In this paper, first we introduce the notion of a $ \mathsf{VB} $-Lie $ 2 $-algebroid, which can be viewed as the categorification of a $ \mathsf{VB} $-Lie algebroid. The tangent prolongation of a Lie $ 2 $-algebroid is a $ \mathsf{VB} $-Lie $ 2 $-algebroid naturally. We show that after choosing a splitting, there is a one-to-one correspondence between $ \mathsf{VB} $-Lie $ 2 $-algebroids and flat superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. Then we introduce the notion of a $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroid, which can be viewed as the categorification of a $ \mathsf{VB} $-Courant algebroid. We show that there is a one-to-one correspondence between split Lie 3-algebroids and split $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroids. Finally, we introduce the notion of an $ E $-$ \mathsf{CLWX} $ 2-algebroid and show that associated to a $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroid, there is an $ E $-$ \mathsf{CLWX} $ 2-algebroid structure on the graded fat bundle naturally. By this result, we give a construction of a new Lie 3-algebra from a given Lie 3-algebra, which provides interesting examples of Lie 3-algebras including the higher analogue of the string Lie 2-algebra.
Citation: Yunhe Sheng. Categorification of $ \mathsf{VB} $-Lie algebroids and $ \mathsf{VB} $-Courant algebroids[J]. Journal of Geometric Mechanics, 2023, 15(1): 27-58. doi: 10.3934/jgm.2023002
In this paper, first we introduce the notion of a $ \mathsf{VB} $-Lie $ 2 $-algebroid, which can be viewed as the categorification of a $ \mathsf{VB} $-Lie algebroid. The tangent prolongation of a Lie $ 2 $-algebroid is a $ \mathsf{VB} $-Lie $ 2 $-algebroid naturally. We show that after choosing a splitting, there is a one-to-one correspondence between $ \mathsf{VB} $-Lie $ 2 $-algebroids and flat superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. Then we introduce the notion of a $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroid, which can be viewed as the categorification of a $ \mathsf{VB} $-Courant algebroid. We show that there is a one-to-one correspondence between split Lie 3-algebroids and split $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroids. Finally, we introduce the notion of an $ E $-$ \mathsf{CLWX} $ 2-algebroid and show that associated to a $ \mathsf{VB} $-$ \mathsf{CLWX} $ 2-algebroid, there is an $ E $-$ \mathsf{CLWX} $ 2-algebroid structure on the graded fat bundle naturally. By this result, we give a construction of a new Lie 3-algebra from a given Lie 3-algebra, which provides interesting examples of Lie 3-algebras including the higher analogue of the string Lie 2-algebra.
[1] | C. A. Abad, M. Crainic, Representations up to homotopy of Lie algebroids, J. Reine. Angew. Math., 663 (2012), 91–126. https://doi.org/10.1515/CRELLE.2011.095 doi: 10.1515/CRELLE.2011.095 |
[2] | C. A. bad, M. Crainic, Representations up to homotopy and Bott's spectral sequence for Lie groupoids, Adv. Math., 248 (2013), 416–452. https://doi.org/10.1016/j.aim.2012.12.022 doi: 10.1016/j.aim.2012.12.022 |
