〉
dt+ (3.4)

D
∂r

l∑
i=1

[〈
D
dt
∂α

∂s
,

D2α

dt2

〉
−

〈
∂α

∂s
,

D3α

dt3

〉]t−i

t+i−1

+

∫ T

0

〈
Y(t),

D
∂r

∣∣∣∣
r=0

gradV(α(r, 0, t))
〉

dt. (3.5)

Note that (3.3) vanishes identically since q is a modified cubic polynomial. (3.4) was calculated in [16],
which studies sufficient conditions for optimality for Riemannian cubic polynomials (that is, with V ≡ 0).
Hence, we need only calculate (3.5). Define γt(r) := α(r, 0, t), and denote γ̇t(r) = d

drγt(r). Then
D
∂r

∣∣∣∣
r=0

gradV(α(r, 0, t)) can be expressed as:

D
∂r

∣∣∣∣
r=0

gradV(γt(r)) = ∇γ̇t(r)gradV
∣∣∣∣
r=0

= ∇X(t)gradV.

Adding this term along with those found in [16] Theorem 2.4, we obtain the following lemma:

Journal of Geometric Mechanics Volume 15, Issue 1, 59–72



64

Lemma 3.2.

∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

J(α) =

∫ T

0

〈
Y(t),

D4

dt4 X + F(X(t), q̇(t)) + ∇X(t)gradV(q(t))
〉

dt

−

l∑
i=1

〈
D
dt

Y(ti),
D2

dt2 X(t+
i ) −

D2

dt2 X(t−i )
〉

+

l∑
i=1

〈
Y(ti),

D3

dt3 X(t+
i ) −

D3

dt3 X(t−i )
〉
,

where

F(X,Y) = (∇2
YR)(X,Y)Y + (∇XR)(∇YY,Y)Y + R(R(X,Y)Y,Y)Y + R(X,∇2

YY)Y

+ 2
[
(∇YR)(∇Y X,Y)Y + (∇YR)(X,∇YY)Y + R(∇2

Y X,Y)Y
]

+ 3
[
(∇YR)(X,Y)∇YY + R(X,Y)∇2

YY + R(X,∇YY)∇YY
]

+ 4R(∇Y X,Y)∇YY.

We now define a bilinear form I : TqΩ × TqΩ→ R called the index form by

I(X,Y) =

∫ T

0

[〈
D2X
dt2 ,

D2Y
dt2

〉
+

〈
Y, F(X, q̇) + ∇XgradV

〉]
dt,

from which it can be easily observed by integrating by parts twice that ∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

J(α) = I(X,Y). However,
unlike the case of Riemannian cubics and geodesics where the corresponding index form is symmetric,
the artificial potential introduces an asymmetry. Namely, we can decompose I as I(X,Y) = Ic(X,Y) +

P+(X,Y) + P−(X,Y), where

• Ic(X,Y) =
∫ T

0

[〈
D2X
dt2 ,

D2Y
dt2

〉
+ 〈Y, F(X, q̇(t))〉

]
dt is the symmetric bilinear form obtained for Rieman-

nian cubics in [16, 10].

• P+(X,Y) = 1
2

∫ T

0

[〈
Y,∇XgradV

〉
+

〈
X,∇YgradV

〉]
dt is a symmetric bilinear form describing the

symmetric contribution of the artificial potential.

• P−(X,Y) = 1
2

∫ T

0

[〈
Y,∇XgradV

〉
−

〈
X,∇YgradV

〉]
dt is an anti-symmetric bilinear form describing

the anti-symmetric contribution of the artificial potential.

Akin to the second derivative test from single variable calculus, it is clear that a sufficient (but
not necessary) condition for a modified cubic polynomial q to be an Ω-local minimizer of J is that
∂2

∂s2

∣∣∣∣
s=0

J(α) > 0 for all 1-parameter variations α along q (this may be calculated as in Lemma 3.2 with
X = Y). Or, equivalently, that the index form is positive-definite for all non-trivial variational vector
fields along q. On the other hand, a necessary (but not sufficient) condition for q to be an Ω-local
minimizer of J is that ∂2

∂s2

∣∣∣∣
s=0

J(α) ≥ 0 for all 1-parameter variations α along q. Or, equivalently, that the
index form is positive semi-definite for all variational vector fields along q. In general, such conditions
are not computationally feasible to verify via the direct method, so we turn our attention to studying the
vector fields belonging to the kernel of the index form. This will allow us to understand when q is not
an Ω-local minimizer, and will yield the analogue of Jacobi fields for modified cubic polynomials.
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Lemma 3.3. A vector field X ∈ TqΩ belongs to the kernel of I if and only if X is smooth and D4

dt4 X +

F(X, q̇) + ∇XgradV(q) ≡ 0.

