Research article

Categorification of VB-Lie algebroids and VB-Courant algebroids

Yunhe Sheng*
Department of Mathematics, Jilin University, Changchun 130012, China
* Correspondence: Email:shengyh@jlu.edu.cn.

Abstract

In this paper, first we introduce the notion of a VB-Lie 2-algebroid, which can be viewed as the categorification of a VB-Lie algebroid. The tangent prolongation of a Lie 2-algebroid is a VB-Lie 2-algebroid naturally. We show that after choosing a splitting, there is a one-to-one correspondence between VB-Lie 2-algebroids and flat superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. Then we introduce the notion of a VB-CLWX 2-algebroid, which can be viewed as the categorification of a VB-Courant algebroid. We show that there is a one-to-one correspondence between split Lie 3-algebroids and split VB-CLWX 2-algebroids. Finally, we introduce the notion of an E-CLWX 2-algebroid and show that associated to a VB-CLWX 2-algebroid, there is an E-CLWX 2-algebroid structure on the graded fat bundle naturally. By this result, we give a construction of a new Lie 3-algebra from a given Lie 3-algebra, which provides interesting examples of Lie 3-algebras including the higher analogue of the string Lie 2-algebra.

Keywords: Lie 3-algebroid; VB-Lie algebroid; VB-Courant algebroid; superconnection; VB-Lie
2-algebroid; VB-CLWX 2-algebroid; higher analogue of the string Lie 2-algebra
Mathematics Subject Classification: 53D17,53D18

1. Introduction

In this paper, we study the categorification of VB-Lie algebroids and VB-Courant algebroids, and establish the relations between these higher structures and super representations of Lie 2-algebroids, tangent prolongations of Lie 2-algebroids, N-manifolds of degree 3, tangent prolongations of CLWX 2-algebroids and higher analogues of the string Lie 2-algebra.

1.1. Lie n-algebroids, Courant algebroids and CLWX 2-algebroids

An NQ-manifold is an N -manifold \mathcal{M} together with a degree 1 vector field Q satisfying $[Q, Q]=0$. It is well known that a degree 1 NQ manifold corresponds to a Lie algebroid. Thus, people usually think that

An NQ-manifold of degree n corresponds to a Lie n-algebroid.

Some work in this direction appeared in [54]. Strictly speaking, a Lie n-algebroid gives arise to an NQ-manifold only after a degree 1 shift, just as a Lie algebroid A corresponds to a degree 1 NQ manifold A[1]. To make the shifting manifest, and to present a Lie n-algebroid in a way more used to differential geometers, that is, to use the language of vector bundles, the authors introduced the notion of a split Lie n-algebroid in [52] to study the integration of a Courant algebroid. The equivalence between the category of split NQ manifolds and the category of split Lie n-Lie algebroids was proved in [5]. The language of split Lie n-algebroids has slowly become a useful tool for differential geometers to study problems related to NQ-manifolds ([14, 24, 25]). Since Lie 2-algebras are the categorification of Lie algebras ([4]), we will view Lie 2-algebroids as the categorification of Lie algebroids.

To study the double of a Lie bialgebroid ([42]), Liu, Weinstein and Xu introduced the notion of a Courant algebroid in [35]. See [44] for an alternative definition. There are many important applications of Courant algebroids, e.g. in generalized complex geometry ([8, 17, 22]), Poisson geometry ([33]), moment maps ([9]), Poisson-Lie T-duality ([47, 48]) and topological field theory ([46]). In [34], the authors introduced the notion of a CLWX 2-algebroid (named after Courant-Liu-Weinstein-Xu), which can be viewed as the categorification of a Courant algebroid. Furthermore, CLWX 2-algebroids are in one-to-one correspondence with QP-manifolds (symplectic NQ-manifolds) of degree 3, and have applications in the fields theory. See [23] for more details. The underlying algebraic structure of a CLWX 2-algebroid is a Leibniz 2-algebra, or a Lie 3-algebra. There is also a close relationship between CLWX 2-algebroids and the first Pontryagin classes of quadratic Lie 2-algebroids, which are represented by closed 5 -forms. More precisely, as the higher analogue of the results given in [6, 13], it was proved in [49] that the first Pontryagin class of a quadratic Lie algebroid is the obstruction of the existence of a CLWX-extension.

1.2. VB-Lie algebroids and VB-Courant algebroids

Double structures in geometry can be traced back to the work of Ehresmann on connection theory, and have been found many applications in Poisson geometry. See [40] for more details. We use the word "doublization" to indicate putting geometric structures on double vector bundles in the sequel. In [19], Gracia-Saz and Mehta introduced the notion of a VB-Lie algebroid, which is equivalent to Mackenzie's $\mathcal{L} \mathcal{A}$-vector bundle ([38]). A VB-Lie algebroid is a Lie algebroid object in the category of vector bundles and one important property is that it is closely related to superconnection (also called representation up to homotopy [1, 2]) of a Lie algebroid on a 2-term complex of vector bundles. Recently, the relation between VB-algebroid morphisms and representations up to homotopy were studied in [15].

In his PhD thesis [32], Li-Bland introduced the notion of a VB-Courant algebroid which is the doublization of a Courant algebroid [35], and established abstract correspondence between NQ-manifolds of degree 2 and VB-Courant algebroids. Then in [24], Jotz Lean provided a more concrete description of the equivalence between the category of split Lie 2-algebroids and the category of decomposed VB-Courant algebroids.

Double structures, such as double principle (vector) bundles ([12, 16, 26, 30]), double Lie algebroids ($[18,37,38,39,41,55]$), double Lie groupoids ([43]), VB-Lie algebroids ([7, 19]) and VB-Lie groupoids ($[7,20]$) became more and more important recently and are widely studied. In particular, the Lie theory relating VB-Lie algebroids and VB-Lie groupoids, i.e. their relation via differentiation and integration, is established in [7].

1.3. Summary of the results and outline of the paper

In this paper, we combine the aforementioned higher structures and double structures. First we introduce the notion of a VB-Lie 2-algebroid, which can be viewed as the categorification of a VB-Lie algebroid, or doublization of a Lie 2-algebroid:

We show that the tangent prolongation of a Lie 2-algebroid is a VB-Lie 2-algebroid and the graded fat bundle associated to a VB-Lie 2-algebroid is Lie 2-algebroid. Consequently, the graded jet bundle of a Lie 2-algebroid is also a Lie 2-algebroid. In [19], the authors showed that a VB-Lie algebroid is equivalent to a flat superconnection (representation up to homotopy ([1])) of a Lie algebroid on a 2-term complex of vector bundles after choosing a splitting. Now for a VB-Lie 2-algebroid, we establish a higher analogous result, namely, we show that after choosing a splitting, it is equivalent to a flat superconnection of a Lie 2-algebroid on a 3-term complex of vector bundles.

Then we introduce the notion of a VB-CLWX 2-algebroid, which can be viewed as both the doublization of a CLWX 2-algebroid and the categorification of a VB-Courant algebroid. More importantly, we show that after choosing a splitting, there is a one-to-one correspondence between VB-CLWX 2algebroids and split Lie 3-algebroids (NQ-manifolds of degree 3). The tangent prolongation of a CLWX 2-algebroid is a VB-CLWX 2-algebroid naturally. We go on defining E-CLWX 2-algebroid, which can be viewed as the categorification of an E-Courant algebroid introduced in [11]. As a higher analogue of the result that associated to a VB-Courant algebroid, there is an E-Courant algebroid [24, 31], we show that on the graded fat bundle associated to a VB-CLWX 2-algebroid, there is an E-CLWX 2-algebroid structure naturally. Similar to the case of a CLWX 2-algebroid, an E-CLWX 2-algebroid also gives rise to a Lie 3-algebra naturally. Thus through the following procedure:

$$
\underset{\text { 3-algebra }}{\text { Lie }} \longmapsto \underset{\text { 2-algebroid }}{\text { VB-CLWX }} \longmapsto \underset{\text { 2-algebroid }}{E \text {-CLWX }} \longmapsto \underset{\text { 3-algebra, }}{\text { Lie }}
$$

we can construct a Lie 3-algebra from a Lie 3-algebra. We obtain new interesting examples, including the higher analogue of the string Lie 2-algebra.

The paper is organized as follows. In Section 2, we recall double vector bundles, VB-Lie algebroids and VB-Courant algebroids. In Section 3, we introduce the notion of a VB-Lie 2-algebroid, and show that both the graded side bundle and the graded fat bundle are Lie 2-algebroids. The tangent prolongation of a Lie 2-algebroid is a VB-Lie 2-algebroid naturally. In Section 4, first we construct a strict Lie 3 -algebroid $\operatorname{End}(\mathcal{E})=\left(\operatorname{End}^{-2}(\mathcal{E}), \operatorname{End}^{-1}(\mathcal{E}), \mathcal{D}(\mathcal{E}), \mathfrak{p}, \mathrm{d},[\cdot, \cdot]_{C}\right)$ from a 3-term complex of vector bundles $\mathcal{E}: E_{-2} \xrightarrow{\pi} E_{-1} \xrightarrow{\pi} E_{0}$ and then we define a flat superconnection of a Lie 2-algebroid $\mathcal{A}=\left(A_{-1}, A_{0}, \mathfrak{a}, \mathrm{l}_{1}, \mathrm{l}_{2}, \mathrm{l}_{3}\right)$ on this 3 -term complex of vector bundles to be a morphism from \mathcal{A} to $\operatorname{End}(\mathcal{E})$. We show that after choosing a splitting, VB-Lie 2 -algebroids one-to-one correspond to flat superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. In Section 5, we introduce the notion of a VB-CLWX 2-algebroid and show that after choosing a splitting, there is a one-to-one correspondence between VB-CLWX 2-algebroids and Lie 3-algebroids. In Section 6, we introduce
the notion of an E-CLWX 2-algebroid and show that the graded fat bundle associated to a VB-CLWX 2-algebroid is an E-CLWX 2-algebroid naturally. In particular, the graded jet bundle of a CLWX 2algebroid, which is the graded fat bundle of the tangent prolongation of this CLWX 2-algebroid, is a $T^{*} M$-CLWX 2-algebroid. We can also obtain a Lie 3-algebra from an E-CLWX 2-algebroid. In Section 7, we construct a Lie 3-algebra from a given Lie 3-algebra using the theories established in Section 5 and Section 6, and give interesting examples. In particular, we show that associated to a quadratic Lie 2-algebra, we can obtain a Lie 3-algebra, which can be viewed as the higher analogue of the string Lie 2-algebra.

2. Preliminaries

See [40, Definition 9.1.1] for the precise definition of a double vector bundle. We denote a double vector bundle

with core C by $(D ; A, B ; M)$. We use D^{B} and D^{A} to denote vector bundles $D \longrightarrow B$ and $D \longrightarrow A$ respectively. For a vector bundle A, both the tangent bundle $T A$ and the cotangent bundle $T^{*} A$ are double vector bundles:

A morphism of double vector bundles

$$
\left(\varphi ; f_{A}, f_{B} ; f_{M}\right):(D ; A, B ; M) \rightarrow\left(D^{\prime} ; A^{\prime}, B^{\prime} ; M^{\prime}\right)
$$

consists of maps $\varphi: D \rightarrow D^{\prime}, f_{A}: A \rightarrow A^{\prime}, f_{B}: B \rightarrow B^{\prime}, f_{M}: M \rightarrow M^{\prime}$, such that each of $\left(\varphi, f_{B}\right),\left(\varphi, f_{A}\right)$, $\left(f_{A}, f_{M}\right)$ and $\left(f_{B}, f_{M}\right)$ is a morphism of the relevant vector bundles.

The space of sections $\Gamma_{B}(D)$ of the vector bundle D^{B} is generated as a $C^{\infty}(B)$-module by core sections $\Gamma_{B}^{c}(D)$ and linear sections $\Gamma_{B}^{l}(D)$. See [41] for more details. For a section $c: M \rightarrow C$, the corresponding core section $c^{\dagger}: B \rightarrow D$ is defined as

$$
c^{\dagger}\left(b_{m}\right)=\tilde{0}_{b_{m}}+{ }_{A} \overline{c(m)}, \quad \forall m \in M, b_{m} \in B_{m}
$$

where ' means the inclusion $C \hookrightarrow D$. A section $\xi: B \rightarrow D$ is called linear if it is a bundle morphism from $B \rightarrow M$ to $D \rightarrow A$ over a section $X \in \Gamma(A)$. We will view $B^{*} \otimes C$ both as $\operatorname{Hom}(B, C)$ and $\operatorname{Hom}\left(C^{*}, B^{*}\right)$ depending on what it acts. Given $\psi \in \Gamma\left(B^{*} \otimes C\right)$, there is a linear section $\tilde{\psi}: B \rightarrow D$ over the zero section $0^{A}: M \rightarrow A$ given by

$$
\tilde{\psi}\left(b_{m}\right)=\tilde{0}_{b_{m}}+_{A} \overline{\psi\left(b_{m}\right)} .
$$

Note that $\Gamma_{B}^{l}(D)$ is locally free as a $C^{\infty}(M)$-module. Therefore, $\Gamma_{B}^{l}(D)$ is equal to $\Gamma(\hat{A})$ for some vector bundle $\hat{A} \rightarrow M$. The vector bundle \hat{A} is called the fat bundle of the double vector bundle ($D ; A, B ; M$). Moreover, we have the following short exact sequence of vector bundles over M

$$
\begin{equation*}
0 \rightarrow B^{*} \otimes C \longrightarrow \hat{A} \xrightarrow{\mathrm{pr}} A \rightarrow 0 \tag{2.1}
\end{equation*}
$$

Definition 2.1. ([19, Definition 3.4]) A VB-Lie algebroid is a double vector bundle ($D ; A, B ; M$) equipped with a Lie algebroid structure ($D^{B}, a,[\cdot, \cdot]_{D}$) such that the anchor $a: D \longrightarrow T B$ is linear, i.e. $a:(D ; A, B ; M) \longrightarrow(T B ; T M, B ; M)$ is a morphism of double vector bundles, and the Lie bracket $[\cdot, \cdot]_{D}$ is linear:

$$
\left[\Gamma_{B}^{l}(D), \Gamma_{B}^{l}(D)\right]_{D} \subset \Gamma_{B}^{l}(D),\left[\Gamma_{B}^{l}(D), \Gamma_{B}^{c}(D)\right]_{D} \subset \Gamma_{B}^{c}(D),\left[\Gamma_{B}^{c}(D), \Gamma_{B}^{c}(D)\right]_{D}=0 .
$$

The vector bundle $A \longrightarrow M$ is then also a Lie algebroid, with the anchor \mathfrak{a} and the bracket $[\cdot, \cdot]_{A}$ defined as follows: if ξ_{1}, ξ_{2} are linear over $X_{1}, X_{2} \in \Gamma(A)$, then the bracket $\left[\xi_{1}, \xi_{2}\right]_{D}$ is linear over $\left[X_{1}, X_{2}\right]_{A}$.

Definition 2.2. ([32, Definition 3.1.1]) A VB-Courant algebroid is a metric double vector bundle $(D ; A, B ; M)$ such that $\left(D^{B}, S, \llbracket \cdot, \rrbracket, \rho\right)$ is a Courant algebroid and the following conditions are satisfied:
(i) The anchor map $\rho: D \rightarrow T B$ is linear;
(ii) The Courant bracket is linear. That is

$$
\llbracket \Gamma_{B}^{l}(D), \Gamma_{B}^{l}(D) \rrbracket \subseteq \Gamma_{B}^{l}(D), \quad \llbracket \Gamma_{B}^{l}(D), \Gamma_{B}^{c}(D) \rrbracket \subseteq \Gamma_{B}^{c}(D), \quad \llbracket \Gamma_{B}^{c}(D), \Gamma_{B}^{c}(D) \rrbracket=0 .
$$

Theorem 2.3. ([32, Proposition 3.2.1]) There is a one-to-one correspondence between Lie 2-algebroids and VB-Courant algebroids.

3. VB-Lie 2-algebroids

In this section, we introduce the notion of a VB-Lie 2-algebroid, which can be viewed as the categorification of a VB-Lie algebroid introduced in [19]. First we recall the notion of a Lie n-algebroid. See [28,29] for more information of L_{∞}-algebras.

Definition 3.1. ([52, Definition 2.1]) A split Lie n-algebroid is a non-positively graded vector bundle $\mathcal{A}=A_{0} \oplus A_{-1} \oplus \cdots \oplus A_{-n+1}$ over a manifold M equipped with a bundle map $a: A_{0} \longrightarrow T M$ (called the anchor), and $n+1$ many brackets $l_{i}: \Gamma\left(\wedge^{i} \mathcal{A}\right) \longrightarrow \Gamma(\mathcal{A})$ with degree $2-i$ for $1 \leq i \leq n+1$, such that

1. $\Gamma(\mathcal{A})$ is an n-term L_{∞}-algebra:

$$
\begin{array}{r}
\sum_{i+j=k+1}(-1)^{i(j-1)} \sum_{\sigma \in S h_{i, k-i}^{-1}} \operatorname{sgn}(\sigma) \operatorname{Ksgn}(\sigma) \\
l_{j}\left(l_{i}\left(X_{\sigma(1)}, \cdots, X_{\sigma(i)}\right), X_{\sigma(i+1)}, \cdots, X_{\sigma(k)}\right)=0,
\end{array}
$$

where the summation is taken over all $(i, k-i)$-unshuffles $S h_{i, k-i}^{-1}$ with $i \geq 1$ and " $\operatorname{Ksgn}(\sigma)$ " is the Koszul sign for a permutation $\sigma \in S_{k}$, i.e.

$$
X_{1} \wedge \cdots \wedge X_{k}=\operatorname{Ksgn}(\sigma) X_{\sigma(1)} \wedge \cdots \wedge X_{\sigma(k)} .
$$

2. l_{2} satisfies the Leibniz rule with respect to the anchor a :

$$
l_{2}\left(X^{0}, f X\right)=f l_{2}\left(X^{0}, X\right)+a\left(X^{0}\right)(f) X, \quad \forall X^{0} \in \Gamma\left(A_{0}\right), f \in C^{\infty}(M), X \in \Gamma(\mathcal{A}) .
$$

3. For $i \neq 2$, l_{i} 's are $C^{\infty}(M)$-linear.

Denote a split Lie n-algebroid by $\left(A_{-n+1}, \cdots, A_{0}, a, l_{1}, \cdots, l_{n+1}\right)$, or simply by \mathcal{A}. We will only use a split Lie 2 -algebroid ($A_{-1}, A_{0}, a, l_{1}, l_{2}, l_{3}$) and a split Lie 3-algebroid ($A_{-2}, A_{-1}, A_{0}, a, l_{1}, l_{2}, l_{3}, l_{4}$). For a split Lie n-algebroid, we have a generalized Chevalley-Eilenberg complex $\left(\Gamma\left(\operatorname{Symm}(\mathcal{A}[1])^{*}\right), \delta\right)$. See [5,52] for more details. Then $\mathcal{A}[1]$ is an NQ-manifold of degree n. A split Lie n-algebroid morphism $\mathcal{A} \rightarrow \mathcal{A}^{\prime}$ can be defined to be a graded vector bundle morphism $f: \operatorname{Symm}(\mathcal{A}[1]) \rightarrow \operatorname{Symm}\left(\mathcal{A}^{\prime}[1]\right)$ such that the induced pull-back map $f^{*}: C\left(\mathcal{A}^{\prime}[1]\right) \rightarrow C(\mathcal{A}[1])$ between functions is a morphism of NQ manifolds. However it is rather complicated to write down a morphism between split Lie n-algebroids in terms of vector bundles, anchors and brackets, please see [5, Section 4.1] for such details. We only give explicit formulas of a morphism from a split Lie 2-algebroid to a strict split Lie 3-algebroid ($l_{3}=0, l_{4}=0$) and this is what we will use in this paper to define flat superconnections.
Definition 3.2. Let $\mathcal{A}=\left(A_{-1}, A_{0}, a, l_{1}, l_{2}, l_{3}\right)$ be a split Lie 2 -algebroid and $\mathcal{A}^{\prime}=\left(A_{-2}^{\prime}, A_{-1}^{\prime}, A_{0}^{\prime}, a^{\prime}, l_{1}^{\prime}, l_{2}^{\prime}\right)$ a strict split Lie 3 -algebroid. A morphism F from \mathcal{A} to \mathcal{F}^{\prime} consists of:

- a bundle map $F^{0}: A_{0} \longrightarrow A_{0}^{\prime}$,
- a bundle map $F^{1}: A_{-1} \longrightarrow A_{-1}^{\prime}$,
- a bundle map $F_{0}^{2}: \wedge^{2} A_{0} \longrightarrow A_{-1}^{\prime}$,
- a bundle map $F_{1}^{2}: A_{0} \wedge A_{-1} \longrightarrow A_{-2}^{\prime}$,
- a bundle map $F^{3}: \wedge^{3} A_{0} \longrightarrow A_{-2}^{\prime}$,
such that for all $X^{0}, Y^{0}, Z^{0}, X_{i}^{0} \in \Gamma\left(A_{0}\right), i=1,2,3,4, X^{1}, Y^{1} \in \Gamma\left(A_{-1}\right)$, we have

$$
\begin{aligned}
& a^{\prime} \circ F^{0}=a, \\
& l_{1}^{\prime} \circ F_{1}=F_{0} \circ l_{1}, \\
& F^{0} l_{2}\left(X^{0}, Y^{0}\right)-l_{2}^{\prime}\left(F^{0}\left(X^{0}\right), F^{0}\left(Y^{0}\right)\right)=l_{1}^{\prime} F_{0}^{2}\left(X^{0}, Y^{0}\right), \\
& F^{1} l_{2}\left(X^{0}, Y^{1}\right)-l_{2}^{\prime}\left(F^{0}\left(X^{0}\right), F^{1}\left(Y^{1}\right)\right)=F_{0}^{2}\left(X^{0}, l_{1}\left(Y^{1}\right)\right)-l_{1}^{\prime} F_{1}^{2}\left(X^{0}, Y^{1}\right), \\
& l_{2}^{\prime}\left(F^{1}\left(X^{1}\right), F^{1}\left(Y^{1}\right)\right)=F_{1}^{2}\left(l_{1}\left(X^{1}\right), Y^{1}\right)-F_{1}^{2}\left(X^{1}, l_{1}\left(Y^{1}\right)\right), \\
& l_{2}^{\prime}\left(F^{0}\left(X^{0}\right), F^{2}\left(Y^{0}, Z^{0}\right)\right)-F_{0}^{2}\left(l_{2}\left(X^{0}, Y^{0}\right), Z^{0}\right)+c . p .=F^{1}\left(l_{3}\left(X^{0}, Y^{0}, Z^{0}\right)\right) \\
& \quad \quad+l_{1}^{\prime} F^{3}\left(X^{0}, Y^{0}, Z^{0}\right), \\
& l_{2}^{\prime}\left(F^{0}\left(X^{0}\right), F_{1}^{2}\left(Y^{0}, Z^{1}\right)\right)+l_{2}^{\prime}\left(F^{0}\left(Y^{0}\right), F_{1}^{2}\left(Z^{1}, X^{0}\right)\right)+l_{2}^{\prime}\left(F^{1}\left(Z^{1}\right), F_{0}^{2}\left(X^{0}, Y^{0}\right)\right) \\
& =F_{1}^{2}\left(l_{2}\left(X^{0}, Y^{0}\right), Z^{1}\right)+c . p .+F^{3}\left(X^{0}, Y^{0}, l_{1}\left(Z^{1}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{4}(-1)^{i+1}\left(F_{1}^{2}\left(X_{i}^{0}, l_{3}\left(X_{1}^{0}, \cdots, \widehat{X_{i}^{0}}, \cdots X_{4}^{0}\right)\right)+l_{2}^{\prime}\left(F^{0}\left(X_{i}^{0}\right), F^{3}\left(X_{1}^{0}, \cdots, \widehat{X_{i}^{0}}, \cdots X_{4}^{0}\right)\right)\right) \\
& +\sum_{i<j}(-1)^{i+j}\left(F^{3}\left(l_{2}\left(X_{i}^{0}, X_{j}^{0}\right), X_{k}^{0}, X_{l}^{0}\right)+c \cdot p .-\frac{1}{2} l_{2}^{\prime}\left(F_{0}^{2}\left(X_{i}^{0}, X_{j}^{0}\right), F_{0}^{2}\left(X_{k}^{0}, X_{l}^{0}\right)\right)\right)=0
\end{aligned}
$$

where $k<l$ and $\{k, l\} \cap\{i, j\}=\emptyset$.

Let $\left(A_{-1}, A_{0}, a, l_{1}, l_{2}, l_{3}\right)$ be a split Lie 2 -algebroid. Then for all $X^{0}, Y^{0} \in \Gamma\left(A_{0}\right)$ and $X^{1} \in \Gamma\left(A_{-1}\right)$, Lie derivatives $L_{X^{0}}^{0}: \Gamma\left(A_{-i}^{*}\right) \longrightarrow \Gamma\left(A_{-i}^{*}\right), i=0,1, L_{X^{1}}^{1}: \Gamma\left(A_{-1}^{*}\right) \longrightarrow \Gamma\left(A_{0}^{*}\right)$ and $L_{X^{0}, Y^{0}}^{3}: \Gamma\left(A_{-1}^{*}\right) \longrightarrow \Gamma\left(A_{0}^{*}\right)$ are defined by

$$
\left\{\begin{array}{rl}
\left\langle L_{X 0}^{0} \alpha^{0}, Y^{0}\right\rangle & =\rho\left(X^{0}\right)\left\langle Y^{0}, \alpha^{0}\right\rangle-\left\langle\alpha^{0}, l_{2}\left(X^{0}, Y^{0}\right)\right\rangle, \tag{3.1}\\
\left\langle L_{X^{0}}^{0} 0^{1}, Y^{1}\right\rangle & =\rho\left(X^{0}\right)\left\langle Y^{1}, \alpha^{1}\right\rangle-\left\langle\alpha^{1}, l_{2}\left(X^{0}, Y^{1}\right)\right\rangle, \\
\left\langle L_{X^{1}}^{1} \alpha^{1}, Y^{0}\right\rangle & =-\left\langle\alpha^{1}, l_{2}\left(X^{1}, Y^{0}\right)\right\rangle, \\
\left\langle L_{X^{0}, Y^{0}}^{3}\right.
\end{array}{ }^{1}, Z^{0}\right\rangle=-\left\langle\alpha^{1}, l_{3}\left(X^{0}, Y^{0}, Z^{0}\right)\right\rangle, ~=
$$

for all $\alpha^{0} \in \Gamma\left(A_{0}^{*}\right), \alpha^{1} \in \Gamma\left(A_{-1}^{*}\right), Y^{1} \in \Gamma\left(A_{-1}\right), Z^{0} \in \Gamma\left(A_{0}\right)$. If $\left(\mathcal{A}^{*}[1], \mathfrak{a}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}\right)$ is also a split Lie 2-algebroid, we denote by $\mathcal{L}^{0}, \mathcal{L}^{1}, \mathcal{L}^{3}, \delta_{*}$ the corresponding operations.

A graded double vector bundle consists of a double vector bundle of degree -1 and a double vector bundle of degree 0 :

We denote a graded double vector bundle by $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B_{-1} ; & M_{-1} \\ D_{0} ; & A_{0}, B_{0} ; & M_{0}\end{array}\right)$. Morphisms between graded double vector bundles can be defined in an obvious way. We will denote by \mathcal{D} and \mathcal{A} the graded vector bundles $D_{0}^{B} \oplus D_{-1}^{B}$ and $A_{0} \oplus A_{-1}$ respectively. Now we are ready to introduce the main object in this section.

Definition 3.3. A VB-Lie 2-algebroid is a graded double vector bundle

$$
\left(\begin{array}{ccc}
D_{-1} ; & A_{-1}, B ; & M \\
D_{0} ; & A_{0}, B ; & M
\end{array}\right)
$$

equipped with a Lie 2 -algebroid structure $\left(D_{-1}^{B}, D_{0}^{B}, a, l_{1}, l_{2}, l_{3}\right)$ on \mathcal{D} such that
(i) The anchor $a: D_{0} \longrightarrow T B$ is linear, i.e. we have a bundle map $\mathfrak{a}: A_{0} \longrightarrow T M$ such that ($a ; a, \mathrm{id}_{\mathrm{B}} ; \mathrm{id}_{\mathrm{M}}$) is a double vector bundle morphism (see Diagram (i));
(ii) l_{1} is linear, i.e. we have a bundle map $\mathrm{I}_{1}: A_{-1} \longrightarrow A_{0}$ such that $\left(l_{1} ; \mathrm{I}_{1}, \mathrm{id}_{\mathrm{B}} ; \mathrm{id}_{\mathrm{M}}\right)$ is a double vector bundle morphism (see Diagram (ii));
(iii) l_{2} is linear, i.e.

$$
\begin{array}{ll}
l_{2}\left(\Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{l}\left(D_{0}\right)\right) \subset \Gamma_{B}^{l}\left(D_{0}\right), & l_{2}\left(\Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{c}\left(D_{0}\right)\right) \subset \Gamma_{B}^{c}\left(D_{0}\right), \\
l_{2}\left(\Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{l}\left(D_{-1}\right)\right) \subset \Gamma_{B}^{l}\left(D_{-1}\right), & l_{2}\left(\Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{c}\left(D_{-1}\right)\right) \subset \Gamma_{B}^{c}\left(D_{-1}\right), \\
l_{2}\left(\Gamma_{B}^{c}\left(D_{0}\right), \Gamma_{B}^{l}\left(D_{-1}\right)\right) \subset \Gamma_{B}^{c}\left(D_{-1}\right), & l_{2}\left(\Gamma_{B}^{c}\left(D_{0}\right), \Gamma_{B}^{c}\left(D_{-1}\right)\right)=0 ; \\
l_{2}\left(\Gamma_{B}^{c}\left(D_{0}\right), \Gamma_{B}^{c}\left(D_{0}\right)\right)=0 . &
\end{array}
$$

(iv) l_{3} is linear, i.e.

$$
\begin{aligned}
& l_{3}\left(\Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{l}\left(D_{0}\right)\right) \subset \Gamma_{B}^{l}\left(D_{-1}\right), \\
& l_{3}\left(\Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{l}\left(D_{0}\right), \Gamma_{B}^{c}\left(D_{0}\right)\right) \subset \Gamma_{B}^{c}\left(D_{-1}\right), \\
& l_{3}\left(\Gamma_{B}^{c}\left(D_{0}\right), \Gamma_{B}^{c}\left(D_{0}\right), \cdot\right)=0 .
\end{aligned}
$$

Diagram (i)

Diagram (ii)

Since Lie 2-algebroids are the categorification of Lie algebroids, VB-Lie 2-algebroids can be viewed as the categorification of VB-Lie algebroids.

Recall that if ($D ; A, B ; M$) is a VB-Lie algebroid, then A is a Lie algebroid. The following result is its higher analogue.
Theorem 3.4. Let $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B ; & M \\ D_{0} ; & A_{0}, B ; & M\end{array}\right)$ be a VB-Lie 2-algebroid. Then

$$
\left(A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}\right)
$$

is a split Lie 2-algebroid, where \mathfrak{l}_{2} is defined by the property that if $\xi_{1}^{0}, \xi_{2}^{0}, \xi^{0} \in \Gamma_{B}^{l}\left(D_{0}\right)$ are linear sections over $X_{1}^{0}, X_{2}^{0}, X^{0} \in \Gamma\left(A_{0}\right)$, and $\xi^{1} \in \Gamma_{B}^{l}\left(D_{-1}\right)$ is a linear section over $X^{1} \in \Gamma\left(A_{-1}\right)$, then $l_{2}\left(\xi_{1}^{0}, \xi_{2}^{0}\right) \in \Gamma_{B}^{l}\left(D_{0}\right)$ is a linear section over $I_{2}\left(X_{1}^{0}, X_{2}^{0}\right) \in \Gamma\left(A_{0}\right)$ and $l_{2}\left(\xi^{0}, \xi^{1}\right) \in \Gamma_{B}^{l}\left(D_{-1}\right)$ is a linear section over $I_{2}\left(X^{0}, X^{1}\right) \in \Gamma\left(A_{-1}\right)$. Similarly, I_{3} is defined by the property that if $\xi_{1}^{0}, \xi_{2}^{0}, \xi_{3}^{0} \in \Gamma_{B}^{l}\left(D_{0}\right)$ are linear sections over $X_{1}^{0}, X_{2}^{0}, X_{3}^{0} \in \Gamma\left(A_{0}\right)$, then $l_{3}\left(\xi_{1}^{0}, \xi_{2}^{0}, \xi_{3}^{0}\right) \in \Gamma_{B}^{l}\left(D_{-1}\right)$ is a linear section over $I_{3}\left(X_{1}^{0}, X_{2}^{0}, X_{3}^{0}\right) \in \Gamma\left(A_{-1}\right)$.
Proof. Since l_{2} is linear, for any $\xi^{i} \in \Gamma_{B}^{l}\left(D_{-i}\right)$ satisfying $\pi^{A_{-i}}\left(\xi^{i}\right)=0$, we have

$$
\pi^{A_{-(i+j)}}\left(l_{2}\left(\xi^{i}, \eta^{j}\right)\right)=0, \quad \forall \eta^{j} \in \Gamma_{B}^{l}\left(D_{-j}\right) .
$$

This implies that I_{2} is well-defined. Similarly, I_{3} is also well-defined.
By the fact that $l_{1}: D_{-1} \longrightarrow D_{0}$ is a double vector bundle morphism over $I_{1}: A_{-1} \longrightarrow A_{0}$, we can deduce that $\left(\Gamma\left(A_{-1}\right), \Gamma\left(A_{0}\right), \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right)$ is a Lie 2-algebra. We only give a proof of the property

$$
\begin{equation*}
\mathfrak{I}_{1}\left(\mathrm{l}_{2}\left(X_{0}, X_{1}\right)\right)=\mathfrak{I}_{2}\left(X_{0}, \mathrm{I}_{1}\left(X_{1}\right)\right), \quad \forall X^{0} \in \Gamma\left(A_{0}\right), X^{1} \in \Gamma\left(A_{-1}\right) . \tag{3.2}
\end{equation*}
$$

The other conditions in the definition of a Lie 2-algebra can be proved similarly. In fact, let $\xi^{0} \in$ $\Gamma_{B}^{l}\left(D_{0}\right), \xi^{1} \in \Gamma_{B}^{l}\left(D_{-1}\right)$ be linear sections over X^{0}, X^{1} respectively, then by the equality $l_{1}\left(l_{2}\left(\xi^{0}, \xi^{1}\right)\right)=$ $l_{2}\left(\xi^{0}, l_{1}\left(\xi^{1}\right)\right)$, we have

$$
\pi^{A_{0}} l_{1}\left(l_{2}\left(\xi^{0}, \xi^{1}\right)\right)=\pi^{A_{0}} l_{2}\left(\xi^{0}, l_{1}\left(\xi^{1}\right)\right)
$$

Since $l_{1}: D_{-1} \longrightarrow D_{0}$ is a double vector bundle morphism over $\mathrm{I}_{1}: A_{-1} \longrightarrow A_{0}$, the left hand side is equal to

$$
\pi^{A_{0}} l_{1}\left(l_{2}\left(\xi^{0}, \xi^{1}\right)\right)=\mathfrak{l}_{1} \pi^{A^{-1}} l_{2}\left(\xi^{0}, \xi^{1}\right)=\mathfrak{l}_{1} \mathfrak{l}_{2}\left(X^{0}, X^{1}\right)
$$

and the right hand side is equal to

$$
\pi^{A_{0}} l_{2}\left(\xi^{0}, l_{1}\left(\xi^{1}\right)\right)=\mathfrak{I}_{2}\left(\pi^{A_{0}}\left(\xi^{0}\right), \pi^{A_{0}}\left(l_{1}\left(\xi^{1}\right)\right)\right)=\mathfrak{I}_{2}\left(X_{0}, \mathrm{I}_{1}\left(X^{1}\right)\right)
$$

Thus, we deduce that (3.2) holds.
Finally, for all $X^{0} \in \Gamma\left(A_{0}\right), Y^{i} \in \Gamma\left(A_{-i}\right)$ and $f \in C^{\infty}(M)$, let $\xi^{0} \in \Gamma_{B}^{l}\left(D_{0}\right)$ and $\eta^{i} \in \Gamma_{B}^{l}\left(D_{-i}\right), i=0,1$ be linear sections over X^{0} and Y^{i}. Then $q_{B}^{*}(f) \eta^{i}$ is a linear section over $f Y^{i}$. By the fact that a is a double vector bundle morphism over \mathfrak{a}, we have

$$
\begin{aligned}
\mathrm{I}_{2}\left(X^{0}, f Y^{i}\right) & =\pi^{A-i} l_{2}\left(\xi^{0}, q_{B}^{*}(f) \eta^{i}\right)=\pi^{A-i}\left(q_{B}^{*}(f) l_{2}\left(\xi^{0}, \eta^{i}\right)+a\left(\xi^{0}\right)\left(q_{B}^{*}(f)\right) \eta^{i}\right) \\
& =f \mathrm{I}_{2}\left(X^{0}, Y^{i}\right)+\mathfrak{a}\left(X^{0}\right)(f) Y^{i} .
\end{aligned}
$$

Therefore, $\left(A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}\right)$ is a Lie 2-algebroid.
Remark 1. By the above theorem, we can view a VB-Lie 2-algebroid as a Lie 2-algebroid object in the category of double vector bundles.

Consider the associated graded fat bundle $\hat{A}_{-1} \oplus \hat{A}_{0}$, obviously we have
Proposition 1. Let $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B ; & M \\ D_{0} ; & A_{0}, B ; & M\end{array}\right)$ be a VB-Lie 2-algebroid. Then $\left(\hat{A}_{-1}, \hat{A}_{0}, \hat{a}, \hat{l}_{1}, \hat{l}_{2}, \hat{l}_{3}\right)$ is a split Lie 2-algebroid, where $\hat{a}=\mathfrak{a} \circ \mathrm{pr}$ and $\hat{l}_{1}, \hat{l}_{2}, \hat{l}_{3}$ are the restriction of l_{1}, l_{2}, l_{3} on linear sections respectively.