[3] | M. Ammar, N. Poncin, Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras, Ann. Inst. Fourier (Grenoble), 60 (2010), 355–387. https://doi.org/10.5802/aif.2525 doi: 10.5802/aif.2525 |
[4] | J. C. Baez, A. S. Crans, Higher-Dimensional Algebra VI: Lie 2-Algebras, Theory. Appl. Categ., 12 (2004), 492–528. |
[5] | G. Bonavolontà, N. Poncin, On the category of Lie $n$-algebroids, J. Geom. Phys., 73 (2013), 70–90. https://doi.org/10.1016/j.geomphys.2013.05.004 doi: 10.1016/j.geomphys.2013.05.004 |
[6] | P. Bressler, The first Pontryagin class, Compos. Math., 143 (2007), 1127–1163. https://doi.org/10.1112/S0010437X07002710 doi: 10.1112/S0010437X07002710 |
[7] | H. Bursztyn, A. Cabrera, M. del Hoyo, Vector bundles over Lie groupoids and algebroids. Adv. Math., 290 (2016), 163–207. https://doi.org/10.1016/j.aim.2015.11.044 doi: 10.1016/j.aim.2015.11.044 |
[8] | H. Bursztyn, G. Cavalcanti, M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Adv. Math., 211 (2007), 726–765. https://doi.org/10.1016/j.aim.2006.09.008 doi: 10.1016/j.aim.2006.09.008 |
[9] | H. Bursztyn, D. Iglesias Ponte, P. Severa, Courant morphisms and moment maps, Math. Res. Lett., 16 (2009), 215–232. https://doi.org/10.4310/MRL.2009.v16.n2.a2 doi: 10.4310/MRL.2009.v16.n2.a2 |
[10] | Z. Chen, Z. J. Liu, Omni-Lie algebroids, J. Geom. Phys., 60 (2010), 799–808. https://doi.org/10.1016/j.geomphys.2010.01.007 doi: 10.1016/j.geomphys.2010.01.007 |
[11] | Z. Chen, Z. J. Liu, Y. Sheng, $E$-Courant algebroids, Int. Math. Res. Notices., 22(2010), 4334–4376. https://doi.org/10.1093/imrn/rnq053 doi: 10.1093/imrn/rnq053 |
[12] | Z. Chen, Y. Sheng, Z. Liu, On Double Vector Bundles, Acta. Math. Sinica., 30, (2014), 1655–1673. https://doi.org/10.1007/s10114-014-2412-4 doi: 10.1007/s10114-014-2412-4 |
[13] | Z. Chen, M. Stiénon, P. Xu, On regular Courant algebroids, J. Symplectic. Geom., 11(2013), 1–24. https://doi.org/10.4310/JSG.2013.v11.n1.a1 doi: 10.4310/JSG.2013.v11.n1.a1 |
[14] | F. del Carpio-Marek, Geometric structures on degree $2$ manifolds, PhD thesis, IMPA, Rio de Janeiro, 2015. |
[15] | T. Drummond, M. Jotz Lean, C. Ortiz, VB-algebroid morphisms and representations up to homotopy, Diff. Geom. Appl., 40 (2015), 332–357. https://doi.org/10.1016/j.difgeo.2015.03.005 doi: 10.1016/j.difgeo.2015.03.005 |
[16] | K. Grabowska, J. Grabowski, On $n$-tuple principal bundles, Int.J.Geom.Methods. Mod.Phys., 15 (2018), 1850211. https://doi.org/10.1142/S0219887818502110 doi: 10.1142/S0219887818502110 |
[17] | M. Gualtieri, Generalized complex geometry, Ann.of. Math., 174 (2011), 75–123. https://doi.org/10.4007/annals.2011.174.1.3 doi: 10.4007/annals.2011.174.1.3 |
[18] | A. Gracia-Saz, M. Jotz Lean, K. C. H. Mackenzie, R. Mehta, Double Lie algebroids and representations up to homotopy, J. Homotopy. Relat. Struct., 13 (2018), 287–319. https://doi.org/10.1007/s40062-017-0183-1 doi: 10.1007/s40062-017-0183-1 |
[19] | A. Gracia-Saz, R. A. Mehta, Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math., 223 (2010), 1236–1275. https://doi.org/10.1016/j.aim.2009.09.010 doi: 10.1016/j.aim.2009.09.010 |