Proof: Clearly, if X is smooth satisfies D4

dt4 X + F(X, q̇) + ∇XgradV(q) ≡ 0, then ∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

J(α) =

I(X,Y) = 0 for any Y ∈ TqΩ. On the other hand, if X belongs to the kernel of I, then choose Y(t) =

f (t)( D4

dt4 X + F(X, q̇) +∇XgradV(q)), where f ∈ C∞([0,T ]) is non-negative and satisfies f (ti) = d
dt f (ti) = 0.

Then we have
∫ T

0
f (t) ‖Y(t)‖2 = 0, which implies Y = 0 for all t ∈ (ti, ti+1) for 1 ≤ i ≤ l− 1. To see that X

is smooth, we first set Y(t) = f (t)Z(t), where f (ti) = 0, d
dt f (ti) > 0 and Z(ti) = D2

dt2 X(t+
i ) − D2

dt2 X(t−i ). Then,
we obtain d

dt f (ti)‖Z(ti)‖2 = 0 =⇒ D2

dt2 X(t+
i ) = D2

dt2 X(t−i ). Next, we set Y(t) = f (t)Z(t) with f (ti) > 0 and
Z(ti) = D3

dt3 X(t+
i ) − D3

dt3 X(t−i ), from which we find that f (ti)‖Z(ti)‖2 = 0 =⇒ D3

dt3 X(t+
i ) = D3

dt3 X(t−i ). Hence X
is smooth. �

This motivates the following definition:

Definition 3.4. A vector field X along a modified cubic q satisfying D4

dt4 X + F(X, q̇) + ∇XgradV(q) ≡ 0
on [0,T ] is called a modified bi-Jacobi field.

Observe that in the case where V ≡ 0, the definition of a modified bi-Jacobi Field coincides with
that of a bi-Jacobi field, as defined in [10]. Moreover, note that the equation describing the modified
bi-Jacobi fields is linear in X, so that (since V is smooth) the modified bi-Jacobi fields are smooth and
the existence and uniqueness of solutions on [0,T ] given initial values X(0), D

dt X(0), D2

dt2 X(0), D3

dt3 X(0)
follows immediately (say, by moving to coordinate charts). In particular, the set of modified bi-Jacobi
fields along a modified cubic polynomial q forms a 4n-dimensional vector space.

Definition 3.5. Two points t = t1, t2 ∈ [0,T ] are said to be biconjugate along a modified cubic q if there
exists a non-zero modified bi-Jacobi field X such that

X(t1) = X(t2) = 0, and
D
dt

X(t1) =
D
dt

X(t2) = 0.

Analogous to the case of geodesics and conjugate points ([22], Theorem 4.3.1), or Riemannian cubic
polynomaials and biconjugate points ([10], Theorem 7.2), we now show that modified cubic polynomials
do not minimize past their biconjugate points.

Proposition 2. Suppose that q ∈ Ω is a modified cubic polynomial and 0 ≤ t1 < t2 < T are biconjugate.
Then there exists a vector field X ∈ TqΩ such that I(X, X) < 0. In particular, q is not a minimizer of J
on Ω.

Proof: Since t1, t2 are biconjugate, there exists a modified bi-Jacobi field U such that U(t1) = U(t2) =

D
dt U(t1) = D

dt U(t2) = 0. We then consider the vector field X(t) =

U(t) t ∈ [t1, t2]
0, otherwise

. It is clear that

X ∈ TqΩ is smooth except possibly at the points t = t1, t2, and that at least one of D2

dt2 U(t1), D3

dt3 U(t1) are
non-zero and at least one of D2

dt2 U(t2), D3

dt3 U(t2) are non-zero (otherwise, U ≡ 0). Now, we define two
smooth vector fields Z,W along q̇ such that