Consequently, we have the following exact sequences of split Lie 2-algebroids:

It is helpful to give the split Lie 2-algebroid structure on $B^{*} \otimes C_{-1} \oplus B^{*} \otimes C_{0}$. Since l_{1} is linear, it induces a bundle map $l_{1}^{C}: C_{-1} \longrightarrow C_{0}$. The restriction of \hat{l}_{1} on $B^{*} \otimes C_{-1}$ is given by

$$
\begin{equation*}
\hat{l}_{1}\left(\phi^{1}\right)=l_{1}^{C} \circ \phi^{1}, \quad \forall \phi^{1} \in \Gamma\left(B^{*} \otimes C_{-1}\right)=\Gamma\left(\operatorname{Hom}\left(B, C_{-1}\right)\right) . \tag{3.4}
\end{equation*}
$$

Since the anchor $a: D_{0} \longrightarrow T B$ is a double vector bundle morphism, it induces a bundle map $\varrho: C_{0} \longrightarrow B$ via

$$
\begin{equation*}
\left\langle\varrho\left(c^{0}\right), \xi\right\rangle=-a\left(c^{0}\right)(\xi), \quad \forall c^{0} \in \Gamma\left(C_{0}\right), \xi \in \Gamma\left(B^{*}\right) \tag{3.5}
\end{equation*}
$$

Then by the Leibniz rule, we deduce that the restriction of \hat{l}_{2} on $\Gamma\left(B^{*} \otimes C_{-1} \oplus B^{*} \otimes C_{0}\right)$ is given by

$$
\begin{align*}
& \hat{l}_{2}\left(\phi^{0}, \psi^{0}\right)=\phi^{0} \circ \varrho \circ \psi^{0}-\psi^{0} \circ \varrho \circ \phi^{0}, \tag{3.6}\\
& \hat{l}_{2}\left(\phi^{0}, \psi^{1}\right)=-\hat{l}_{2}\left(\psi^{1}, \phi^{0}\right)=-\psi^{1} \circ \varrho \circ \phi^{0}, \tag{3.7}
\end{align*}
$$

for all $\phi^{0}, \psi^{0} \in \Gamma\left(B^{*} \otimes C_{0}\right)=\Gamma\left(\operatorname{Hom}\left(B, C_{0}\right)\right), \psi^{1} \in \Gamma\left(B^{*} \otimes C_{-1}\right)=\Gamma\left(\operatorname{Hom}\left(B, C_{-1}\right)\right)$. Since l_{3} is linear, the restriction of l_{3} on $B^{*} \otimes C_{-1} \oplus B^{*} \otimes C_{0}$ vanishes. Obviously, the anchor is trivial. Thus, the split Lie 2-algebroid structure on $B^{*} \otimes C_{-1} \oplus B^{*} \otimes C_{0}$ is exactly given by (3.4), (3.6) and (3.7). Therefore, $B^{*} \otimes C_{-1} \oplus B^{*} \otimes C_{0}$ is a graded bundle of strict Lie 2-algebras.

An important example of VB-Lie algebroids is the tangent prolongation of a Lie algebroid. Now we explore the tangent prolongation of a Lie 2-algebroid. Recall that for a Lie algebroid $A \longrightarrow M, T A$ is a Lie algebroid over $T M$. A section $\sigma: M \longrightarrow A$ gives rise to a linear section $\sigma_{T} \triangleq d \sigma: T M \longrightarrow T A$
and a core section $\sigma_{C}: T M \longrightarrow T A$ by contraction. Any section of $T A$ over $T M$ is generated by such sections. A function $f \in C^{\infty}(M)$ induces two types of functions on $T M$ by

$$
f_{C}=q^{*} f, \quad f_{T}=d f,
$$

where $q: T M \longrightarrow M$ is the projection. We have the following relations about the module structure:

$$
\begin{equation*}
(f \sigma)_{C}=f_{C} \sigma_{C}, \quad(f \sigma)_{T}=f_{T} \sigma_{C}+f_{C} \sigma_{T} \tag{3.8}
\end{equation*}
$$

In particular, for $A=T M$, we have

$$
\begin{equation*}
X_{T}\left(f_{T}\right)=X(f)_{T}, \quad X_{T}\left(f_{C}\right)=X(f)_{C}, \quad X_{C}\left(f_{T}\right)=X(f)_{C}, \quad X_{C}\left(f_{C}\right)=0 \tag{3.9}
\end{equation*}
$$

for all $X \in \mathfrak{X}(M)$. See [32, Example 2.5.4] and [40] for more details.
Now for split Lie 2-algebroids, we have
Proposition 2. Let $\mathcal{A}=\left(A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}\right)$ be a split Lie 2 -algebroid. Then

$$
\left(T A_{-1}, T A_{0}, a, l_{1}, l_{2}, l_{3}\right)
$$

is a split Lie 2-algebroid over $T M$, where $a: T A_{0} \longrightarrow T T M$ is given by

$$
\begin{equation*}
a\left(\sigma_{T}^{0}\right)=\mathfrak{a}\left(\sigma^{0}\right)_{T}, \quad a\left(\sigma_{C}^{0}\right)=\mathfrak{a}\left(\sigma^{0}\right)_{C} \tag{3.10}
\end{equation*}
$$

$l_{1}: \Gamma_{T M}\left(T A_{-1}\right) \longrightarrow \Gamma_{T M}\left(T A_{0}\right)$ is given by

$$
\begin{equation*}
l_{1}\left(\sigma_{T}^{1}\right)=\mathfrak{l}_{1}\left(\sigma^{1}\right)_{T}, \quad l_{1}\left(\sigma_{C}^{1}\right)=\mathfrak{l}_{1}\left(\sigma^{1}\right)_{C}, \tag{3.11}
\end{equation*}
$$

$l_{2}: \Gamma_{T M}\left(T A_{-i}\right) \times \Gamma_{T M}\left(T A_{-j}\right) \longrightarrow \Gamma_{T M}\left(T A_{-(i+j)}\right)$ is given by

$$
\begin{aligned}
l_{2}\left(\sigma_{T}^{0}, \tau_{T}^{0}\right) & =\mathfrak{I}_{2}\left(\sigma^{0}, \tau^{0}\right)_{T}, l_{2}\left(\sigma_{T}^{0}, \tau_{C}^{0}\right)=\mathfrak{I}_{2}\left(\sigma^{0}, \tau^{0}\right)_{C}, l_{2}\left(\sigma_{C}^{0}, \tau_{C}^{0}\right)=0 \\
l_{2}\left(\sigma_{T}^{0}, \tau_{T}^{1}\right) & =\mathfrak{I}_{2}\left(\sigma^{0}, \tau^{1}\right)_{T}, l_{2}\left(\sigma_{T}^{0}, \tau_{C}^{1}\right)=\mathfrak{I}_{2}\left(\sigma^{0}, \tau^{1}\right)_{C}, l_{2}\left(\sigma_{C}^{0}, \tau_{T}^{1}\right)=\mathfrak{I}_{2}\left(\sigma^{0}, \tau^{1}\right)_{C}, \\
l_{2}\left(\sigma_{C}^{0}, \tau_{C}^{1}\right) & =0
\end{aligned}
$$

and $l_{3}: \wedge^{3} \Gamma_{T M}\left(T A_{0}\right) \longrightarrow \Gamma_{T M}\left(T A_{-1}\right)$ is given by

$$
\begin{equation*}
l_{3}\left(\sigma_{T}^{0}, \tau_{T}^{0}, \varsigma_{T}^{0}\right)=\mathrm{I}_{3}\left(\sigma^{0}, \tau^{0}, \varsigma^{0}\right)_{T}, \quad l_{3}\left(\sigma_{T}^{0}, \tau_{T}^{0}, \varsigma_{C}^{0}\right)=\mathrm{I}_{3}\left(\sigma^{0}, \tau^{0}, \varsigma^{0}\right)_{C}, \tag{3.12}
\end{equation*}
$$

and $l_{3}\left(\sigma_{T}^{0}, \tau_{C}^{0}, \varsigma_{C}^{0}\right)=0$, for all $\sigma^{0}, \tau^{0}, \varsigma^{0} \in \Gamma\left(A_{0}\right)$ and $\sigma^{1}, \tau^{1} \in \Gamma\left(A_{-1}\right)$.
Moreover, we have the following VB-Lie 2-algebroid:

Proof. By the fact that $\mathcal{A}=\left(A_{-1}, A_{0}, \mathfrak{a}, l_{1}, l_{2}, l_{3}\right)$ is a split Lie 2-algebroid, it is straightforward to deduce that $\left(T A_{-1}, T A_{0}, a, l_{1}, l_{2}, l_{3}\right)$ is a split Lie 2 -algebroid over $T M$. Moreover, a, l_{1}, l_{2}, l_{3} are all linear, which implies that it is a VB-Lie 2-algebroid.

The associated fat bundles of double vector bundles $\left(T A_{-1} ; A_{-1}, T M ; M\right)$ and $\left(T A_{0} ; A_{0}, T M ; M\right)$ are the jet bundles $\mathfrak{J} A_{-1}$ and $\mathfrak{J} A_{0}$ respectively. By Proposition 2 and Proposition 1, we obtain the following result, which is the higher analogue of the fact that the jet bundle of a Lie algebroid is a Lie algebroid.

Corollary 1. Let $\left(A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{l}_{1}, l_{2}, \mathfrak{l}_{3}\right)$ be a split Lie 2-algebroid. Then we obtain that $\left(\mathfrak{J} A_{-1}, \mathfrak{J} A_{0}, \hat{a}, \hat{l}_{1}, \hat{l}_{2}, \hat{l}_{3}\right)$ is a split Lie 2-algebroid, where $\hat{a}, \hat{l}_{1}, \hat{l}_{2}, \hat{l}_{3}$ is given by

$$
\begin{aligned}
\hat{a}\left(\sigma_{T}^{0}\right) & =\mathfrak{a}\left(\sigma^{0}\right), \\
\hat{l}_{2}\left(\sigma_{T}^{0}, \tau_{T}^{0}\right) & =\mathfrak{l}_{2}\left(\sigma^{0}, \tau^{0}\right)_{T}, \\
\hat{l}_{2}\left(\sigma_{T}^{0}, \tau_{T}^{1}\right) & =\mathfrak{l}_{2}\left(\sigma^{0}, \tau^{1}\right)_{T}, \\
\hat{l}_{3}\left(\sigma_{T}^{0}, \tau_{T}^{0}, \zeta_{T}^{0}\right) & =\mathfrak{l}_{2}\left(\sigma^{0}, \tau^{0}, \zeta^{0}\right)_{T},
\end{aligned}
$$

for all $\sigma^{0}, \tau^{0}, \zeta^{0} \in \Gamma\left(A_{0}\right)$ and $\tau^{1} \in \Gamma\left(A_{-1}\right)$.

4. Superconnections of a split Lie 2-algebroid on a 3-term complex of vector bundles

In the section, we introduce the notion of a superconnection of a split Lie 2-algebroid on a 3-term complex of vector bundles, which generalizes the notion of a superconnection of a Lie algebroid on a 2 -term complex of vector bundles studied in [19]. We show that a VB-Lie 2-algebroid structure on a split graded double vector bundle is equivalent to a flat superconnection of a split Lie 2-algebroid on a 3-term complex of vector bundles.

Denote a 3-term complex of vector bundles $E_{-2} \xrightarrow{\pi} E_{-1} \xrightarrow{\pi} E_{0}$ by \mathcal{E}. Sections of the covariant differential operator bundle $\mathfrak{D}(\mathcal{E})$ are of the form $\mathfrak{D}=\left(\mathfrak{D}_{0}, \mathfrak{D}_{1}, \mathfrak{D}_{2}\right)$, where $\mathfrak{D}_{i}: \Gamma\left(E_{-i}\right) \longrightarrow \Gamma\left(E_{-i}\right)$ are \mathbb{R}-linear maps such that there exists $X \in \mathfrak{X}(M)$ satisfying

$$
\mathrm{D}_{i}\left(f e^{i}\right)=f \mathrm{D}_{i}\left(e^{i}\right)+X(f) e^{i}, \quad \forall f \in C^{\infty}(M), e^{i} \in \Gamma\left(E_{-i}\right) .
$$

Equivalently, $\mathfrak{D}(\mathcal{E})=\mathfrak{D}\left(E_{0}\right) \times_{T M} \mathfrak{D}\left(E_{-1}\right) \times_{T M} \mathfrak{D}\left(E_{-2}\right)$. Define $\mathfrak{p}: \mathfrak{D}(\mathcal{E}) \longrightarrow T M$ by

$$
\begin{equation*}
\mathfrak{p}\left(\mathrm{D}_{0}, \mathfrak{D}_{1}, \mathfrak{D}_{2}\right)=X . \tag{4.1}
\end{equation*}
$$

Then the covariant differential operator bundle $\mathfrak{D}(\mathcal{E})$ fits the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow \operatorname{End}\left(E_{0}\right) \oplus \operatorname{End}\left(E_{-1}\right) \oplus \operatorname{End}\left(E_{-2}\right) \longrightarrow \mathfrak{D}(\mathcal{E}) \longrightarrow T M \longrightarrow 0 . \tag{4.2}
\end{equation*}
$$

Denote by $\operatorname{End}^{-1}(\mathcal{E})=\operatorname{Hom}\left(E_{0}, E_{-1}\right) \oplus \operatorname{Hom}\left(E_{-1}, E_{-2}\right)$. Denote by $\operatorname{End}^{-2}(\mathcal{E})=\operatorname{Hom}\left(E_{0}, E_{-2}\right)$. Define $\mathrm{d}: \operatorname{End}^{-2}(\mathcal{E}) \longrightarrow \operatorname{End}^{-1}(\mathcal{E})$ by

$$
\begin{equation*}
\mathrm{d}\left(\theta^{2}\right)=\pi \circ \theta^{2}-\theta^{2} \circ \pi, \quad \forall \theta^{2} \in \Gamma\left(\operatorname{Hom}\left(E_{0}, E_{-2}\right)\right), \tag{4.3}
\end{equation*}
$$

and define $\mathrm{d}: \operatorname{End}^{-1}(\mathcal{E}) \longrightarrow \mathcal{D}(\mathcal{E})$ by

$$
\begin{equation*}
\mathrm{d}\left(\theta^{1}\right)=\pi \circ \theta^{1}+\theta^{1} \circ \pi, \quad \forall \theta^{1} \in \Gamma\left(\operatorname{Hom}\left(E_{0}, E_{-1}\right) \oplus \operatorname{Hom}\left(E_{-1}, E_{-2}\right)\right) . \tag{4.4}
\end{equation*}
$$

Then we define a degree 0 graded symmetric bracket operation $[\cdot, \cdot]_{C}$ on the section space of the graded bundle $\operatorname{End}^{-2}(\mathcal{E}) \oplus \operatorname{End}^{-1}(\mathcal{E}) \oplus \mathcal{D}(\mathcal{E})$ by

$$
\begin{align*}
{[\mathfrak{D}, \mathrm{t}]_{C} } & =\mathfrak{D} \circ \mathrm{t}-\mathrm{t} \circ \mathfrak{D}, \quad \forall \mathfrak{D}, \mathrm{t} \in \Gamma(\mathfrak{D}(\mathcal{E})), \tag{4.5}\\
{\left[\mathfrak{d}, \theta^{i}\right]_{C} } & =\mathfrak{D} \circ \theta^{i}-\theta^{i} \circ \mathfrak{d}, \quad \forall \mathfrak{D} \in \Gamma(\mathfrak{D}(\mathcal{E})), \theta^{i} \in \Gamma\left(\operatorname{End}^{-i}(\mathcal{E})\right), \tag{4.6}\\
{\left[\theta^{1}, \vartheta^{1}\right]_{C} } & =\theta^{1} \circ \vartheta^{1}+\vartheta^{1} \circ \theta^{1}, \quad \forall \theta^{1}, \vartheta^{1} \in \Gamma\left(\operatorname{End}^{-1}(\mathcal{E})\right) . \tag{4.7}
\end{align*}
$$

Denote by $\mathfrak{D}_{\pi}(\mathcal{E}) \subset \mathfrak{D}(\mathcal{E})$ the subbundle of $\mathfrak{D}(\mathcal{E})$ whose section $\mathfrak{D} \in \Gamma\left(\mathfrak{D}_{\pi}(\mathcal{E})\right.$) satisfying $\pi \circ \mathfrak{D}=\mathfrak{D} \circ \pi$, or in term of components,

$$
\mathfrak{D}_{0} \circ \pi=\pi \circ \mathfrak{D}_{1}, \quad \mathfrak{D}_{1} \circ \pi=\pi \circ \mathfrak{D}_{2} .
$$

It is obvious that $\Gamma\left(\mathfrak{D}_{\pi}(\mathcal{E})\right)$ is closed under the bracket operation $[\cdot, \cdot]_{C}$ and

$$
\mathrm{d}\left(\operatorname{End}^{-1}(\mathcal{E})\right) \subset \mathfrak{D}_{\pi}(\mathcal{E})
$$

Then it is straightforward to verify that
Theorem 4.1. Let $E_{-2} \xrightarrow{\pi} E_{-1} \xrightarrow{\pi} E_{0}$ be a 3-term complex of vector bundles over M. Then $\left(\operatorname{End}^{-2}(\mathcal{E}), \operatorname{End}^{-1}(\mathcal{E}), \mathfrak{D}_{\pi}(\mathcal{E}), \mathfrak{p}, \mathrm{d},[\cdot, \cdot]_{C}\right)$ is a strict split Lie 3-algebroid.

With above preparations, we give the definition of a superconnection of a split Lie 2-algebroid on a 3-term complex of vector bundles as follows.

Definition 4.2. A superconnection of a split Lie 2-algebroid ($A_{-1}, A_{0}, \mathfrak{a}, \mathrm{l}_{1}, \mathfrak{l}_{2}, \mathrm{l}_{3}$) on a 3-term complex of vector bundles $E_{-2} \xrightarrow{\pi} E_{-1} \xrightarrow{\pi} E_{0}$ consists of:

- a bundle morphism $F^{0}: A_{0} \longrightarrow \mathfrak{D}_{\pi}(\mathcal{E})$,
- a bundle morphism $F^{1}: A_{-1} \longrightarrow \operatorname{End}^{-1}(\mathcal{E})$,
- a bundle morphism $F_{0}^{2}: \wedge^{2} A_{0} \longrightarrow \operatorname{End}^{-1}(\mathcal{E})$,
- a bundle morphism $F_{1}^{2}: A_{0} \wedge A_{-1} \longrightarrow \operatorname{End}^{-2}(\mathcal{E})$,
- a bundle morphism $F^{3}: \wedge^{3} A_{0} \longrightarrow \operatorname{End}^{-2}(\mathcal{E})$.

A superconnection is called flat if $\left(F^{0}, F^{1}, F_{0}^{2}, F_{1}^{2}, F^{3}\right)$ is a Lie n-algebroid morphism from the split Lie 2-$\operatorname{algebroid}\left(A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ to the strict split Lie 3-algebroid $\left(\operatorname{End}^{-2}(\mathcal{E}), \operatorname{End}^{-1}(\mathcal{E}), \mathfrak{D}_{\pi}(\mathcal{E}), \mathfrak{p}, \mathrm{d},[\cdot, \cdot]_{C}\right)$.

Remark 2. If the split Lie 2-algebroid reduces to a Lie algebroid A and the 3-term complex reduces to a 2-term complex $E_{-1} \xrightarrow{\pi} E_{0}$, a superconnection will only consists of

- a bundle morphism $F^{0}=\left(F_{0}^{0}, F_{1}^{0}\right): A \longrightarrow \mathfrak{D}_{\pi}(\mathcal{E})$,
- a bundle morphism $F_{0}^{2}: \wedge^{2} A_{0} \longrightarrow \operatorname{Hom}\left(E_{0}, E_{-1}\right)$.

Thus, we recover the notion of a superconnection (also called representation up to homotopy if it is flat) of a Lie algebroid on a 2-term complex of vector bundles. See [1, 19] for more details.

Now we come back to VB-Lie 2-algebroids. Let ($D_{-1}^{B}, D_{0}^{B}, a, l_{1}, l_{2}, l_{3}$) be a VB-Lie 2-algebroid structure on the graded double vector bundle $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B ; & M \\ D_{0} ; & A_{0}, B ; & M\end{array}\right)$. Recall from Theorem 3.4 and Proposition 1 that both $\left(A_{-1}, A_{0}, \mathfrak{a}, l_{1}, l_{2}, l_{3}\right)$ and $\left(\hat{A}_{-1}, \hat{A}_{0}, \hat{a}, \hat{l}_{1}, \hat{l}_{2}, \hat{l}_{3}\right)$ are split Lie 2 -algebroids.