[20] | A. Gracia-Saz, R. A. Mehta, VB-groupoids and representation theory of Lie groupoids, J. Symplectic. Geom., 15 (2017), 741–783. https://doi.org/10.4310/JSG.2017.v15.n3.a5 doi: 10.4310/JSG.2017.v15.n3.a5 |
[21] | M. Grutzmann, $H$-twisted Lie algebroids. J. Geom. Phys., 61 (2011), 476–484. https://doi.org/10.1016/j.geomphys.2010.10.016 doi: 10.1016/j.geomphys.2010.10.016 |
[22] | N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math., 54 (2003), 281–308. https://doi.org/10.1093/qmath/hag025 doi: 10.1093/qmath/hag025 |
[23] | N. Ikeda, K. Uchino, QP-structures of degree 3 and 4D topological field theory, Comm. Math. Phys., 303 (2011), 317–330. https://doi.org/10.1007/s00220-011-1194-0 doi: 10.1007/s00220-011-1194-0 |
[24] | M. Jotz Lean, $N$-manifolds of degree $2$ and metric double vector bundles, arXiv: 1504.00880. |
[25] | M. Jotz Lean, Lie 2-algebroids and matched pairs of 2-representations-a geometric approach, Pacific. J. Math., 301 (2019), 143–188. https://doi.org/10.2140/pjm.2019.301.143 doi: 10.2140/pjm.2019.301.143 |
[26] | M. Jotz Lean, The geometrization of N-manifolds of degree 2, J. Geom. Phys., 133 (2018), 113–140. https://doi.org/10.1016/j.geomphys.2018.07.007 doi: 10.1016/j.geomphys.2018.07.007 |
[27] | Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier., 46 (1996), 1243–1274. https://doi.org/10.5802/aif.1547 doi: 10.5802/aif.1547 |
[28] | T. Lada, M. Markl, Strongly homotopy Lie algebras, Comm. Algebra., 23 (1995), 2147–2161. https://doi.org/10.1080/00927879508825335 doi: 10.1080/00927879508825335 |
[29] | T. Lada, J. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys., 32(1993), 1087–1103. https://doi.org/10.1007/BF00671791 doi: 10.1007/BF00671791 |
[30] | H. Lang, Y. Li, Z. Liu, Double principal bundles, J. Geom. Phys., 170 (2021), 104354. https://doi.org/10.1016/j.geomphys.2021.104354 doi: 10.1016/j.geomphys.2021.104354 |
[31] | H. Lang, Y. Sheng, A. Wade, VB-Courant algebroids, $E$-Courant algebroids and generalized geometry, Canadian, Math. Bulletin., 61 (2018), 588–607. https://doi.org/10.4153/CMB-2017-079-7 doi: 10.4153/CMB-2017-079-7 |
[32] | D. Li-Bland, $ \mathcal{L} \mathcal{A}$-Courant algebroids and their applications, thesis, University of Toronto, 2012, arXiv: 1204.2796v1. |
[33] | D. Li-Bland, E. Meinrenken, Courant algebroids and Poisson geometry, Int. Math. Res. Not., 11(2009), 2106–2145. https://doi.org/10.1093/imrn/rnp048 doi: 10.1093/imrn/rnp048 |
[34] | J. Liu, Y. Sheng, QP-structures of degree 3 and $ \mathsf{CLWX}$ 2-algebroids, J. Symplectic. Geom., 17(2019), 1853–1891. https://doi.org/10.4310/JSG.2019.v17.n6.a8 doi: 10.4310/JSG.2019.v17.n6.a8 |
[35] | Z. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom., 45(1997), 547–574. https://doi.org/10.4310/jdg/1214459842 doi: 10.4310/jdg/1214459842 |
[36] | M. Livernet, Homologie des alg$\rm\grave{e}$bres stables de matrices sur une $A_\infty$-alg$\rm\grave{e}$bre, C. R. Acad. Sci. Paris S$\rm\acute{e}$r. I Math. 329 (1999), 113–116. https://doi.org/10.1016/S0764-4442(99)80472-8 doi: 10.1016/S0764-4442(99)80472-8 |
[37] | K. C. H. Mackenzie, Double Lie algebroids and second-order geometry. I, Adv. Math., 94 (1992), 180–239. https://doi.org/10.1016/0001-8708(92)90036-K doi: 10.1016/0001-8708(92)90036-K |