Z(t1) = −
D3

dt3 U(t1), Z(t2) = −
D3

dt3 U(t2),
D
dt

Z(t1) =
D
dt

Z(t2) = 0,
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W(t1) = W(t2) = 0,
D
dt

W(t1) =
D2

dt2 U(t1),
D
dt

W(t2) =
D2

dt2 U(t2),

and define Y(t) = φ(t)Z(t) + ψ(t)W(t), where φ, ψ ∈ C∞([0,T ]) are such that

φ(t1) = φ(t2) = 1, φ̇(t1) = ˙φ(t2) = 0, supp(φ) ⊆ (t1 − δ, t1 + δ) ∪ (t2 − δ, t2 + δ),

ψ(t1) = ψ(t2) = 0, ψ̇(t1) = ˙ψ(t2) = 1, supp(ψ) ⊆ (t1 − δ, t1 + δ) ∪ (t2 − δ, t2 + δ),

and φ([0,T ]) = ψ([0,T ]) = [0, 1]. Then, in particular Y satisfies:

Y(t1) = −
D3

dt3 U(t1),
D
dt

Y(t1) =
D2

dt2 U(t1), Y(t2) = −
D3

dt3 U(t2),
D
dt

Y(t2) =
D2

dt2 U(t2),

with supp(Y) ⊂ (t1−δ, t1+δ)∪(t2−δ, t2+δ). For ε > 0, we consider the vector field Uε = X+εY . It is clear
that Uε ∈ TqΩ, and by the bilinearity of I, we have I(Uε ,Uε) = I(X, X) + ε(I(X,Y) + I(Y, X)) + ε2I(Y,Y).
Since X is smooth except at t = t1, t2, where it vanishes (along with its covariant derivative) and it
satisfies the bi-Jacobi equation on [0, t1], [t1, t2], [t2,T ], it is clear that I(X, X) = 0. Moreover, we have
that I(X,Y) = − ‖Y(t1)‖2 −

∥∥∥ D
dt Y(t1)

∥∥∥2
− ‖Y(t2)‖2 −

∥∥∥ D
dt Y(t2)

∥∥∥2
< 0. Now observe that

I(Y, X) = Ic(Y, X) + P+(Y, X) + P−(Y, X)
= Ic(X,Y) + P+(X,Y) − P−(X,Y)
= I(X,Y) − 2P−(X,Y)

Consider the 2-form G(X,Y) =
〈
Y,∇XgradV

〉
−

〈
X,∇YgradV

〉
. Then we have:

|G(X,Y)| ≤ φ|G(X,Z)| + ψ|G(X,W)| ≤ (φ + ψ)(‖Z‖‖∇WgradV‖ + ‖W‖‖∇ZgradV‖),

hence

|P−(X,Y)| ≤
∫ T

0
|G(X,Y)|dt

≤ 2δ max
t∈[0,T ]

{
‖Z(t)‖‖∇W(t)gradV(q(t))‖ + ‖W(t)‖‖∇Z(t)gradV(q(t))‖

}
:= δC.

It follows that I(Y, X) ≤ I(X,Y) + 2δC. Therefore, I(Uε ,Uε) ≤ 2ε(I(X,Y) + δC) + ε2I(Y,Y). If we choose
δ so that I(X,Y) + δC < 0, then it is clear that this quantity is negative for sufficiently small ε.

One might wish to understand the robustness of being an Ω-local minimizer. That is, if q is an
Ω-local minimizer, is it also true that the restriction of q to subset of [0,T ] is an Ω-local minimizer
on its corresponding admissible set? It turns out that the answer is yes, which is summarized in the
following proposition.

Proposition 3. Suppose that q is an Ω-local minimizer of J and let [a, b] ⊂ [0,T ]. Then the curve q|[a,b]

is an Ωa,b
ξ,η-local minimizer, where ξ = (q(a), q̇(a)), η = (q(b), q̇(b)) ∈ T Q.