Choose a horizontal lift $s=\left(s_{0}, s_{1}\right): A_{0} \oplus A_{-1} \longrightarrow \hat{A}_{0} \oplus \hat{A}_{-1}$ of the short exact sequence of split Lie 2-algebroids (3.3). Define $\nabla^{B}: A_{0} \longrightarrow \mathfrak{D}(B)$ by

$$
\left\langle\nabla_{X^{0}}^{B} b, \xi\right\rangle=\mathfrak{a}\left(X^{0}\right)\langle\xi, b\rangle-\left\langle b, \hat{a}\left(s_{0}\left(X^{0}\right)\right)(\xi)\right\rangle, \quad \forall X^{0} \in \Gamma\left(A_{0}\right), b \in \Gamma(B), \xi \in \Gamma\left(B^{*}\right) .
$$

Since for all $\phi^{0} \in \Gamma\left(B^{*} \otimes C_{0}\right)$, we have $\hat{a}\left(\phi^{0}\right)=0$, it follows that ∇^{B} is well-defined.
We define $\nabla^{0}: A_{0} \longrightarrow \mathfrak{D}\left(C_{0}\right)$ and $\nabla^{1}: A_{0} \longrightarrow \mathfrak{D}\left(C_{-1}\right)$ by

$$
\begin{equation*}
\nabla_{X^{0}}^{0} c^{0}=l_{2}\left(s_{0}\left(X^{0}\right), c^{0}\right), \quad \nabla_{X^{0}}^{1} c^{1}=l_{2}\left(s_{0}\left(X^{0}\right), c^{1}\right), \tag{4.8}
\end{equation*}
$$

for all $X^{0} \in \Gamma\left(A_{0}\right), c^{0} \in \Gamma\left(C_{0}\right), c^{1} \in \Gamma\left(C_{-1}\right)$.
Define $\Upsilon^{1}: A_{-1} \longrightarrow \operatorname{Hom}\left(B, C_{0}\right)$ and $\Upsilon^{2}: A_{-1} \longrightarrow \operatorname{Hom}\left(C_{0}, C_{-1}\right)$ by

$$
\begin{equation*}
\Upsilon_{X^{1}}^{1}=s_{0}\left(\mathrm{l}_{1}\left(X^{1}\right)\right)-\hat{l}_{1}\left(s_{1}\left(X^{1}\right)\right), \quad \Upsilon_{X^{1}}^{2} c^{0}=l_{2}\left(s_{1}\left(X^{1}\right), c^{0}\right), \tag{4.9}
\end{equation*}
$$

for all $X^{1} \in \Gamma\left(A_{-1}\right), c^{0} \in \Gamma\left(C_{0}\right)$. Since l_{2} is linear, ∇^{0}, ∇^{1} and Υ are well-defined.
Define $R^{0}: \wedge^{2} \Gamma\left(A_{0}\right) \longrightarrow \Gamma\left(\operatorname{Hom}\left(B, C_{0}\right)\right), \Lambda: \wedge^{2} \Gamma\left(A_{0}\right) \longrightarrow \Gamma\left(\operatorname{Hom}\left(C_{0}, C_{-1}\right)\right)$ and $R^{1}: \Gamma\left(A_{0}\right) \wedge$ $\Gamma\left(A_{-1}\right) \longrightarrow \Gamma\left(\operatorname{Hom}\left(B, C_{-1}\right)\right)$ by

$$
\begin{align*}
R^{0}\left(X^{0}, Y^{0}\right) & =s_{0} \mathrm{I}_{2}\left(X^{0}, Y^{0}\right)-\hat{l}_{2}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y^{0}\right)\right), \tag{4.10}\\
\Lambda\left(X^{0}, Y^{0}\right)\left(c^{0}\right) & =-l_{3}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y^{0}\right), c^{0}\right), \tag{4.11}\\
R^{1}\left(X^{0}, Y^{1}\right) & =s_{1} l_{2}\left(X^{0}, Y^{1}\right)-\hat{l}_{2}\left(s_{0}\left(X^{0}\right), s_{1}\left(Y^{1}\right)\right), \tag{4.12}
\end{align*}
$$

for all $X^{0}, Y^{0} \in \Gamma\left(A_{0}\right)$ and $Y^{1} \in \Gamma\left(A_{-1}\right)$
Finally, define $\Xi: \wedge^{3} \Gamma\left(A_{0}\right) \longrightarrow \operatorname{Hom}\left(B, C_{-1}\right)$ by

$$
\begin{equation*}
\left.\Xi\left(X^{0}, Y^{0}, Z^{0}\right)\right)=s_{1} \mathrm{l}_{3}\left(X^{0}, Y^{0}, Z^{0}\right)-\hat{l}_{3}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y^{0}\right), s_{0}\left(Z^{0}\right)\right) . \tag{4.13}
\end{equation*}
$$

By the equality $l_{1} l_{2}\left(s_{0}\left(X^{0}\right), c^{1}\right)=l_{2}\left(s_{0}\left(X^{0}\right), l_{1}^{C}\left(c^{1}\right)\right)$, we obtain

$$
\begin{equation*}
l_{1}^{C} \circ \nabla_{X^{0}}^{1}=\nabla_{X^{0}}^{0} \circ l_{1}^{C} \tag{4.14}
\end{equation*}
$$

By the fact that $a: D_{0} \longrightarrow T B$ preserves the bracket operation, we obtain

$$
\begin{aligned}
\left\langle\nabla_{X^{0}}^{B} \varrho\left(c^{0}\right), \xi\right\rangle & =\mathfrak{a}\left(X^{0}\right)\left\langle\varrho\left(c^{0}\right), \xi\right\rangle-\left\langle\varrho\left(c^{0}\right), a\left(s_{0}\left(X^{0}\right)\right)(\xi)\right\rangle \\
& =-\left[a\left(s_{0}\left(X^{0}\right)\right), a\left(c^{0}\right)\right]_{T B}(\xi)=-a\left(l_{2}\left(s_{0}\left(X^{0}\right), c^{0}\right)\right)(\xi) \\
& =\left\langle\varrho \nabla_{X^{0}}^{0} c^{0}, \xi\right\rangle,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\nabla_{X^{0}}^{B} \circ \varrho=\varrho \circ \nabla_{X^{0}}^{0} . \tag{4.15}
\end{equation*}
$$

By (4.14) and (4.15), we deduce that $\left(\nabla_{X^{0}}^{B}, \nabla_{X^{0}}^{0}, \nabla_{X^{0}}^{1}\right) \in \mathfrak{D}(\mathcal{E})$, where \mathcal{E} is the 3-term complex of vector bundles $C_{-1} \xrightarrow{l_{1}^{c}} C_{0} \xrightarrow{\varrho} B$. Then we obtain a superconnection $\left(F^{0}, F^{1}, F_{0}^{2}, F_{1}^{2}, F^{3}\right)$ of the Lie 2-algebroid $\left(A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ on the 3-term complex of vector bundles $C_{-1} \xrightarrow{\iota_{1}^{c}} C_{0} \xrightarrow{\varrho} B$, where

$$
F^{0}=\left(\nabla^{B}, \nabla^{0}, \nabla^{1}\right), \quad F^{1}=\left(\Upsilon^{1}, \Upsilon^{2}\right), \quad F_{0}^{2}=\left(R^{0}, \Lambda\right), \quad F_{1}^{2}=R^{1}, \quad F^{3}=\Xi .
$$

Theorem 4.3. There is a one-to-one correspondence between VB-Lie 2-algebroids $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B ; & M \\ D_{0} ; & A_{0}, B ; & M\end{array}\right)$ and flat superconnections $\left(F^{0}, F^{1}, F_{0}^{2}, F_{1}^{2}, F^{3}\right)$ of the split Lie 2-algebroid $\left(A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}\right)$ on the 3-term complex of vector bundles $C_{-1} \xrightarrow{l_{1}^{c}} C_{0} \xrightarrow{\varrho} B$ by choosing a horizontal lift $s=\left(s_{0}, s_{1}\right): A_{0} \oplus A_{-1} \longrightarrow \hat{A}_{0} \oplus \hat{A}_{-1}$.

Proof. First it is obvious that

$$
\begin{equation*}
\mathfrak{p} \circ F^{0}=\mathfrak{a} . \tag{4.16}
\end{equation*}
$$

Using equalities $\mathfrak{a} \circ \mathrm{I}_{1}=0$ and $a \circ l_{1}=0$, we have

$$
\left\langle\nabla_{1_{1} X^{1}}^{B} b, \xi\right\rangle=\mathfrak{a}\left(\mathrm{I}_{1}\left(X^{1}\right)\right)\langle b, \xi\rangle-\left\langle b, a\left(s_{0}\left(\mathrm{I}_{1}\left(X^{1}\right)\right)\right)(\xi)\right\rangle=-\left\langle b, a\left(\Upsilon_{X^{1}}^{1}\right)(\xi)\right\rangle,
$$

which implies that

$$
\begin{equation*}
\nabla_{1_{1} X^{1}}^{B}=\varrho \circ \Upsilon_{X^{1}}^{1} . \tag{4.17}
\end{equation*}
$$

For ∇^{0}, we can obtain

$$
\begin{align*}
\nabla_{\mathrm{I}_{1}\left(X^{1}\right)}^{0} & =\left.l_{2}\left(s_{0} \mathrm{I}_{1}\left(X^{1}\right), \cdot\right)\right|_{C_{0}}=\left.l_{2}\left(l_{1}\left(s_{1}\left(X^{1}\right)\right)+\Upsilon_{X^{1}}^{1}, \cdot\right)\right|_{C_{0}} \\
& =l_{1}^{C} \circ \Upsilon_{X^{1}}^{2}+\Upsilon_{X^{1}}^{1} \circ \varrho . \tag{4.18}
\end{align*}
$$

For ∇^{1}, we have

$$
\begin{equation*}
\nabla_{1_{1}\left(X^{1}\right)}^{1}=\left.l_{2}\left(s_{0} \mathrm{l}_{1}\left(X^{1}\right), \cdot\right)\right|_{C_{1}}=\left.l_{2}\left(l_{1}\left(s_{1}\left(X^{1}\right)\right)+\Upsilon_{X^{1}}^{1}, \cdot\right)\right|_{C_{1}}=\Upsilon_{X^{1}}^{2} \circ l_{1}^{C} \tag{4.19}
\end{equation*}
$$

By (4.17), (4.18) and (4.19), we deduce that

$$
\begin{equation*}
F^{0} \circ \mathfrak{I}_{1}=\mathrm{d} \circ F^{1} . \tag{4.20}
\end{equation*}
$$

By straightforward computation, we have

$$
\begin{aligned}
& \left\langle\nabla_{\mathrm{t}_{2}\left(X^{0}, Y^{0}\right)}^{B} b-\nabla_{X^{0}}^{B} \nabla_{Y^{0}}^{B} b+\nabla_{Y^{0}}^{B} \nabla_{X^{0}}^{B} b, \xi\right\rangle \\
= & \left\langle b, a\left(\hat{l}_{2}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y_{0}\right)\right)-s_{0} \mathrm{l}_{2}\left(X^{0}, Y^{0}\right)\right)(\xi)\right\rangle \\
= & \left\langle b,-a\left(R^{0}\left(X^{0}, Y^{0}\right)\right)(\xi)\right\rangle,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\nabla_{\mathrm{t}_{2}\left(X^{0}, Y^{0}\right)}^{B}-\nabla_{X^{0}}^{B} \nabla_{Y^{0}}^{B}+\nabla_{Y^{0}}^{B} \nabla_{X^{0}}^{B}=\varrho \circ R^{0}\left(X^{0}, Y^{0}\right) . \tag{4.21}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
& \nabla_{\mathrm{L}_{2}\left(X^{0}, Y^{0}\right)}^{0} c^{0}-\nabla_{X^{0}}^{0} \nabla_{Y^{0}}^{0} c^{0}+\nabla_{Y^{0}}^{0} \nabla_{X^{0}}^{0} c^{0} \\
= & l_{2}\left(s_{0} l_{2}\left(X^{0}, Y^{0}\right), c^{0}\right)-l_{2}\left(s_{0}\left(X^{0}\right), l_{2}\left(s_{0}\left(Y_{0}\right), c^{0}\right)\right)+l_{2}\left(s_{0}\left(Y^{0}\right), l_{2}\left(s_{0}\left(X_{0}\right), c^{0}\right)\right) \\
= & -l_{1} l_{3}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y_{0}\right), c^{0}\right)+l_{2}\left(R^{0}\left(X^{0}, Y^{0}\right), c^{0}\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\nabla_{\mathrm{t}_{2}\left(X^{0}, Y^{0}\right)}^{0}-\nabla_{X^{0}}^{0} \nabla_{Y^{0}}^{0}+\nabla_{Y^{0}}^{0} \nabla_{X^{0}}^{0}=l_{1}^{C} \circ \Lambda\left(X^{0}, Y^{0}\right)+R^{0}\left(X^{0}, Y^{0}\right) \circ \varrho, \tag{4.22}
\end{equation*}
$$

and

$$
\begin{aligned}
& \nabla_{\mathrm{t}_{2}\left(X^{0}, Y^{0}\right)}^{1} c^{1}-\nabla_{X^{0}}^{1} \nabla_{Y^{0}}^{1} c^{1}+\nabla_{Y^{0}}^{1} \nabla_{X^{0}}^{1} c^{1} \\
= & l_{2}\left(s_{0} l_{2}\left(X^{0}, Y^{0}\right), c^{1}\right)-l_{2}\left(s_{0}\left(X^{0}\right), l_{2}\left(s_{0}\left(Y_{0}\right), c^{1}\right)\right)+l_{2}\left(s_{0}\left(Y^{0}\right), l_{2}\left(s_{0}\left(X_{0}\right), c^{1}\right)\right) \\
= & -l_{3}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y^{0}\right), l_{1}\left(c^{1}\right)\right)+l_{2}\left(R^{0}\left(X^{0}, Y^{0}\right), c^{1}\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\nabla_{\mathrm{L}_{2}\left(X^{0}, Y^{0}\right)}^{1}-\nabla_{X^{0}}^{1} \nabla_{Y^{0}}^{1}+\nabla_{Y^{0}}^{1} \nabla_{X^{0}}^{1}=\Lambda\left(X^{0}, Y^{0}\right) \circ l_{1}^{C} . \tag{4.23}
\end{equation*}
$$

By (4.21), (4.22) and (4.23), we obtain

$$
\begin{equation*}
F^{0}\left(I_{2}\left(X^{0}, Y^{0}\right)\right)-\left[F^{0}\left(X^{0}\right), F^{0}\left(Y^{0}\right)\right]_{C}=\mathrm{d} F_{0}^{2}\left(X^{0}, Y^{0}\right) . \tag{4.24}
\end{equation*}
$$

By the equality

$$
l_{2}\left(s_{0}\left(X^{0}\right), l_{2}\left(s_{1}\left(Y^{1}\right), c^{0}\right)\right)+c . p .=\hat{l}_{3}\left(s_{0}\left(X^{0}\right), l_{1}\left(s_{1}\left(Y^{1}\right)\right), c^{0}\right),
$$

we obtain

$$
\begin{equation*}
\left[F^{0}\left(X^{0}\right), \Upsilon_{Y^{1}}^{2}\right]_{C}-\Upsilon_{1_{2}\left(X^{0}, Y^{1}\right)}^{2}=-\Lambda\left(X^{0}, 1_{1}\left(Y^{1}\right)\right)-R^{1}\left(X^{0}, Y^{1}\right) \circ \varrho . \tag{4.25}
\end{equation*}
$$

Furthermore, we have

$$
\begin{align*}
\Upsilon_{\mathrm{l}_{2}\left(X^{0}, Y^{1}\right)}^{1} & =s_{0} \mathrm{l}_{1}\left(\mathrm{I}_{2}\left(X^{0}, Y^{1}\right)\right)-\hat{l}_{1} s_{1}\left(\mathrm{I}_{2}\left(X^{0}, Y^{1}\right)\right) \\
& =s_{0} \mathrm{I}_{2}\left(X^{0}, \mathrm{l}_{1}\left(Y^{1}\right)\right)-\hat{l}_{1} \hat{l}_{2}\left(s_{0}\left(X^{0}\right), s_{1}\left(Y^{1}\right)\right)-\hat{l}_{1} R^{1}\left(X^{0}, Y^{1}\right) \\
& =s_{0} \mathrm{l}_{2}\left(X^{0}, \mathrm{l}_{1}\left(Y^{1}\right)\right)-\hat{l}_{2}\left(s_{0}\left(X^{0}\right), \hat{l}_{1} s_{1}\left(Y^{1}\right)\right)-l_{1}^{C} \circ R^{1}\left(X^{0}, Y^{1}\right) \\
& =s_{0} \mathrm{I}_{2}\left(X^{0}, \mathrm{l}_{1}\left(Y^{1}\right)\right)-\hat{l}_{2}\left(s_{0}\left(X^{0}\right), s_{0} \mathrm{I}_{1}\left(Y^{1}\right)-\Upsilon_{Y^{1}}^{1}\right)-l_{1}^{C} \circ R^{1}\left(X^{0}, Y^{1}\right) \\
& =\left[F^{0}\left(X^{0}\right), \Upsilon_{Y^{1}}^{1}\right]+R^{0}\left(X^{0}, \mathrm{l}_{1}\left(Y^{1}\right)\right)-l_{1}^{C} \circ R^{1}\left(X^{0}, Y^{1}\right) . \tag{4.26}
\end{align*}
$$

By (4.25) and (4.26), we deduce that

$$
\begin{equation*}
F^{1}\left(\mathrm{I}_{2}\left(X^{0}, Y^{1}\right)\right)-\left[F^{0}\left(X^{0}\right), F^{1}\left(Y^{1}\right)\right]_{C}=F_{0}^{2}\left(X^{0}, \mathrm{I}_{1}\left(Y^{1}\right)\right)-\mathrm{d} F_{1}^{2}\left(X^{0}, Y^{1}\right) . \tag{4.27}
\end{equation*}
$$

By straightforward computation, we have

$$
\begin{align*}
& R^{1}\left(\mathrm{I}_{1}\left(X^{1}\right), Y^{1}\right)-R^{1}\left(X^{1}, \mathrm{I}_{1}\left(Y^{1}\right)\right) \\
= & s_{1} \mathrm{l}_{2}\left(\mathrm{l}_{1}\left(X^{1}\right), Y^{1}\right)-\hat{l}_{2}\left(s_{0} \mathrm{I}_{1}\left(X^{1}\right), s_{1}\left(Y^{1}\right)\right) \\
& -s_{1} \mathrm{l}_{2}\left(X^{1}, \mathrm{I}_{1}\left(Y^{1}\right)\right)+\hat{l}_{2}\left(s_{1}\left(X^{1}\right), s_{0} \mathrm{l}_{1}\left(Y^{1}\right)\right) \\
= & \hat{l}_{2}\left(s_{1}\left(X^{1}\right), \hat{l}_{1} s_{1}\left(Y^{1}\right)\right)+\hat{l}_{2}\left(s_{1}\left(X^{1}\right), \Upsilon_{Y^{1}}^{1}\right)-\hat{l}_{2}\left(s_{0} \mathrm{I}_{1}\left(X^{1}\right), s_{1}\left(Y^{1}\right)\right) \\
= & -\hat{l}_{2}\left(\Upsilon_{X^{1}}^{1}, s_{1}\left(Y^{1}\right)\right)+\hat{l}_{2}\left(s_{1}\left(X^{1}\right), \Upsilon_{Y^{1}}^{1}\right) \\
= & {\left[\Upsilon_{X^{1}}^{1}+\Upsilon_{X^{1}}^{2}, \Upsilon_{Y^{1}}^{1}+\Upsilon_{Y^{1}}^{2}\right] . } \tag{4.28}
\end{align*}
$$