[38] | K. C. H. Mackenzie, Double Lie algebroids and the double of a Lie bialgebroid, arXiv: math.DG/9808081. |
[39] | K. C. H. Mackenzie, Double Lie algebroids and second-order geometry. Ⅱ, Adv. Math., 154 (2000), 46–75. https://doi.org/10.1006/aima.1999.1892 doi: 10.1006/aima.1999.1892 |
[40] | K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, volume 213 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005. |
[41] | K. C. H. Mackenzie, Ehresmann doubles and Drindel'd doubles for Lie algebroids and Lie bialgebroids, J. Reine Angew. Math., 658 (2011), 193–245. https://doi.org/10.1515/crelle.2011.092 doi: 10.1515/crelle.2011.092 |
[42] | K. C. H. Mackenzie, P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415–452. https://doi.org/10.1215/S0012-7094-94-07318-3 doi: 10.1215/S0012-7094-94-07318-3 |
[43] | R. Mehta, X. Tang, From double Lie groupoids to local Lie 2-groupoids, Bull. Braz. Math. Soc., 42 (2011), 651–681. https://doi.org/10.1007/s00574-011-0033-4 doi: 10.1007/s00574-011-0033-4 |
[44] | D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, PhD thesis, UC Berkeley, 1999. |
[45] | D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math., 315 (2002), 169–185. https://doi.org/10.1090/conm/315/05479 doi: 10.1090/conm/315/05479 |
[46] | D. Roytenberg, AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys., 79 (2007), 143–159. https://doi.org/10.1007/s11005-006-0134-y doi: 10.1007/s11005-006-0134-y |
[47] | P. Severa, Poisson-Lie T-duality and Courant algebroids, Lett. Math. Phys., 105 (2015), 1689–1701. https://doi.org/10.1007/s11005-015-0796-4 doi: 10.1007/s11005-015-0796-4 |
[48] | P. Severa, F. Valach, Ricci flow, Courant algebroids, and renormalization of Poisson-Lie T-duality, Lett. Math. Phys., 107 (2017), 1823–1835. https://doi.org/10.1007/s11005-017-0968-5 doi: 10.1007/s11005-017-0968-5 |
[49] | Y. Sheng, The first Pontryagin class of a quadratic Lie 2-algebroid, Comm. Math. Phys., 362 (2018), 689–716. https://doi.org/10.1007/s00220-018-3220-y doi: 10.1007/s00220-018-3220-y |
[50] | Y. Sheng, Z. Liu, Leibniz $2$-algebras and twisted Courant algebroids, Comm. Algebra., 41 (2013), 1929–1953. https://doi.org/10.1080/00927872.2011.608201 doi: 10.1080/00927872.2011.608201 |
[51] | Y. Sheng, C. Zhu, Semidirect products of representations up to homotopy, Pacific J. Math., 249 (2001), 211–236. https://doi.org/10.2140/pjm.2011.249.211 doi: 10.2140/pjm.2011.249.211 |
[52] | Y. Sheng, C. Zhu, Higher extensions of Lie algebroids, Comm. Contemp. Math., 19 (2017), 1650034. https://doi.org/10.1142/S0219199716500346 doi: 10.1142/S0219199716500346 |
[53] | T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra., 202 (2005), 133–153. https://doi.org/10.1016/j.jpaa.2005.01.010 doi: 10.1016/j.jpaa.2005.01.010 |
[54] | T. Voronov, Q-manifolds and Higher Analogs of Lie Algebroids, Amer. Inst. Phys., 1307 (2010), 191–202. https://doi.org/10.1063/1.3527417 doi: 10.1063/1.3527417 |
[55] | T. Voronov, Q-manifolds and Mackenzie theory, Comm. Math. Phys., 315 (2012), 279–310. https://doi.org/10.1007/s00220-012-1568-y doi: 10.1007/s00220-012-1568-y |