Proof: Since q is an Ω-local minimizer, there exists a C1 neighborhood B of q contained in Ω

such that J(q) ≤ J(q̃) for any q̃ ∈ B. Let B∗ be the set of curves q∗ ∈ Ωa,b
ξ,η such that the curve

q̃(t) =

q(t), t ∈ [0, a) ∪ [b,T ]
q∗(t), t ∈ [a, b]

is contained in B. Clearly, B∗ is a non-empty C1 neighborhood of q∗
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contained in Ωa,b
ξ,η. Fix a q∗ ∈ B∗, and the corresponding q̃ ∈ B. Then by the additivity of integration and

the fact that J(q) ≤ J(q̃), it follows that

J(q|[0,a]) + J(q|[a,b]) + J(q|[b,T ]) ≤ J(q̃|[0,a]) + J(q̃|[a,b]) + J(q̃|[b,T ),
J(q|[0,a]) + J(q|[a,b]) + J(q|[b,T ]) ≤ J(q|[0,a]) + J(q∗|[a,b]) + J(q|[b,T ),

J(q|[a,b]) ≤ J(q∗|[a,b]).

Hence, q|[a,b] is an Ωa,b
ξ,η-local minimizer of J. Denote by Tq : [0,T ]→ T Q the tangent lift of the curve

q ∈ Ω. That is, the curve lying in the tangent bundle T Q whose local coordinate expression is given by
(qi, q̇i).

Proposition 4. Suppose that q is an Ω-local minimizer of J, and let B be a C1 neighborhood of q
contained in Ω such that J(q) ≤ J(q̃) for any q̃ ∈ B. If q0 ∈ B satisfies J(q0) = J(q) and Tq0(τ) = Tq(τ)
for some τ ∈ (0,T ), then q0 ≡ q on [0,T ].

Proof: Suppose that q0 ∈ B is such that Tq(τ) = Tq0(τ) and J(q) = J(q0), and consider the curve

q̃(t) =

q(t), t ∈ [0, τ)
q0(t), t ∈ [τ,T ]

. Clearly, q̃ is contained in B and J(q) = J(q̃), so that q̃ is an Ω-local minimizer

(on B, for instance) and hence is a critical point of J on Ω. But by Proposition 1, this implies that q̃ is
smooth, and therefore 

q(τ) = q0(τ)
q̇(τ) = q̇0(τ)
D
dt q̇(τ) = D

dt q̇0(τ)
D2

dt2 q̇(τ) = D2

dt2 q̇0(τ).

By the uniqueness of solutions to equation (3.2) with the above initial conditions, we have that q|[τ,T ] ≡

q0|[τ,T ]. Repeating this argument backwards in time, we reach the desired conclusion.
Lemma 4 can be interpreted as saying that the tangent lifts of sufficiently nearby Ω-local minimizers

cannot intersect away from the boundary points. Alternatively, this means that Ω-local minimizers are
(locally) uniquely determined by a single internal position and velocity. If we were to consider this
Proposition 4 in the case that q is a global minimizer, we could of course extend B to be the entire space
Ω. Together with Proposition 3, this leads to the following corollary.

Corollary 1. Suppose that q ∈ Ωa,b
ξ,η is a global minimizer of J, and let [a∗, b∗] ⊂ [a, b] be a proper

subset. Then, for µ = (q(a∗), q̇(a∗)), ν = (q(b∗), q̇(b∗)) ∈ T Q, the curve q|[a∗,b∗] is the unique minimizer
of J on Ωa∗,b∗

µ,ν

3.2. Q-local minimizers of J

We now wish to understand when the critical points are Q-local minimizers of J. In Proposition 6,
we will show that every modified cubic polynomial is a Q-local minimizer of J—just as every geodesic
is a Q-local minimizer of the length functional. In particular, we will do this by first establishing a local
uniqueness result for modified cubic polynomials, based off of a similar result for Riemannian cubic
polynomials provided in [9].
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Consider the 3-tangent bundle (T Q)3 := ∪p∈Q(TpQ)3. It is easily seen by (for example by considering
local coordinate charts and applying standard ODE theory) that a modified cubic polynomial is uniquely
determined by initial conditions

q(0) = p, q̇(0) = v,
D
dt

q̇(0) = y,
D2

dt2 q̇(0) = z,

for (p, v, y, z) ∈ (T Q)3. That is, there exists a neighborhood B ⊂ (T Q)3 containing (p, v, y, z) and a δ > 0
such that for each (p0, v0, y0, z0) ∈ B, there exists a unique modified cubic polynomial q : (−δ, δ)→ Q
with the initial conditions prescribed by (p0, v0, y0, z0). If we consider a set C ⊂ (TpQ)2 defined such
that {(p, v)} × C ⊂ B, we may then consider the bi-exponential map biexpt

(p,v) : C → T Q defined by
biexpt

(p,v)(y, z) = (q(t), q̇(t)), where q is the unique modified cubic polynomial satisfying the initial
conditions prescribed by (p, v, y, z) ∈ (T Q)3, and t ∈ (0, δ).