By the equality

$$
\hat{l}_{2}\left(s_{0}\left(X^{0}\right), \hat{l}_{2}\left(s_{0}\left(Y^{0}\right), s_{0}\left(Z^{0}\right)\right)\right)+c . p .=\hat{l}_{1} \hat{l}_{3}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y^{0}\right), s_{0}\left(Z^{0}\right)\right),
$$

we deduce that

$$
\begin{align*}
& {\left[F^{0}\left(X^{0}\right), R^{0}\left(Y^{0}, Z^{0}\right)\right]_{C}+R^{0}\left(X^{0}, \mathrm{I}_{2}\left(Y^{0}, Z^{0}\right)\right)+\text { c.p. } } \\
= & \Upsilon_{1_{3}\left(X^{0}, Y^{0}, Z^{0}\right)}^{1}+l_{1}^{C} \circ \Xi\left(X^{0}, Y^{0}, Z^{0}\right) . \tag{4.29}
\end{align*}
$$

By the equality

$$
l_{2}\left(s_{0}\left(X^{0}\right), l_{3}\left(s_{0}\left(Y^{0}\right), s_{0}\left(Z^{0}\right), c^{0}\right)\right)-l_{3}\left(l_{2}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y^{0}\right)\right), s_{0}\left(Z^{0}\right), c^{0}\right)+c . p .=0,
$$

we deduce that

$$
\begin{align*}
& -\left[F^{0}\left(X^{0}\right), \Lambda\left(Y^{0}, Z^{0}\right)\right]_{C}+\Lambda\left(\mathrm{I}_{2}\left(X^{0}, Y^{0}\right), Z^{0}\right)+c . p . \\
& \quad+\Upsilon_{1_{3}\left(X^{0}, Y^{0}, Z^{0}\right)}^{2}-\Xi\left(X^{0}, Y^{0}, Z^{0}\right) \circ \varrho=0 . \tag{4.30}
\end{align*}
$$

By (4.29) and (4.30), we obtain

$$
\begin{align*}
& {\left[F^{0}\left(X^{0}\right), F_{0}^{2}\left(Y^{0}, Z^{0}\right)\right]_{C}+F_{0}^{2}\left(X^{0}, \mathrm{I}_{2}\left(Y^{0}, Z^{0}\right)\right)+\text { c.p. } } \\
= & F^{1}\left(\mathrm{I}_{3}\left(X^{0}, Y^{0}, Z^{0}\right)\right)+\mathrm{d} F^{3}\left(X^{0}, Y^{0}, Z^{0}\right) . \tag{4.31}
\end{align*}
$$

Then by the equality

$$
\hat{l}_{2}\left(s_{0}\left(X^{0}\right), \hat{l}_{2}\left(s_{0}\left(Y^{0}\right), s_{1}\left(Z^{1}\right)\right)\right)+\text { c.p. }=\hat{l}_{3}\left(s_{0}\left(X^{0}\right), s_{0}\left(Y^{0}\right), \hat{l}_{1}\left(s_{1}\left(Z^{1}\right)\right)\right),
$$

we deduce that

$$
\begin{align*}
& {\left[F^{0}\left(X^{0}\right), R^{1}\left(Y^{0}, Z^{1}\right)\right]_{C}+\left[F^{0}\left(Y^{0}\right), R^{1}\left(Z^{1}, X^{0}\right)\right]_{C}+\left[\Upsilon_{Z^{1}}^{2}, R^{0}\left(X^{0}, Y^{0}\right)\right]_{C} } \\
& +R^{1}\left(X^{0}, \mathrm{I}_{2}\left(Y^{0}, Z^{1}\right)\right)+R^{1}\left(Y^{0}, \mathrm{I}_{2}\left(Z^{1}, X^{0}\right)\right)+R^{1}\left(Z^{1}, \mathrm{I}_{2}\left(X^{0}, Y^{0}\right)\right) \\
= & \Xi\left(X^{0}, Y^{0}, \mathrm{l}_{1}\left(Z^{1}\right)\right)-\left[\Lambda\left(X^{0}, Y^{0}\right), \Upsilon_{Z^{1}}^{1}\right]_{C} . \tag{4.32}
\end{align*}
$$

Finally, by the equality

$$
\begin{aligned}
& \left.\sum_{i=1}^{4}(-1)^{i+1} \hat{l}_{2}\left(s_{0}\left(X_{i}^{0}\right), \hat{l}_{3}\left(s_{0}\left(X_{1}^{0}\right), \cdots, \widehat{s_{0}\left(X_{i}^{0}\right.}\right), \cdots, s_{0}\left(X_{4}^{0}\right)\right)\right) \\
& +\sum_{i<j, k<l}(-1)^{i+j} \hat{l}_{3}\left(\hat{l}_{2}\left(s_{0}\left(X_{i}^{0}\right), s_{0}\left(X_{j}^{0}\right)\right), s_{0}\left(X_{k}^{0}\right), s_{0}\left(X_{l}^{0}\right)\right)=0,
\end{aligned}
$$

we deduce that

$$
\begin{align*}
& \sum_{i=1}^{4}(-1)^{i+1}\left(\left[F^{0}\left(X_{i}^{0}\right), \Xi\left(X_{1}^{0}, \cdots, \widehat{X_{i}^{0}}, \cdots, X_{4}^{0}\right)\right]_{C}\right. \\
& \left.+R^{1}\left(X_{i}^{0}, I_{3}\left(X_{1}^{0}, \cdots, \widehat{X_{i}^{0}}, \cdots, X_{4}^{0}\right)\right)\right) \\
& +\sum_{i<j}(-1)^{i+j}\left(\Xi\left(\mathrm{l}_{2}\left(X_{i}^{0}, X_{j}^{0}\right), X_{1}^{0}, \cdots, \widehat{X_{i}^{0}}, \cdots, \widehat{X_{j}^{0}}, \cdots, X_{4}^{0}\right)\right. \\
& \left.-\left[R^{0}\left(X_{i}^{0}, X_{j}^{0}\right), \Lambda\left(X_{1}^{0}, \cdots, \widehat{X_{i}^{0}}, \cdots, \widehat{X_{j}^{0}}, \cdots, X_{4}^{0}\right)\right]_{C}\right)=0 \tag{4.33}
\end{align*}
$$

By (4.16), (4.20), (4.24), (4.27), (4.28), (4.31)-(4.33), we deduce that $\left(F^{0}, F^{1}, F_{0}^{2}, F_{1}^{2}, F^{3}\right)$ is a morphism from the split Lie 2-algebroid ($A_{-1}, A_{0}, \mathfrak{a}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}$) to the strict split Lie 3-algebroid

$$
\left(\operatorname{End}^{-2}(\mathcal{E}), \operatorname{End}^{-1}(\mathcal{E}), \mathfrak{D}_{\pi}(\mathcal{E}), \mathfrak{p}, \mathrm{d},[\cdot, \cdot]_{C}\right)
$$

Conversely, let $\left(A_{-1}, A_{0}, \mathfrak{a}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right)$ be a split Lie 2-algebroid and $\left(F^{0}, F^{1}, F_{0}^{2}, F_{1}^{2}, F^{3}\right)$ a flat superconnection on the 3-term complex $C_{-1} \xrightarrow{l_{1}^{C}} C_{0} \xrightarrow{\varrho} B$. Then we can obtain a VB-Lie 2-algebroid structure on the split graded double vector bundle $\left(\begin{array}{cc}A_{-1} \oplus B \oplus C_{-1} ; & A_{-1}, B ; \\ A_{0} \oplus B \oplus C_{0} ; & A_{0}, B ;\end{array}\right)$ M . We leave the details to readers. The proof is finished.

5. VB-CLWX 2-algebroids

In this section, first we recall the notion of a CLWX 2-algebroid. Then we explore what is a metric graded double vector bundle, and introduce the notion of a VB-CLWX 2-algebroid, which can be viewed as the categorification of a VB-Courant algebroid introduced in [32].

As a model for "Leibniz algebras that satisfy Jacobi identity up to all higher homotopies", the notion of a strongly homotopy Leibniz algebra, or a $\operatorname{Lod}_{\infty}$-algebra was given in [36] by Livernet, which was further studied by Ammar and Poncin in [3]. In [50], the authors introduced the notion of a Leibniz 2-algebra, which is the categorification of a Leibniz algebra, and proved that the category of Leibniz 2-algebras and the category of 2-term $\operatorname{Lod}_{\infty}$-algebras are equivalent. Due to this reason, a 2 -term $\operatorname{Lod}_{\infty}$-algebra will be called a Leibniz 2-algebra directly in the sequel.

Definition 5.1. ([34]) A CLWX 2-algebroid is a graded vector bundle $\mathcal{E}=E_{-1} \oplus E_{0}$ over M equipped with a non-degenerate graded symmetric bilinear form S on \mathcal{E}, a bilinear operation $\diamond: \Gamma\left(E_{-i}\right) \times$ $\Gamma\left(E_{-j}\right) \longrightarrow \Gamma\left(E_{-(i+j)}\right), 0 \leq i+j \leq 1$, which is skewsymmetric on $\Gamma\left(E_{0}\right) \times \Gamma\left(E_{0}\right)$, an E_{-1}-valued 3-form Ω on E_{0}, two bundle maps $\partial: E_{-1} \longrightarrow E_{0}$ and $\rho: E_{0} \longrightarrow T M$, such that E_{-1} and E_{0} are isotropic and the following axioms are satisfied:
(i) $\left(\Gamma\left(E_{-1}\right), \Gamma\left(E_{0}\right), \partial, \diamond, \Omega\right)$ is a Leibniz 2-algebra;
(ii) for all $e \in \Gamma(\mathcal{E}), e \diamond e=\frac{1}{2} \mathcal{D} S(e, e)$, where $\mathcal{D}: C^{\infty}(M) \longrightarrow \Gamma\left(E_{-1}\right)$ is defined by

$$
\begin{equation*}
S\left(\mathcal{D} f, e^{0}\right)=\rho\left(e^{0}\right)(f), \quad \forall f \in C^{\infty}(M), e^{0} \in \Gamma\left(E_{0}\right) ; \tag{5.1}
\end{equation*}
$$

(iii) for all $e_{1}^{1}, e_{2}^{1} \in \Gamma\left(E_{-1}\right), S\left(\partial\left(e_{1}^{1}\right), e_{2}^{1}\right)=S\left(e_{1}^{1}, \partial\left(e_{2}^{1}\right)\right)$;
(iv) for all $e_{1}, e_{2}, e_{3} \in \Gamma(\mathcal{E}), \rho\left(e_{1}\right) S\left(e_{2}, e_{3}\right)=S\left(e_{1} \diamond e_{2}, e_{3}\right)+S\left(e_{2}, e_{1} \diamond e_{3}\right)$;
(v) for all $e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0} \in \Gamma\left(E_{0}\right), S\left(\Omega\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right), e_{4}^{0}\right)=-S\left(e_{3}^{0}, \Omega\left(e_{1}^{0}, e_{2}^{0}, e_{4}^{0}\right)\right)$.

Denote a CLWX 2-algebroid by ($E_{-1}, E_{0}, \partial, \rho, S, \diamond, \Omega$), or simply by \mathcal{E}. Since the section space of a CLWX 2-algebroid is a Leibniz 2-algebra, the section space of a Courant algebroid is a Leibniz algebra and Leibniz 2-algebras are the categorification of Leibniz algebras, we can view CLWX 2-algebroids as the categorification of Courant algebroids.

As a higher analogue of Roytenberg's result about symplectic NQ manifolds of degree 2 and Courant algebroids ([45]), we have

Theorem 5.2. ([34]) Let $\left(T^{*}[3] A^{*}[2], \Theta\right)$ be a symplectic $N Q$ manifold of degree 3, where A is an ordinary vector bundle and Θ is a degree 4 function on $T^{*}[3] A^{*}[2]$ satisfying $\{\Theta, \Theta\}=0$. Here $\{\cdot, \cdot\}$ is the canonical Poisson bracket on $T^{*}[3] A^{*}[2]$. Then ($A^{*}[1], A, \partial, \rho, S, \diamond, \Omega$) is a CLWX 2-algebroid, where the bilinear form S is given by

$$
S(X+\alpha, Y+\beta)=\langle X, \beta\rangle+\langle Y, \alpha\rangle, \quad \forall X, Y \in \Gamma(A), \alpha, \beta \in \Gamma\left(A^{*}\right),
$$

and ∂, ρ, \diamond and Ω are given by derived brackets. More precisely, we have

$$
\begin{array}{rlrl}
\partial \alpha & =\{\alpha, \Theta\}, & & \forall \alpha \in \Gamma\left(A^{*}\right), \\
\rho(X)(f) & =\{f,\{X, \Theta\}\}, & & \forall X \in \Gamma(A), f \in C^{\infty}(M), \\
X \diamond Y & =\{Y,\{X, \Theta\}\}, & & \forall X, Y \in \Gamma(A), \\
X \diamond \alpha & =\{\alpha,\{X, \Theta\}\}, & & \forall X \in \Gamma(A), \alpha \in \Gamma\left(A^{*}\right), \\
\alpha \diamond X & =-\{X,\{\alpha, \Theta\}\}, & & \forall X \in \Gamma(A), \alpha \in \Gamma\left(A^{*}\right), \\
\Omega(X, Y, Z) & =\{Z,\{Y,\{X, \Theta\}\}\}, & \forall X, Y, Z \in \Gamma(A) .
\end{array}
$$

See [27,53] for more information of derived brackets. Note that various kinds of geometric structures were obtained in the study of QP manifolds of degree 3, e.g. Grutzmann's H-twisted Lie algebroids [21] and Ikeda-Uchino's Lie algebroids up to homotopy [23].
Definition 5.3. A metric graded double vector bundle is a graded double vector bundle $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B ; & M \\ D_{0} ; & A_{0}, B ; & M\end{array}\right)$ equipped with a degree 1 nondegenerate graded symmetric bilinear form S on the graded bundle $D_{-1}^{B} \oplus D_{0}^{B}$ such that it induces an isomorphism between graded double vector bundles

where $\star B$ means dual over B.
Given a metric graded double vector bundle, we have

$$
C_{0} \cong A_{-1}^{*}, \quad C_{-1} \cong A_{0}^{*} .
$$

In the sequel, we will always identify C_{0} with A_{-1}^{*}, C_{-1} with A_{0}^{*}. Thus, a metric graded double vector bundle is of the following form:

Now we are ready to put a CLWX 2-algebroid structure on a graded double vector bundle.

Definition 5.4. A VB-CLWX 2-algebroid is a metric graded double vector bundle

$$
\left(\left(\begin{array}{ccc}
D_{-1} ; & A_{-1}, B ; & M \\
D_{0} ; & A_{0}, B ; & M
\end{array}\right), S\right)
$$

equipped with a CLWX 2 -algebroid structure ($D_{-1}^{B}, D_{0}^{B}, \partial, \rho, S, \diamond, \Omega$) such that
(i) ∂ is linear, i.e. there exists a unique bundle map $\bar{\partial}: A_{-1} \longrightarrow A_{0}$ such that $\partial: D_{-1} \longrightarrow D_{0}$ is a double vector bundle morphism over $\bar{\partial}: A_{-1} \longrightarrow A_{0}$ (see Diagram (iii));
(ii) the anchor ρ is a linear, i.e. there exists a unique bundle map $\bar{\rho}: A_{0} \longrightarrow T M$ such that $\rho: D_{0} \longrightarrow$ $T B$ is a double vector bundle morphism over $\bar{\rho}: A_{0} \longrightarrow T M$ (see Diagram (iv));

Diagram (iii)

Diagram (iv)
(iii) the operation \diamond is linear;
(iv) Ω is linear.

Since a CLWX 2-algebroid can be viewed as the categorification of a Courant algebroid, we can view a VB-CLWX 2-algebroid as the categorification of a VB-Courant algebroid.
Example 1. Let $\left(A_{-1}, A_{0}, a, l_{1}, l_{2}, l_{3}\right)$ be a Lie 2-algebroid. Let $E_{0}=A_{0} \oplus A_{-1}^{*}, E_{-1}=A_{-1} \oplus A_{0}^{*}$ and $\mathcal{E}=E_{0} \oplus E_{-1}$. Then $\left(E_{-1}, E_{0}, \partial, \rho, S, \diamond, \Omega\right)$ is a CLWX 2-algebroid, where $\partial: E_{-1} \longrightarrow E_{0}$ is given by

$$
\partial\left(X^{1}+\alpha^{0}\right)=l_{1}\left(X^{1}\right)+l_{1}^{*}\left(\alpha^{0}\right), \quad \forall X^{1} \in \Gamma\left(A_{-1}\right), \alpha^{0} \in \Gamma\left(A_{0}^{*}\right),
$$

$\rho: E_{0} \longrightarrow T M$ is given by

$$
\rho\left(X^{0}+\alpha^{1}\right)=a\left(X^{0}\right), \quad \forall X^{0} \in \Gamma\left(A_{0}\right), \alpha^{1} \in \Gamma\left(A_{-1}^{*}\right),
$$

the symmetric bilinear form $S=(\cdot, \cdot)_{+}$is given by

$$
\left(X^{0}+\alpha^{1}+X^{1}+\alpha^{0}, Y^{0}+\beta^{1}+Y^{1}+\beta^{0}\right)_{+}=\left\langle X^{0}, \beta^{0}\right\rangle+\left\langle Y^{0}, \alpha^{0}\right\rangle+\left\langle X^{1}, \beta^{1}\right\rangle+\left\langle Y^{1}, \alpha^{1}\right\rangle
$$

the operation \diamond is given by

$$
\left\{\begin{array}{l}
\left(X^{0}+\alpha^{1}\right) \diamond\left(Y^{0}+\beta^{1}\right)=l_{2}\left(X^{0}, Y^{0}\right)+L_{X^{0}}^{0} \beta^{1}-L_{\gamma^{0}}^{0} \alpha^{1}, \tag{5.2}\\
\left(X^{0}+\alpha^{1}\right) \diamond\left(X^{1}+\alpha^{0}\right)=l_{2}\left(X^{0}, X^{1}\right)+L_{X^{0}}^{0} 0+\iota_{X^{1}} \delta\left(\alpha^{1}\right), \\
\left(X^{1}+\alpha^{0}\right) \diamond\left(X^{0}+\alpha^{1}\right)=l_{2}\left(X^{1}, X^{0}\right)+L_{X^{1}}^{1} 1^{1}-\iota_{X^{0}} \delta\left(\alpha^{0}\right),
\end{array}\right.
$$

and the E_{-1}-valued 3-form Ω is defined by

$$
\Omega\left(X^{0}+\alpha^{1}, Y^{0}+\beta^{1}, Z^{0}+\zeta^{1}\right)=l_{3}\left(X^{0}, Y^{0}, Z^{0}\right)+L_{X^{0}, Y^{0}}^{3} \zeta^{1}+L_{Z^{0}, X^{0}}^{3} \beta^{1}+L_{Y^{0}, Z^{0}}^{3} \alpha^{1},
$$

where L^{0}, L^{1}, L^{3} are given by (3.1). It is straightforward to see that this CLWX 2-algebroid gives rise to a VB-CLWX 2-algebroid:

Example 2. For any manifold $M,\left(T^{*}[1] M, T M, \partial=0, \rho=\mathrm{id}, S, \diamond, \Omega=0\right)$ is a CLWX 2-algebroid, where S is the natural symmetric pairing between $T M$ and $T^{*} M$, and \diamond is the standard Dorfman bracket given by

$$
\begin{equation*}
(X+\alpha) \diamond(Y+\beta)=[X, Y]+L_{X} \beta-\iota_{Y} d \alpha, \quad \forall X, Y \in \mathfrak{X}(M), \alpha, \beta \in \Omega^{1}(M) . \tag{5.3}
\end{equation*}
$$

See [34, Remark 3.4] for more details. In particular, for any vector bundle E, $\left(T^{*} E^{*}, T E^{*}, \partial=0, \rho=\right.$ $\mathrm{id}, S, \diamond, \Omega=0$) is a CLWX 2-algebroid, which gives rise to a VB-CLWX 2-algebroid:

We have a higher analogue of Theorem 2.3:
Theorem 5.5. There is a one-to-one correspondence between split Lie 3-algebroids and split VB-CLWX 2-algebroids.
Proof. Let $\mathcal{A}=\left(A_{-2}, A_{-1}, A_{0}, a, l_{1}, l_{2}, l_{3}, l_{4}\right)$ be a split Lie 3-algebroid. Then $T^{*}[3] \mathcal{A}[1]$ is a symplectic NQ manifold of degree 3 . Note that

$$
T^{*}[3] \mathcal{A}[1]=T^{*}[3]\left(A_{0} \times_{M} A_{-1}^{*} \times_{M} A_{-2}^{*}\right)[1],
$$

where $A_{0} \times_{M} A_{-1}^{*} \times_{M} A_{-2}^{*}$ is viewed as a vector bundle over the base A_{-2}^{*} and $A_{-1} \times_{M} A_{0}^{*} \times_{M} A_{-2}^{*}$ is its dual bundle. Denote by ($x^{i}, \mu_{j}, \xi^{k}, \theta_{l}, p_{i}, \mu^{j}, \xi_{k}, \theta^{l}$) a canonical (Darboux) coordinate on $T^{*}[3]\left(A_{0} \times_{M} A_{-1}^{*} \times_{M}\right.$ $\left.A_{-2}^{*}\right)[1]$, where x^{i} is a smooth coordinate on $M, \mu_{j} \in \Gamma\left(A_{-2}\right)$ is a fibre coordinate on $A_{-2}^{*}, \xi^{k} \in \Gamma\left(A_{0}^{*}\right)$ is a fibre coordinate on $A_{0}, \theta_{l} \in \Gamma\left(A_{-1}\right)$ is a fibre coordinate on A_{-1}^{*} and ($p_{i}, \mu^{j}, \xi_{k}, \theta^{l}$) are the momentum coordinates for $\left(x^{i}, \mu_{j}, \xi^{k}, \theta_{l}\right)$. About their degrees, we have

$$
\left(\begin{array}{cccccccc}
x^{i} & \mu_{j} & \xi^{k} & \theta_{l} & p_{i} & \mu^{j} & \xi_{k} & \theta^{l} \\
0 & 0 & 1 & 1 & 3 & 3 & 2 & 2
\end{array}\right)
$$

The symplectic structure is given by

$$
\omega=d x^{i} d p_{i}+d \mu_{j} d \mu^{j}+d \xi^{k} d \xi_{k}+d \theta_{l} d \theta^{l},
$$

which is degree 3. The Lie 3-algebroid structure gives rise to a degree 4 function Θ satisfying $\{\Theta, \Theta\}=0$. By Theorem 5.2, we obtain a CLWX 2-algebroid ($D_{-1}, D_{0}, \partial, \rho, S, \diamond, \Omega$), where $D_{-1}=A_{-1} \times{ }_{M} A_{0}^{*} \times{ }_{M} A_{-2}^{*}$
and $D_{0}=A_{0} \times_{M} A_{-1}^{*} \times_{M} A_{-2}^{*}$ are vector bundles over A_{-2}^{*}. Obviously, they give the graded double vector bundle

$$
\left(\begin{array}{ccc}
A_{-1} \times_{M} A_{0}^{*} \times_{M} A_{-2}^{*} ; & A_{-1}, A_{-2}^{*} ; & M \\
A_{0} \times_{M} A_{-1}^{*} \times_{M} A_{-2}^{*} ; & A_{0}, A_{-2}^{*} ; & M
\end{array}\right) .
$$

The section space $\Gamma_{A_{-2}^{*}}\left(D_{0}\right)$ are generated by $\Gamma\left(A_{-1}^{*}\right)$ (the space of core sections) and $\Gamma\left(A_{-2} \otimes A_{-1}^{*}\right) \oplus \Gamma\left(A_{0}\right)$ (the space of linear sections) as $C^{\infty}\left(A_{-2}^{*}\right)$-module. Similarly, The section space $\Gamma_{A_{-2}^{*}}\left(D_{-1}\right)$ are generated by $\Gamma\left(A_{0}^{*}\right)$ and $\Gamma\left(A_{-2} \otimes A_{0}^{*}\right) \oplus \Gamma\left(A_{-1}\right)$ as $C^{\infty}\left(A_{-2}^{*}\right)$-module. Thus, in the sequel we only consider core sections and linear sections.

The graded symmetric bilinear form S is given by

$$
\begin{aligned}
S\left(e^{0}, e^{1}\right) & =S\left(X^{0}+\psi^{1}+\alpha^{1}, X^{1}+\psi^{0}+\alpha^{0}\right) \\
& =\left\langle\alpha_{1}, X^{1}\right\rangle+\left\langle\alpha^{0}, X_{0}\right\rangle+\psi^{1}\left(X^{1}\right)+\psi^{0}\left(X^{0}\right),
\end{aligned}
$$

for all $e^{0}=X^{0}+\psi^{1}+\alpha^{1} \in \Gamma_{A_{-2}^{*}}\left(D_{0}\right)$ and $e^{1}=X^{1}+\psi^{0}+\alpha^{0} \in \Gamma_{A_{-2}^{*}}\left(D_{-1}\right)$, where $X^{i} \in \Gamma\left(A_{-i}\right)$, $\psi^{i} \in \Gamma\left(A_{-2} \otimes A_{-i}^{*}\right)$ and $\alpha^{i} \in \Gamma\left(A_{-i}^{*}\right)$. Then it is obvious that

$$
\left(\left(\begin{array}{ccc}
A_{-1} \times_{M} A_{0}^{*} \times_{M} A_{-2}^{*} ; & A_{-1}, A_{-2}^{*} ; & M \\
A_{0} \times_{M} A_{-1}^{*} \times_{M} A_{-2}^{*} ; & A_{0}, A_{-2}^{*} ; & M
\end{array}\right), S\right)
$$

is a metric graded double vector bundle.
The bundle map $\partial: D_{-1} \longrightarrow D_{0}$ is given by

$$
\partial\left(X^{1}+\psi^{0}+\alpha^{0}\right)=l_{1}\left(X^{1}\right)+\left.l_{2}\left(X^{1}, \cdot\right)\right|_{A_{-1}}+\psi^{0} \circ l_{1}+l_{1}^{*}\left(\alpha^{0}\right) .
$$

Thus, $\partial: D_{-1} \longrightarrow D_{0}$ is a double vector bundle morphism over $l_{1}: A_{-1} \longrightarrow A_{0}$.
Note that functions on A_{-2}^{*} are generated by fibrewise constant functions $C^{\infty}(M)$ and fibrewise linear functions $\Gamma\left(A_{-2}\right)$. For all $f \in C^{\infty}(M)$ and $X^{2} \in \Gamma\left(A_{-2}\right)$, the anchor $\rho: D_{0} \longrightarrow T A_{-2}^{*}$ is given by

$$
\rho\left(X^{0}+\psi^{1}+\alpha^{1}\right)\left(f+X^{2}\right)=a\left(X^{0}\right)(f)+\left\langle\alpha^{1}, l_{1}\left(X^{2}\right)\right\rangle+l_{2}\left(X^{0}, X^{2}\right)+\psi^{1}\left(l_{1}\left(X^{2}\right)\right) .
$$

Therefore, for a linear section $X^{0}+\psi^{1} \in \Gamma_{A_{-2}^{*}}^{l}\left(D_{0}\right)$, the image $\rho\left(X^{0}+\psi^{1}\right)$ is a linear vector field and for a core section $\alpha^{1} \in \Gamma\left(A_{-1}^{*}\right)$, the image $\rho\left(\alpha^{1}\right)$ is a constant vector field. Thus, ρ is linear.

The bracket operation \diamond is given by

$$
\begin{aligned}
& \left(X^{0}+\psi^{1}+\alpha^{1}\right) \diamond\left(Y^{0}+\phi^{1}+\beta^{1}\right) \\
= & l_{2}\left(X^{0}, Y^{0}\right)+\left.l_{3}\left(X^{0}, Y^{0}, \cdot\right)\right|_{A_{-1}}+l_{2}\left(X^{0}, \phi^{1}(\cdot)\right)-\left.\phi^{1} \circ l_{2}\left(X^{0}, \cdot\right)\right|_{A_{-1}}+L_{X_{0}}^{0} \beta^{1} \\
& +\left.\psi^{1} \circ l_{2}\left(Y^{0}, \cdot\right)\right|_{A_{-1}}-l_{2}\left(Y^{0}, \psi^{1}(\cdot)\right)+\psi^{1} \circ l_{1} \circ \phi^{1}-\phi^{1} \circ l_{1} \circ \psi^{1}-\beta^{0} \circ l_{1} \circ \psi^{1} \\
& -L_{Y_{0}}^{0} \alpha^{1}+\alpha^{1} \circ l_{1} \circ \phi^{1}, \\
& \left(X^{0}+\psi^{1}+\alpha^{1}\right) \diamond\left(Y^{1}+\phi^{0}+\beta^{0}\right) \\
= & l_{2}\left(X^{0}, Y^{1}\right)+\left.l_{3}\left(X^{0}, \cdot, Y^{1}\right)\right|_{A_{0}}+l_{2}\left(X^{0}, \phi^{0}(\cdot)\right)-\left.\phi^{0} \circ l_{2}\left(X^{0}, \cdot\right)\right|_{A_{0}}+L_{X_{0}^{0}}^{0} \beta^{0} \\
& -\left.\psi^{1} l_{2}\left(\cdot, Y^{1}\right)\right|_{A_{0}}+\delta\left(\psi^{1}\left(Y^{1}\right)\right)+\psi^{1} \circ l_{1} \circ \phi^{0}+l_{Y_{1}} \delta \alpha^{1}+\alpha^{1} \circ l_{1} \circ \phi^{0}, \\
& \left(Y^{1}+\phi^{0}+\beta^{0} \diamond\left(X^{0}+\psi^{1}+\alpha^{1}\right)\right. \\
= & l_{2}\left(Y^{1}, X^{0}\right)-\left.l_{3}\left(X^{0}, \cdot, Y^{1}\right)\right|_{A_{0}}-l_{2}\left(X^{0}, \phi^{0}(\cdot)\right)+\left.\phi^{0} \circ l_{2}\left(X^{0}, \cdot\right)\right|_{A_{0}}+\delta\left(\phi^{0}\left(X^{0}\right)\right)
\end{aligned}
$$

$$
-\iota_{X^{0}} \delta \beta^{0}+\left.\psi^{1} l_{2}\left(\cdot, Y^{1}\right)\right|_{A_{0}}-\psi^{1} \circ l_{1} \circ \phi^{0}+L_{Y_{1}}^{1} \alpha^{1}-\alpha^{1} \circ l_{1} \circ \phi^{0} .
$$

Then it is straightforward to see that the operation \diamond is linear.
Finally, Ω is given by

$$
\begin{aligned}
& \Omega\left(X^{0}+\psi^{1}+\alpha^{1}, Y^{0}+\phi^{1}+\beta^{1}, Z^{0}+\varphi^{1}+\gamma^{1}\right) \\
= & l_{3}\left(X^{0}, Y^{0}, Z^{0}\right)+l_{4}\left(X^{0}, Y^{0}, Z^{0}, \cdot\right) \\
& -\left.\varphi^{1} \circ l_{3}\left(X^{0}, Y^{0}, \cdot\right)\right|_{A_{0}}-\left.\phi^{1} \circ l_{3}\left(Z^{0}, X^{0}, \cdot\right)\right|_{A_{0}}-\left.\psi^{1} \circ l_{3}\left(Y^{0}, Z^{0}, \cdot\right)\right|_{A_{0}} \\
& +L_{X^{0}, Y^{0}}^{3} \gamma^{1}+L_{Y^{0}, Z^{0}}^{3} \alpha^{1}+L_{Z^{0}, X^{0}}^{3} \beta^{1},
\end{aligned}
$$

which implies that Ω is also linear.
Thus, a split Lie 3-algebroid gives rise to a split VB-CLWX 2-algebroid:

Conversely, given a split VB-CLWX 2-algebroid:

where $D_{-1}=A_{-1} \times_{M} A_{0}^{*} \times_{M} B$ and $D_{0}=A_{0} \times_{M} A_{-1}^{*} \times_{M} B$, then we can deduce that the corresponding symplectic NQ-manifold of degree 3 is $T^{*}[3] \mathcal{A}[1]$, where $\mathcal{A}=A_{0} \oplus A_{-1} \oplus B$ is a graded vector bundle in which B is of degree -2 , and the Q-structure gives rise to a Lie 3 -algebroid structure on \mathcal{A}. We omit details.

Remark 3. Since every double vector bundle is splitable, every VB-CLWX 2-algebroid is isomorphic to a split one. Meanwhile, by choosing a splitting, we obtain a split Lie 3-algebroid from an NQ-manifold of degree 3 (Lie 3-algebroid). Thus, we can enhance the above result to be a one-to-one correspondence between Lie 3-algebroids and VB-CLWX 2-algebroids. We omit such details.

Recall that the tangent prolongation of a Courant algebroid is a VB-Courant algebroid ([32, Proposition 3.4.1]). Now we show that the tangent prolongation of a CLWX 2-algebroid is a VB-CLWX 2-algebroid. The notations used below is the same as the ones used in Section 3.

Proposition 3. Let $\left(E_{-1}, E_{0}, \partial, \rho, S, \diamond, \Omega\right)$ be a CLWX 2-algebroid. Then we obtain that $\left(T E_{-1}, T E_{0}, \widetilde{\partial}, \widetilde{\rho}, \widetilde{S}, \widetilde{\diamond}, \widetilde{\Omega}\right)$ is a CLWX 2-algebroid over $T M$, where the bundle map $\widetilde{\partial}: T E_{-1} \longrightarrow T E_{0}$ is given by

$$
\widetilde{\partial}\left(\sigma_{T}^{1}\right)=\partial\left(\sigma^{1}\right)_{T}, \quad \widetilde{\partial}\left(\sigma_{C}^{1}\right)=\partial\left(\sigma^{1}\right)_{C},
$$

the bundle map $\widetilde{\rho}: T E_{0} \longrightarrow T T M$ is given by

$$
\widetilde{\rho}\left(\sigma_{T}^{0}\right)=\rho\left(\sigma^{0}\right)_{T}, \quad \widetilde{\rho}\left(\sigma_{C}^{0}\right)=\rho\left(\sigma^{0}\right)_{C},
$$

the degree 1 bilinear form \widetilde{S} is given by

$$
\begin{aligned}
& \widetilde{S}\left(\sigma_{T}^{0}, \tau_{T}^{1}\right)=S\left(\sigma^{0}, \tau^{1}\right)_{T}, \widetilde{S}\left(\sigma_{T}^{0}, \tau_{C}^{1}\right)=S\left(\sigma^{0}, \tau^{1}\right)_{C} \\
& \widetilde{S}\left(\sigma_{C}^{0}, \tau_{T}^{1}\right)=S\left(\sigma^{0}, \tau^{1}\right)_{C}, \widetilde{S}\left(\sigma_{C}^{0}, \tau_{C}^{1}\right)=0
\end{aligned}
$$

the bilinear operation $\widetilde{\diamond}$ is given by

$$
\begin{aligned}
& \sigma_{T}^{0} \widetilde{\diamond} \tau_{T}^{0}=\left(\sigma^{0} \diamond \tau^{0}\right)_{T}, \quad \sigma_{T}^{0} \stackrel{\rightharpoonup}{\diamond} \tau_{C}^{0}=-\tau_{C}^{0} \stackrel{\rightharpoonup}{\Delta} \sigma_{T}^{0}=\left(\sigma^{0} \diamond \tau^{0}\right)_{C}, \quad \sigma_{C}^{0} \widetilde{\diamond} \tau_{C}^{0}=0, \\
& \sigma_{T}^{0} \stackrel{\diamond}{\Delta} \tau_{T}^{1}=\left(\sigma^{0} \diamond \tau^{1}\right)_{T}, \quad \sigma_{T}^{0} \stackrel{\rightharpoonup}{\diamond} \tau_{C}^{1}=\sigma_{C}^{0} \stackrel{\rightharpoonup}{\diamond} \tau_{T}^{1}=\left(\sigma^{0} \diamond \tau^{1}\right)_{C}, \quad \sigma_{C}^{0} \stackrel{\rightharpoonup}{\diamond} \tau_{C}^{1}=0, \\
& \tau_{T}^{1} \widetilde{\diamond} \sigma_{T}^{0}=\left(\tau^{1} \diamond \sigma^{0}\right)_{T}, \quad \tau_{C}^{1} \widetilde{\diamond} \sigma_{T}^{0}=\tau_{T}^{1} \widetilde{\diamond} \sigma_{C}^{0}=\left(\tau^{1} \diamond \sigma^{0}\right)_{C}, \quad \tau_{C}^{1} \widetilde{\diamond} \sigma_{C}^{0}=0,
\end{aligned}
$$

and $\widetilde{\Omega}: \wedge^{3} T E_{0} \longrightarrow T E_{-1}$ is given by

$$
\widetilde{\Omega}\left(\sigma_{T}^{0}, \tau_{T}^{0}, \varsigma_{T}^{0}\right)=\Omega\left(\sigma^{0}, \tau^{0}, \varsigma^{0}\right)_{T}, \quad \widetilde{\Omega}\left(\sigma_{T}^{0}, \tau_{T}^{0}, \varsigma_{C}^{0}\right)=\Omega\left(\sigma^{0}, \tau^{0}, \varsigma^{0}\right)_{C}, \quad \widetilde{\Omega}\left(\sigma_{T}^{0}, \tau_{C}^{0}, \varsigma_{C}^{0}\right)=0,
$$

for all $\sigma^{0}, \tau^{0}, \varsigma^{0} \in \Gamma\left(E_{0}\right)$ and $\sigma^{1}, \tau^{1} \in \Gamma\left(E_{-1}\right)$.
Moreover, we have the following VB-CLWX 2-algebroid:

Proof. Since ($E_{-1}, E_{0}, \partial, \rho, S, \diamond, \Omega$) is a CLWX 2-algebroid, it is straightforward to deduce that ($T E_{-1}, T E_{0}, \widetilde{\partial}, \widetilde{\rho}, \widetilde{,}, \widetilde{\diamond}, \widetilde{\Omega}$) is a CLWX 2 -algebroid over $T M$. Moveover, it is obvious that $\widetilde{\partial}, \widetilde{\rho}, \widetilde{S}, \widetilde{\diamond}, \widetilde{\Omega}$ are all linear, which implies that we have a VB-CLWX 2-algebroid.

6. E-CLWX 2-algebroid

In this section, we introduce the notion of an E-CLWX 2-algebroid as the categorification of an E-Courant algebroid introduced in [11]. We show that associated to a VB-CLWX 2-algebroid, there is an E-CLWX 2-algebroid structure on the corresponding graded fat bundle.