The bi-exponential map serves as a connection between the initial value problem and the boundary value
problem. As we will see below, the differential of the bi-exponential map determines when we have local
uniqueness of solutions to equation (3.2) (that is, when modified cubic polynomials are locally unique).
Furthermore, there is an intimate connection between biconjugate points and the differential of the
bi-exponential map, described by Lemma 3.7. Lemma 3.6 and Lemma 3.7 appear in [9] in the case that
V ≡ 0, however the proofs follow almost identically in both cases.

Lemma 3.6. Let (p, v, y, z) ∈ (T Q)3 and biexpt
(p,v) be defined in a neighborhood C of (y, z) ∈ (TpQ)2 for

t ∈ (0, δ), with δ > 0. If biexpτ(p,v) is not critical at (y, z), then there exists a neighborhood W1 of (y, z), a
neighborhood W2 of biexpτ(p,v)(y, z), and a neighborhood V of (p, v, y, z) such that for each (p1, v1) ∈ W1

and (p2, v2) ∈ W2, there exists a unique modified cubic polynomial q satisfying

q(0) = p1, q̇(0) = v1, q(τ) = p2, q̇(τ) = v2,

and (q(0), q̇(0), D
dt q̇(0), D2

dt2 q̇(0)) ∈ V.

Lemma 3.7. biexpτ(p,v) is not critical at (y, z) ∈ (TpQ)2 if and only if the points t = 0, τ are not
biconjugate along the modified cubic polynomial t 7→ π ◦ biexpt

(p,v)(y, z).

We now wish to establish that there are a finite number of points biconjugate to any τ ∈ [0,T ].
For this, we turn to some techniques of global analysis, as discussed for instance in [22]. For that, we
consider the index form as a quadratic form on the Hilbert space H̊2

q , as discussed in Section 2. That is,
we consider I : H̊2

q × H̊2
q → R defined by:

I(X,Y) =

∫ T

0

[〈
D2X
dt2 ,

D2Y
dt2

〉
+

〈
Y, F(X, q̇) + ∇XgradV

〉]
dt.

Definition 3.8. The extended index of q, denoted by Ind0(q), is the dimension of the largest subspace
of H̊2

q on which I is negative semidefinite.

Lemma 3.9. Ind0(q) is finite.
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Proof: Assume towards contradiction that Ind0(q) is infinite. Then there exists a sequence (Xk) ⊂ H̊2
q

such that I(Xk, Xk) ≤ 0, and (Xk) is orthonormal with respect to the H̊1
q product given by

〈X,Y〉H̊1
q

=

∫ T

0

[
〈X,Y〉 +

〈DX
dt
,

DY
dt

〉]
dt

for all X,Y ∈ H̊2
q . Since I(Xk, Xk) ≤ 0, we have that

∫ T

0

∥∥∥∥∥∥D2Xk

dt2

∥∥∥∥∥∥2

dt ≤
∫ T

0

∣∣∣〈Xk, F(Xk, q̇) + ∇XkgradV
〉∣∣∣ dt

≤

∫ T

0
‖Xk‖‖F(Xk, q̇) + ∇XkgradV‖dt.

Since gradV, q, and R are smooth, we may consider the family of linear maps At : Tq(t)Q→ Tq(t)Q
given by At(X) = F(X, q̇) + ∇XgradV(q(t)), together with the induced norm on End(Tq(t)Q) given by
|At| = supX∈Tq(t)Q

‖X‖=1
‖At(X)‖. Since [0,T ] is compact, it follows that supt∈[0,T ] |At| < +∞. Hence, utilizing

the Cauchy-Schwarz inequality,∫ T

0
‖Xk‖‖F(Xk, q̇) + ∇XkgradV‖dt ≤ sup

t∈[0,T ]
|At|

∫ T

0
‖Xn‖

2dt ≤ sup
t∈[0,T ]

|At|

Hence, (Xk) is bounded with respect to the H̊2
q norm. By the Rellich–Kondrachov theorem, there

exists a subsequence (Xki) which converges in H̊1
q . However, this is impossible since (Xki) is orthonormal

with respect to the product on H̊1
q , and hence cannot be Cauchy. �

Corollary 2. Suppose that q is a modified cubic polynomial. Then for any τ ∈ [0,T ], there are a finite
number of points which are biconjugate to τ along q.

Proof: Suppose that there are infinitely many points biconjugate to τ. Then, at least one of the sets
τ− = {t < τ : t, τ biconjugate} and τ+ = {t > τ : t, τ biconjugate} are infinite. Without loss of generality,
suppose that τ+ is infinite, and consider a sequence (tk) ⊂ τ+. Then, for each k ∈ N, there exists a
bi-Jacobi Field Jk along q such that Jk(τ) = Jk(tk) = D

dt Jk(τ) = D
dt Jk(tk) = 0. Consider the sequence

of vector fields Xk ∈ H̊2
q defined by Xk(t) =

Jk(t), t ∈ [τ, tk]
0, otherwise

. Then it is clear that (Xk) ⊂ TqΩ is a

linearly independent sequence and I(Xk, Xk) = 0 for all k ∈ N. However this implies that Ind0(q) is
infinite, which contradicts Lemma 3.9. �

In the following Proposition, we show that the bi-exponential map biexpt
(p,v) is not critical provided

that t is sufficiently small. This follows from the fact that the set of points biconjugate to any fixed
τ ∈ [0,T ] is finite, and hence consists of isolated points. We use this idea to show that the restrictions of
modified cubic polynomials to sufficiently small intervals are unique.

Proposition 5. Suppose that q is a modified cubic polynomial and τ ∈ [0,T ]. Then there exists an
interval [a, b] ⊂ [0,T ] containing τ such that q|[a,b] is the unique solution of (3.2) on Ω

[a,b]
ξ,η , where

ξ = (q(a), q̇(a)), η = (q(b), q̇(b)) ∈ T Q.
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Proof: It follows easily from Corollary 2 that there are a finite number of points biconjugate
to t = τ. Hence, there exists an interval [a, b∗] containing τ which contains no points biconjugate
to t = τ. Similarly, there exists a (possibly smaller) interval [a, b] containing τ which contains no
points biconjugate to t = a. Let p = q(a) and v = q̇(a). By Lemma 3.7, biexp|b−a|

(p,v) is not critical at

( D
dt q̇(a), D2

dt2 q̇(a)) ∈ (TpQ)2. The result then follows immediately by Lemma 3.6. �
Before proving that the modified cubic polynomials are exactly the Q-local minimizers of J, we need

one additional result from [20] regarding the existence of global minimizers of J on Ω (independent of
the chosen boundary conditions).

Theorem 3.10. [20] J attains its minimum in Ω.

Proposition 6. q ∈ Ω is a modified cubic polynomial if and only if it is a Q-local minimizer of J.
Moreover, q is the locally unique minimizer.

Proof: It is clear that if q is a Q-local minimizer of J, then it is a modified cubic polynomial. For
the other direction, fix τ ∈ [0,T ]. From Proposition 5, there exists a neighborhood [a, b] containing τ
such that q|[a,b] is the unique critical point of J on Ω

[a,b]
ξ,η , where ξ = (q(a), q̇(a)), η = (q(b), q̇(b)) ∈ T Q.

However, from Theorem 3.10, there exists a global minimizer of J on Ω
[a,b]
ξ,η —which must itself be a

critical point of J. Hence, q|[a,b] is this minimizer. �

4. Conclusions

Throughout this paper, we derived sufficient conditions for optimality in variationally defined obstacle
avoidance problems defined on complete and connection Riemannian manifolds, providing natural
extensions to the theory of geodesics and Riemannian cubic polynomials. Local minimizers of the action
functional were divided into two classes, the so-called Ω-local minimizers and Q-local minimizers,
which were subsequently studied individually. The former was understood in the context of bi-Jacobi
fields and biconjugate points, and certain robustness and local uniqueness results were obtained. The
latter category was shown to be equivalent to the critical points of the action, and some local uniqueness
results were similarly obtained.
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