There is an E-valued pairing $\langle\cdot, \cdot\rangle_{E}$ between the jet bundle $\mathfrak{J} E$ and the first order covariant differential operator bundle $\mathfrak{D} E$ defined by

$$
\langle\mu, \mathfrak{D}\rangle_{E} \triangleq \mathfrak{D}(u), \quad \forall \mathfrak{D} \in(\mathfrak{D} E)_{m}, \mu \in(\mathfrak{J} E)_{m}, u \in \Gamma(E) \text { statisfying } \mu=[u]_{m} .
$$

Definition 6.1. Let E be a vector bundle. An E-CLWX 2 -algebroid is a 6 -tuple ($\mathcal{K}, \partial, \rho, \mathcal{S}, \diamond, \Omega$), where $\mathcal{K}=K_{-1} \oplus K_{0}$ is a graded vector bundle over M and

- $\partial: K_{-1} \longrightarrow K_{0}$ is a bundle map;
- $\mathcal{S}: \mathcal{K} \otimes \mathcal{K} \rightarrow E$ is a surjective graded symmetric nondegenerate E-valued pairing of degree 1 , which induces an embedding: $\mathcal{K} \hookrightarrow \operatorname{Hom}(\mathcal{K}, E)$;
- $\rho: K_{0} \rightarrow \mathfrak{D E}$ is a bundle map, called the anchor, such that $\rho^{\star}(\mathfrak{J} E) \subset K_{-1}$, i.e.

$$
\mathcal{S}\left(\rho^{\star}(\mu), e^{0}\right)=\left\langle\mu, \rho\left(e^{0}\right)\right\rangle_{E}, \forall \mu \in \Gamma(\mathfrak{J} E), e^{0} \in \Gamma\left(K_{0}\right)
$$

$\bullet \diamond: \Gamma\left(K_{-i}\right) \times \Gamma\left(K_{-j}\right) \longrightarrow \Gamma\left(K_{-(i+j)}\right), 0 \leq i+j \leq 1$ is an \mathbb{R}-bilinear operation;

- $\Omega: \wedge^{3} K_{0} \longrightarrow K_{-1}$ is a bundle map,
such that the following properties hold:
(E1) $(\Gamma(\mathcal{K}), \partial, \diamond, \Omega)$ is a Leibniz 2-algebra;
(E2) for all $e \in \Gamma(\mathcal{K}), e \diamond e=\frac{1}{2} \mathcal{D S}(e, e)$, where $\mathcal{D}: \Gamma(E) \longrightarrow \Gamma\left(K_{-1}\right)$ is defined by

$$
\begin{equation*}
\mathcal{S}\left(\mathcal{D} u, e^{0}\right)=\rho\left(e^{0}\right)(u), \quad \forall u \in \Gamma(E), e^{0} \in \Gamma\left(K_{0}\right) ; \tag{6.1}
\end{equation*}
$$

(E3) for all $e_{1}^{1}, e_{2}^{1} \in \Gamma\left(K_{-1}\right), \mathcal{S}\left(\partial\left(e_{1}^{1}\right), e_{2}^{1}\right)=\mathcal{S}\left(e_{1}^{1}, \partial\left(e_{2}^{1}\right)\right)$;
(E4) for all $e_{1}, e_{2}, e_{3} \in \Gamma(\mathcal{K}), \rho\left(e_{1}\right) \mathcal{S}\left(e_{2}, e_{3}\right)=\mathcal{S}\left(e_{1} \diamond e_{2}, e_{3}\right)+\mathcal{S}\left(e_{2}, e_{1} \diamond e_{3}\right)$;
(E5) for all $e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0} \in \Gamma\left(K_{0}\right), \mathcal{S}\left(\Omega\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right), e_{4}^{0}\right)=-\mathcal{S}\left(e_{3}^{0}, \Omega\left(e_{1}^{0}, e_{2}^{0}, e_{4}^{0}\right)\right)$;
(E6) for all $e_{1}^{0}, e_{2}^{0} \in \Gamma\left(K_{0}\right), \rho\left(e_{1}^{0} \diamond e_{2}^{0}\right)=\left[\rho\left(e_{1}^{0}\right), \rho\left(e_{2}^{0}\right)\right]_{\mathfrak{D}}$, where $[\cdot, \cdot]_{\mathfrak{D}}$ is the commutator bracket on $\Gamma(\mathfrak{D E})$.
A CLWX 2-algebroid can give rise to a Lie 3-algebra ([34, Theorem 3.11]). Similarly, an E-CLWX 2-algebroid can also give rise to a Lie 3-algebra. Consider the graded vector space $\mathfrak{e}=\mathfrak{e}_{-2} \oplus \mathfrak{e}_{-1} \oplus \mathfrak{e}_{0}$, where $\mathrm{e}_{-2}=\Gamma(E), \mathrm{e}_{-1}=\Gamma\left(K_{-1}\right)$ and $\mathrm{e}_{0}=\Gamma\left(K_{0}\right)$. We introduce a skew-symmetric bracket on $\Gamma(\mathcal{K})$,

$$
\begin{equation*}
\llbracket e_{1}, e_{2} \rrbracket=\frac{1}{2}\left(e_{1} \diamond e_{2}-e_{2} \diamond e_{1}\right), \quad \forall e_{1}, e_{2} \in \Gamma(\mathcal{K}) \tag{6.2}
\end{equation*}
$$

which is the skew-symmetrization of \diamond.
Theorem 6.2. An E-CLWX 2-algebroid ($\mathcal{K}, \partial, \rho, \mathcal{S}, \diamond, \Omega$) gives rise to a Lie 3-algebra $\left(\mathfrak{e}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}\right)$, where I_{i} are given by

$$
\begin{array}{rlrl}
\mathrm{I}_{1}(u) & =\mathcal{D}(u), & & \forall u \in \Gamma(E), \\
\mathrm{I}_{1}\left(e^{1}\right) & =\partial\left(e^{1}\right), & & \forall e^{1} \in \Gamma\left(K_{-1}\right), \\
\mathrm{I}_{2}\left(e_{1}^{0}, e_{2}^{0}\right) & =\llbracket e_{1}^{0}, e_{2}^{0} \rrbracket, & & \forall e_{1}^{0}, e_{2}^{0} \in \Gamma\left(K_{0}\right), \\
\mathrm{I}_{2}\left(e^{0}, e^{1}\right) & =\llbracket e^{0}, e^{1} \rrbracket, & & \forall e^{0} \in \Gamma\left(K_{0}\right), e^{1} \in \Gamma\left(K_{-1}\right), \\
\mathrm{I}_{2}\left(e^{0}, f\right) & =\frac{1}{2} \mathcal{S}\left(e^{0}, \mathcal{D} f\right), & & \forall e^{0} \in \Gamma\left(K_{0}\right), f \in \Gamma(E), \\
\mathrm{I}_{2}\left(e_{1}^{1}, e_{2}^{1}\right) & =0, & & \forall e_{1}^{1}, e_{2}^{1} \in \Gamma\left(K_{-1}\right), \\
\mathrm{I}_{3}\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right) & =\Omega\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right), & & \forall e_{1}^{0}, e_{2}^{0}, e_{3}^{0} \in \Gamma\left(K_{0}\right), \\
\mathrm{I}_{3}\left(e_{1}^{0}, e_{2}^{0}, e^{1}\right) & =-T\left(e_{1}^{0}, e_{2}^{0}, e^{1}\right), & \forall e_{1}^{0}, e_{2}^{0} \in \Gamma\left(K_{0}\right), e^{1} \in \Gamma\left(K_{-1}\right), \\
\mathrm{I}_{4}\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right) & =\bar{\Omega}\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right), & \forall e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0} \in \Gamma\left(K_{0}\right),
\end{array}
$$

where the totally skew-symmetric $T: \Gamma\left(K_{0}\right) \times \Gamma\left(K_{0}\right) \times \Gamma\left(K_{-1}\right) \longrightarrow \Gamma(E)$ is given by

$$
\begin{equation*}
T\left(e_{1}^{0}, e_{2}^{0}, e^{1}\right)=\frac{1}{6}\left(\mathcal{S}\left(e_{1}^{0}, \llbracket e_{2}^{0}, e^{1} \rrbracket\right)+\mathcal{S}\left(e^{1}, \llbracket e_{1}^{0}, e_{2}^{0} \rrbracket\right)+\mathcal{S}\left(e_{2}^{0}, \llbracket e^{1}, e_{1}^{0} \rrbracket\right)\right), \tag{6.3}
\end{equation*}
$$

and $\bar{\Omega}: \wedge^{4} \Gamma\left(K_{0}\right) \longrightarrow \Gamma(E)$ is given by

$$
\bar{\Omega}\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right)=\mathcal{S}\left(\Omega\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right), e_{4}^{0}\right)
$$

Proof. The proof is totally parallel to the proof of [34, Theorem 3.11], we omit the details.
Let $\left(D_{-1}^{B}, D_{0}^{B}, \partial, \rho, S, \diamond, \Omega\right)$ be a VB-CLWX 2-algebroid on the graded double vector bundle $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B ; & M \\ D_{0} ; & A_{0}, B ; & M\end{array}\right)$. Then we have the associated graded fat bundles $\hat{A}_{-1} \oplus \hat{A}_{0}$, which fit the exact sequences:

$$
\begin{gathered}
0 \rightarrow B^{*} \otimes A_{0}^{*} \longrightarrow \hat{A}_{-1} \longrightarrow A_{-1} \rightarrow 0 \\
0 \rightarrow B^{*} \otimes A_{-1}^{*} \longrightarrow \hat{A}_{0} \longrightarrow A_{0} \rightarrow 0 .
\end{gathered}
$$

Since the bundle map ∂ is linear, it induces a bundle map $\hat{\partial}: \hat{A}_{-1} \longrightarrow \hat{A}_{0}$. Since the anchor ρ is linear, it induces a bundle map $\hat{\rho}: \hat{A}_{0} \longrightarrow \mathfrak{D} B^{*}$, where sections of $\mathfrak{D} B^{*}$ are viewed as linear vector fields on B. Furthermore, the restriction of S on linear sections will give rise to linear functions on B. Thus, we obtain a B^{*}-valued degree 1 graded symmetric bilinear form \hat{S} on the graded fat bundle $\hat{A}_{-1} \oplus \hat{A}_{0}$. Since the operation \diamond is linear, it induces an operation $\hat{\diamond}: \hat{A}_{-i} \times \hat{A}_{-j} \longrightarrow \hat{A}_{-(i+j)}, 0 \leq i+j \leq 1$. Finally, since Ω is linear, it induces an $\hat{\Omega}: \Gamma\left(\wedge^{3} \hat{A}_{0}\right) \longrightarrow \hat{A}_{-1}$. Then we obtain:

Theorem 6.3. A VB-CLWX 2-algebroid gives rise to a B^{*}-CLWX 2-algebroid structure on the corresponding graded fat bundle. More precisely, let $\left(D_{-1}^{B}, D_{0}^{B}, \partial, \rho, S, \diamond, \Omega\right)$ be a VB-CLWX 2-algebroid on the graded double vector bundle $\left(\begin{array}{ccc}D_{-1} ; & A_{-1}, B ; & M \\ D_{0} ; & A_{0}, B ; & M\end{array}\right)$ with the associated graded fat bundle $\hat{A}_{-1} \oplus \hat{A}_{0}$. Then $\left(\hat{A}_{-1}, \hat{A}_{0}, \hat{\partial}, \hat{\rho}, \hat{S}, \hat{\diamond}, \hat{\Omega}\right)$ is a B^{*}-CLWX 2-algebroid.
Proof. Since all the structures defined on the graded fat bundle $\hat{A}_{-1} \oplus \hat{A}_{0}$ are the restriction of the structures in the VB-CLWX 2-algebroid, it is straightforward to see that all the axioms in Definition 6.1 hold.

Example 3. Consider the VB-CLWX 2-algebroid given in Example 2, the corresponding E-CLWX 2-algebroid is $\left((\Im E)[1], \mathfrak{D} E, \partial=0, \rho=\mathrm{id}, \mathcal{S}=(\cdot, \cdot)_{E}, \diamond, \Omega=0\right)$, where the graded symmetric nondegenerate E-valued pairing $(\cdot, \cdot)_{E}$ is given by

$$
(\mathfrak{D}+\mu, \mathfrak{t}+v)_{E}=\langle\mu, \mathfrak{t}\rangle_{E}+\langle v, \mathfrak{D}\rangle_{E}, \quad \forall \mathfrak{D}+\mu, \mathfrak{t}+v \in \mathfrak{D} E \oplus \mathfrak{I} E,
$$

and \diamond is given by

$$
(\mathfrak{D}+\mu) \diamond(\mathfrak{r}+v)=[\mathfrak{D}, \mathfrak{r}]_{\mathfrak{D}}+\mathfrak{Z}_{\mathrm{D}} v-\mathfrak{\Omega}_{\mathrm{r}} \mu+\mathbb{d}\langle\mu, \mathfrak{r}\rangle_{E} .
$$

See [10] for more details.
Example 4. Consider the VB-CLWX 2-algebroid given in Proposition 3. The graded fat bundle is $\mathfrak{J} E_{-1} \oplus \mathfrak{J} E_{0}$. It follows that the graded jet bundle associated to a CLWX 2-algebroid is a $T^{*} M$-CLWX 2-algebroid. This is the higher analogue of the result that the jet bundle of a Courant algebroid is $T^{*} M$-Courant algebroid given in [11]. See also [24] for more details.

7. Constructions of Lie 3-algebras

As applications of E-CLWX 2-algebroids introduced in the last section, we construct Lie 3-algebras from Lie 3-algebras in this section. Let $\left(\mathfrak{g}_{-2}, \mathfrak{g}_{-1}, \mathfrak{g}_{0}, l_{1}, l_{2}, l_{3}, l_{4}\right)$ be a Lie 3 -algebra. By Theorem 5.5, the corresponding VB-CLWX 2-algebroid is given by

where $D_{-1}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0}^{*} \oplus \mathfrak{g}_{-2}^{*}$ and $D_{0}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}^{*} \oplus \mathfrak{g}_{-2}^{*}$.
By Theorem 6.3, we obtain:
Proposition 4. Let $\left(\mathfrak{g}_{-2}, \mathfrak{g}_{-1}, \mathfrak{g}_{0}, l_{1}, l_{2}, l_{3}, l_{4}\right)$ be a Lie 3-algebra. Then there is an E-CLWX 2algebroid $\left(\operatorname{Hom}\left(\mathfrak{g}_{0}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{-1}, \operatorname{Hom}\left(\mathfrak{g}_{-1}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{0}, \partial, \rho, \mathcal{S}, \diamond, \Omega\right)$, where for all $x^{i}, y^{i}, z^{i} \in \mathfrak{g}_{-i}, \phi^{i}, \psi^{i}, \varphi^{i} \in$ $\operatorname{Hom}\left(\mathfrak{g}_{-i}, \mathfrak{g}_{-2}\right), \partial: \operatorname{Hom}\left(\mathfrak{g}_{0}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{-1} \longrightarrow \operatorname{Hom}\left(\mathfrak{g}_{-1}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{0}$ is given by

$$
\begin{equation*}
\partial\left(\phi^{0}+x^{1}\right)=\phi^{0} \circ l_{1}+\left.l_{2}\left(x^{1}, \cdot\right)\right|_{g-1}+l_{1}\left(x^{1}\right), \tag{7.1}
\end{equation*}
$$

$\rho: \operatorname{Hom}\left(\mathfrak{g}_{-1}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{0} \longrightarrow \mathfrak{g l}\left(\mathfrak{g}_{-2}\right)$ is given by

$$
\begin{equation*}
\rho\left(\phi^{1}+x^{0}\right)=\phi^{1} \circ l_{1}+\left.l_{2}\left(x^{0}, \cdot\right)\right|_{\mathrm{g}-2}, \tag{7.2}
\end{equation*}
$$

the \mathfrak{g}_{-2}-valued pairing \mathcal{S} is given by

$$
\begin{equation*}
\mathcal{S}\left(\phi^{1}+x^{0}, \psi^{0}+y^{1}\right)=\phi^{1}\left(y^{1}\right)+\psi^{0}\left(x^{0}\right), \tag{7.3}
\end{equation*}
$$

the operation \diamond is given by

$$
\left\{\begin{array}{l}
\left(x^{0}+\psi^{1}\right) \diamond\left(y^{0}+\phi^{1}\right)=l_{2}\left(x^{0}, y^{0}\right)+\left.l_{3}\left(x^{0}, y^{0}, \cdot\right)\right|_{g_{-1}}+l_{2}\left(x^{0}, \phi^{1}(\cdot)\right)-\phi^{1} \circ l_{1} \circ \psi^{1} \tag{7.4}\\
\quad-\left.\phi^{1} \circ l_{2}\left(x^{0}, \cdot\right)\right|_{g_{-1}}+\left.\psi^{1} \circ l_{2}\left(y^{0}, \cdot\right)\right|_{\mathfrak{g}_{-1}}-l_{2}\left(y^{0}, \psi^{1}(\cdot)\right)+\psi^{1} \circ l_{1} \circ \phi^{1}, \\
\left(x^{0}+\psi^{1}\right) \diamond\left(y^{1}+\phi^{0}\right)=l_{2}\left(x^{0}, y^{1}\right)+\left.l_{3}\left(x^{0}, \cdot, y^{1}\right)\right|_{g_{0}}+l_{2}\left(x^{0}, \phi^{0}(\cdot)\right) \\
\quad-\left.\phi^{0} \circ l_{2}\left(x^{0}, \cdot\right)\right|_{g_{0}}-\left.\psi^{1} l_{2}\left(\cdot, y^{1}\right)\right|_{g_{0}}+\delta\left(\psi^{1}\left(y^{1}\right)\right)+\psi^{1} \circ l_{1} \circ \phi^{0}, \\
\left(y^{1}+\phi^{0}\right) \diamond\left(x^{0}+\psi^{1}\right)=l_{2}\left(y^{1}, x^{0}\right)-\left.l_{3}\left(x^{0} \cdot \cdot, y^{1}\right)\right|_{\mathfrak{g}_{0}}-l_{2}\left(x^{0}, \phi^{0}(\cdot)\right) \\
\quad+\left.\phi^{0} \circ l_{2}\left(x^{0}, \cdot\right)\right|_{g_{0}}+\delta\left(\phi^{0}\left(x^{0}\right)\right)+\left.\psi^{1} l_{2}\left(\cdot, \cdot y^{1}\right)\right|_{g_{0}}-\psi^{1} \circ l_{1} \circ \phi^{0},
\end{array}\right.
$$

and Ω is given by

$$
\begin{align*}
& \Omega\left(\phi^{1}+x^{0}, \psi^{1}+y^{0}+\varphi^{1}+z^{0}\right)=l_{3}\left(x^{0}, y^{0}, z^{0}\right)+l_{4}\left(x^{0}, y^{0}, z^{0}, \cdot\right) \\
& \quad-\left.\varphi^{1} \circ l_{3}\left(x^{0}, y^{0}, \cdot\right)\right|_{9_{0}}-\left.\phi^{1} \circ l_{3}\left(z^{0}, x^{0}, \cdot\right)\right|_{9_{0}}-\left.\psi^{1} \circ l_{3}\left(y^{0}, z^{0}, \cdot\right)\right|_{9_{0}} . \tag{7.5}
\end{align*}
$$

By (7.2), it is straightforward to deduce that the corresponding $\mathcal{D}: \mathfrak{g}_{-2} \longrightarrow \operatorname{Hom}\left(\mathfrak{g}_{0}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{-1}$ is given by

$$
\begin{equation*}
\mathcal{D}\left(x^{2}\right)=l_{2}\left(\cdot, x^{2}\right)+l_{1}\left(x^{2}\right) \tag{7.6}
\end{equation*}
$$

Then by Theorem 6.2, we obtain:

Proposition 5. Let $\left(\mathfrak{g}_{-2}, \mathfrak{g}_{-1}, \mathfrak{g}_{0}, l_{1}, l_{2}, l_{3}, l_{4}\right)$ be a Lie 3-algebra. Then there is a Lie 3-algebra $\left(\overline{\mathfrak{g}}_{-2}, \overline{\mathfrak{g}}_{-1}, \overline{\mathfrak{g}}_{0}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}, \mathfrak{l}_{4}\right)$, where $\overline{\mathfrak{g}}_{-2}=\mathfrak{g}_{-2}, \overline{\mathfrak{g}}_{-1}=\operatorname{Hom}\left(\mathfrak{g}_{0}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{-1}, \overline{\mathfrak{g}}_{0}=\operatorname{Hom}\left(\mathfrak{g}_{-1}, \mathfrak{g}_{-2}\right) \oplus \mathfrak{g}_{0}$, and I_{i} are given by

$$
\begin{aligned}
\mathrm{I}_{1}\left(x^{2}\right) & =\mathcal{D}\left(x^{2}\right), & & \forall x^{2} \in \mathfrak{g}_{-2}, \\
\mathrm{I}_{1}\left(\phi^{0}+x^{1}\right) & =\phi^{0} \circ l_{1}+\left.l_{2}\left(x^{1}, \cdot\right)\right|_{\mathfrak{g}_{-1}}+l_{1}\left(x^{1}\right), & & \forall \phi^{0}+x^{1} \in \overline{\mathfrak{g}}_{-1}, \\
\mathrm{I}_{2}\left(e_{1}^{0}, e_{2}^{0}\right) & =e_{1}^{0} \diamond e_{2}^{0}, & & \forall e_{1}^{0}, e_{2}^{0} \in \overline{\mathfrak{g}}_{0}, \\
\mathrm{I}_{2}\left(e^{0}, e^{1}\right) & =\frac{1}{2}\left(e^{0} \diamond e^{1}-e^{1} \diamond e^{0}\right), & & \forall e^{0} \in \overline{\mathfrak{g}}_{0}, e^{1} \in \overline{\mathfrak{g}}_{-1}, \\
\mathrm{I}_{2}\left(e^{0}, x^{2}\right) & =\frac{1}{2} \mathcal{S}\left(e^{0}, \mathcal{D} x^{2}\right), & & \forall e^{0} \in \overline{\mathfrak{g}}_{0}, x^{2}, e_{2}^{1} \in \overline{\mathfrak{g}}_{-1}, \\
\mathrm{I}_{2}\left(e_{1}^{1}, e_{2}^{1}\right) & =0, & & \forall e_{1}^{0}, e_{2}^{0}, e_{3}^{0} \in \overline{\mathfrak{g}}_{0}, \\
\mathrm{I}_{3}\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right) & =\Omega\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right), & & \forall e_{1}^{0}, e_{2}^{0} \in \overline{\mathfrak{g}}_{0}, e^{1} \in \overline{\mathfrak{g}}_{-1}, \\
\mathrm{I}_{3}\left(e_{1}^{0}, e_{2}^{0}, e^{1}\right) & =-T\left(e_{1}^{0}, e_{2}^{0}, e^{1}\right), & & \forall e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0} \in \overline{\mathfrak{g}}_{0},
\end{aligned}
$$

where the operation $\mathcal{D}, \diamond, \Omega$ are given by (7.6), (7.4), (7.5) respectively, $T: \overline{\mathfrak{g}}_{0} \times \overline{\mathfrak{g}}_{0} \times \overline{\mathfrak{g}}_{-1} \longrightarrow \mathfrak{g}_{-2}$ is given by

$$
T\left(e_{1}^{0}, e_{2}^{0}, e^{1}\right)=\frac{1}{6}\left(\mathcal{S}\left(e_{1}^{0}, \mathrm{l}_{2}\left(e_{2}^{0}, e^{1}\right)\right)+\mathcal{S}\left(e^{1}, \mathrm{I}_{2}\left(e_{1}^{0}, e_{2}^{0}\right)\right)+\mathcal{S}\left(e_{2}^{0}, \mathrm{l}_{2}\left(e^{1}, e_{1}^{0}\right)\right)\right)
$$

and $\bar{\Omega}: \wedge^{4} \overline{\mathfrak{g}}_{0} \longrightarrow \mathfrak{g}_{-2}$ is given by

$$
\bar{\Omega}\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right)=\mathcal{S}\left(\Omega\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right), e_{4}^{0}\right)
$$

By Proposition 5, we can give interesting examples of Lie 3-algebras.
Example 5. We view a 3-term complex of vector spaces $V_{-2} \xrightarrow{l_{1}} V_{-1} \xrightarrow{l_{1}} V_{0}$ as an abelian Lie 3-algebra. By Proposition 5, we obtain the Lie 3-algebra

$$
\left(V_{-2}, \operatorname{Hom}\left(V_{0}, V_{-2}\right) \oplus V_{-1}, \operatorname{Hom}\left(V_{-1}, V_{-2}\right) \oplus V_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}=0\right),
$$

where $\mathrm{I}_{i}, i=1,2,3$ are given by

$$
\begin{aligned}
\mathrm{I}_{1}\left(x^{2}\right)= & l_{1}\left(x^{2}\right), \\
\mathrm{I}_{1}\left(\phi^{0}+y^{1}\right)= & \phi^{0} \circ l_{1}+l_{1}\left(y^{1}\right), \\
\mathrm{I}_{2}\left(\psi^{1}+x^{0}, \phi^{1}+y^{0}\right)= & \psi^{1} \circ l_{1} \circ \phi^{1}-\phi^{1} \circ l_{1} \circ \psi^{1}, \\
\mathrm{I}_{2}\left(\psi^{1}+x^{0}, \phi^{0}+y^{1}\right)= & \frac{1}{2} l_{1}\left(\psi^{1}\left(y^{1}\right)-\phi^{0}\left(x^{0}\right)\right)+\psi^{1} \circ l_{1} \circ \phi^{0}, \\
\mathrm{I}_{2}\left(\psi^{1}+x^{0}, x^{2}\right)= & \frac{1}{2} \psi^{1}\left(l_{1}\left(x^{2}\right)\right), \\
\mathrm{I}_{2}\left(\psi^{0}+x^{1}, \phi^{0}+y^{1}\right)= & 0, \\
\mathrm{I}_{3}\left(\psi^{1}+x^{0}, \phi^{1}+y^{0}, \varphi^{1}+z^{0}\right)= & 0, \\
\mathrm{I}_{3}\left(\psi^{1}+x^{0}, \phi^{1}+y^{0}, \varphi^{0}+z^{1}\right)= & -\frac{1}{4}\left(\psi^{1} \circ l_{1} \circ \phi^{1}\left(z^{1}\right)-\phi^{1} \circ l_{1} \circ \psi^{1}\left(z^{1}\right)\right. \\
& \left.-\psi^{1} \circ l_{1} \circ \varphi^{0}\left(y^{0}\right)+\phi^{1} \circ l_{1} \circ \varphi^{0}\left(x^{0}\right)\right),
\end{aligned}
$$

for all $x^{2} \in V_{-2}, \psi^{0}+x^{1}, \phi^{0}+y^{1}, \varphi^{0}+z^{1} \in \operatorname{Hom}\left(V_{0}, V_{-2}\right) \oplus V_{-1}, \psi^{1}+x^{0}, \phi^{1}+y^{0}, \varphi^{1}+z^{0} \in \operatorname{Hom}\left(V_{-1}, V_{-2}\right) \oplus V_{0}$.

Example 6. (Higher analogue of the Lie 2-algebra of string type)

A Lie 2-algebra ($\mathfrak{g}_{-1}, \mathfrak{g}_{0}, \widetilde{l_{1}}, \widetilde{l_{2}}, \widetilde{l_{3}}$) gives rise to a Lie 3-algebra $\left(\mathbb{R}, \mathfrak{g}_{-1}, \mathfrak{g}_{0}, l_{1}, l_{2}, l_{3}, l_{4}=0\right)$ naturally, where $l_{i}, i=1,2,3$ is given by

$$
l_{1}(r)=0, \quad l_{1}\left(x^{1}\right)=\widetilde{l_{1}}\left(x^{1}\right)
$$

$$
\begin{aligned}
l_{2}\left(x^{0}, y^{0}\right) & =\widetilde{l_{2}}\left(x^{0}, y^{0}\right), l_{2}\left(x^{0}, y^{1}\right)=\widetilde{l_{2}}\left(x^{0}, y^{1}\right), l_{2}\left(x^{0}, r\right)=0, l_{2}\left(x^{1}, y^{1}\right)=0, \\
l_{3}\left(x^{0}, y^{0}, z^{0}\right) & =\widetilde{l_{3}}\left(x^{0}, y^{0}, z^{0}\right), \quad l_{3}\left(x^{0}, y^{0}, z^{1}\right)=0,
\end{aligned}
$$

for all $x^{0}, y^{0}, z^{0} \in \mathfrak{g}_{0}, x^{1}, y^{1}, z^{1} \in \mathfrak{g}_{-1}$, and $r, s \in \mathbb{R}$. By Proposition 5, we obtain the Lie 3-algebra $\left(\mathbb{R}, \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0}^{*}, \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}^{*}, \mathrm{I}_{1}, \mathfrak{l}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}\right)$, where $\mathfrak{I}_{i}, i=1,2,3,4$ are given by

$$
\begin{aligned}
& \mathrm{l}_{1}(r)=0, \\
& \mathrm{I}_{1}\left(x^{1}+\alpha^{0}\right)=l_{1}\left(x^{1}\right)+l_{1}^{*}\left(\alpha^{0}\right), \\
& \mathrm{I}_{2}\left(x^{0}+\alpha^{1}, y^{0}+\beta^{1}\right)=l_{2}\left(x^{0}, y^{0}\right)+\operatorname{ad}_{x^{0}}^{0} \beta^{1}-\operatorname{ad}_{y^{0}}^{0} \alpha^{1}, \\
& \mathrm{I}_{2}\left(x^{0}+\alpha^{1}, y^{1}+\beta^{0}\right)=l_{2}\left(x^{0}, y^{1}\right)+\operatorname{ad}_{x^{0}}^{0} \beta^{0}-\operatorname{ad}_{y^{1}}{ }^{1} \alpha^{1} \text {, } \\
& \mathrm{I}_{2}\left(x^{1}+\alpha^{0}, y^{1}+\beta^{0}\right)=0, \\
& \mathrm{I}_{2}\left(x^{0}+\alpha^{1}, r\right)=0, \\
& \mathfrak{I}_{3}\left(x^{0}+\alpha^{1}, y^{0}+\beta^{1}, z^{0}+\zeta^{1}\right)=l_{3}\left(x^{0}, y^{0}, z^{0}\right)+\operatorname{ad}_{x^{0}, y^{0}}^{3^{*}} \zeta^{1}+\operatorname{ad}_{y^{0}, z^{0}}^{3^{*}} \alpha^{1} \\
& +\mathrm{ad}_{z^{0}, x^{0}}^{3} \beta^{1} \text {, } \\
& \mathfrak{I}_{3}\left(x^{0}+\alpha^{1}, y^{0}+\beta^{1}, z^{1}+\zeta^{0}\right)=\frac{1}{2}\left(\left\langle\alpha^{1}, l_{2}\left(y^{0}, z^{1}\right)\right\rangle+\left\langle\beta^{1}, l_{2}\left(z^{1}, x^{0}\right)\right\rangle\right. \\
& \left.+\left\langle\zeta^{0}, l_{2}\left(x^{0}, y^{0}\right)\right\rangle\right), \\
& \mathrm{I}_{4}\left(x^{0}+\alpha^{1}, y^{0}+\beta^{1}, z^{0}+\zeta^{1}, u^{0}+\gamma^{1}\right)=\left\langle\gamma^{1}, l_{3}\left(x^{0}, y^{0}, z^{0}\right)\right\rangle-\left\langle\zeta^{1}, l_{3}\left(x^{0}, y^{0}, u^{0}\right)\right\rangle \\
& -\left\langle\alpha^{1}, l_{3}\left(y^{0}, z^{0}, u^{0}\right)\right\rangle-\left\langle\beta^{1}, l_{3}\left(z^{0}, x^{0}, u^{0}\right)\right\rangle
\end{aligned}
$$

for all $x^{0}, y^{0}, z^{0}, u^{0} \in \mathfrak{g}_{0}, x^{1}, y^{1}, z^{1} \in \mathfrak{g}_{-1}, \alpha^{1}, \beta^{1}, \zeta^{1}, \gamma^{1} \in \mathfrak{g}_{-1}^{*}, \alpha^{0}, \beta^{0} \in \mathfrak{g}_{0}^{*}$, where ad ${ }_{x^{0}}^{0 *}: \mathfrak{g}_{-i}^{*} \longrightarrow \mathfrak{g}_{-i}^{*}$, $\operatorname{ad}^{1^{*}}{ }^{*}: \mathfrak{g}_{-1}^{*} \longrightarrow \mathfrak{g}_{0}^{*}$ and ad $^{3^{*}, y^{*}}: \mathfrak{g}_{-1}^{*} \longrightarrow \mathfrak{g}_{0}^{*}$ are defined respectively by

$$
\begin{aligned}
& \left\langle\operatorname{ad}^{0^{*}{ }^{0}} \alpha^{1}, x^{1}\right\rangle=-\left\langle\alpha^{1}, l_{2}\left(x^{0}, x^{1}\right)\right\rangle, \quad\left\langle\operatorname{ad}^{0^{*}}{ }_{x^{0}} \alpha^{0}, y^{0}\right\rangle=-\left\langle\alpha^{0}, l_{2}\left(x^{0}, y^{0}\right)\right\rangle, \\
& \left\langle\operatorname{ad}^{1^{*}}{ }_{x^{1}} \alpha^{1}, y^{0}\right\rangle=-\left\langle\alpha^{1}, l_{2}\left(x^{1}, y^{0}\right)\right\rangle,\left\langle\left\langle\operatorname{ad}^{3^{*}}{ }_{x^{0}, y^{0}} \alpha^{1}, z^{0}\right\rangle=-\left\langle\alpha^{1}, l_{3}\left(x^{0}, y^{0}, z^{0}\right)\right\rangle .\right.
\end{aligned}
$$

Remark 4. For any Lie algebra $\left(\mathfrak{h},[\cdot, \cdot]_{\mathfrak{h}}\right)$, we have the semidirect product Lie algebra $\left(\mathfrak{h} \ltimes_{\mathrm{ad}^{*}} \mathfrak{h}^{*},[\cdot, \cdot]_{\mathrm{ad}^{*}}\right)$, which is a quadratic Lie algebra naturally. Consequently, one can construct the corresponding Lie 2-algebra $\left(\mathbb{R}, \mathfrak{h} \ltimes_{\mathrm{ad}^{*}} \mathfrak{h}^{*}, l_{1}=0, l_{2}=[\cdot, \cdot]_{\mathrm{ad}^{*}}, l_{3}\right)$, where l_{3} is given by

$$
l_{3}(x+\alpha, y+\beta, z+\gamma)=\left\langle\gamma,[x, y]_{\mathfrak{h}}\right\rangle+\left\langle\beta,[z, x]_{\mathfrak{h}}\right\rangle+\left\langle\alpha,[y, z]_{\mathfrak{h}}\right\rangle, \quad \forall x, y, z \in \mathfrak{h}, \alpha, \beta, \gamma \in \mathfrak{h}^{*} .
$$

This Lie 2-algebra is called the Lie 2-algebra of string type in [51]. On the other hand, associated to a Lie 2-algebra $\left(\mathfrak{g}_{-1}, \mathfrak{g}_{0}, \widetilde{l_{1}}, \widetilde{l_{2}}, \widetilde{l_{3}}\right)$, there is a naturally a quadratic Lie 2-algebra structure on $\left(\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0}^{*}\right) \oplus\left(\mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}^{*}\right)$ ([34, Example 4.8]). Thus, the Lie 3-algebra given in the above example can be viewed as the higher analogue of the Lie 2-algebra of string type.

Motivated by the above example, we show that one can obtain a Lie 3-algebra associated to a quadratic Lie 2-algebra in the sequel. This result is the higher analogue of the fact that there is a Lie 2-algebra, called the string Lie 2-algebra, associated to a quadratic Lie algebra.

A quadratic Lie 2-algebra is a Lie 2-algebra $\left(\mathfrak{g}_{-1}, \mathfrak{g}_{0}, l_{1}, l_{2}, l_{3}\right)$ equipped with a degree 1 graded symmetric nondegenerate bilinear form S which induces an isomorphism between \mathfrak{g}_{-1} and \mathfrak{g}_{0}^{*}, such that the following invariant conditions hold:

$$
\begin{equation*}
S\left(l_{1}\left(x^{1}\right), y^{1}\right)=S\left(l_{1}\left(y^{1}\right), x^{1}\right), \tag{7.7}
\end{equation*}
$$

$$
\begin{align*}
S\left(l_{2}\left(x^{0}, y^{0}\right), z^{1}\right) & =-S\left(l_{2}\left(x^{0}, z^{1}\right), y^{0}\right), \tag{7.8}\\
S\left(l_{3}\left(x^{0}, y^{0}, z^{0}\right), u^{0}\right) & =-S\left(l_{3}\left(x^{0}, y^{0}, u^{0}\right), z^{0}\right), \tag{7.9}
\end{align*}
$$

for all $x^{0}, y^{0}, z^{0}, u^{0} \in \mathfrak{g}_{0}, x^{1}, y^{1} \in \mathfrak{g}_{-1}$.
Let $\left(g_{-1}, \mathfrak{g}_{0}, l_{1}, l_{2}, l_{3}, S\right)$ be a quadratic Lie 2 -algebra. On the 3-term complex of vector spaces $\mathbb{R} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0}$, where \mathbb{R} is of degree -2 , we define $\mathfrak{I}_{i}, i=1,2,3,4$, by

$$
\left\{\begin{align*}
\mathfrak{I}_{1}(r) & =0, & \mathfrak{I}_{1}\left(x^{1}\right) & =l_{1}\left(x^{1}\right), \tag{7.10}\\
\mathfrak{I}_{2}\left(x^{0}, y^{0}\right) & =l_{2}\left(x^{0}, y^{0}\right), & \mathfrak{I}_{2}\left(x^{0}, y^{1}\right) & =l_{2}\left(x^{0}, y^{1}\right), \\
\mathfrak{I}_{2}\left(x^{0}, r\right) & =0, & \mathfrak{I}_{2}\left(x^{1}, y^{1}\right) & =0, \\
\mathfrak{I}_{3}\left(x^{0}, y^{0}, z^{0}\right) & =l_{3}\left(x^{0}, y^{0}, z^{0}\right), & \mathfrak{I}_{3}\left(x^{0}, y^{0}, z^{1}\right) & =\frac{1}{2} S\left(z^{1}, l_{2}\left(x^{0}, y^{0}\right)\right), \\
\mathfrak{I}_{4}\left(x^{0}, y^{0}, z^{0}, u^{0}\right) & =S\left(l_{3}\left(x^{0}, y^{0}, z^{0}\right), u^{0}\right), & &
\end{align*}\right.
$$

for all $x^{0}, y^{0}, z^{0}, u^{0} \in \mathfrak{g}_{0}, x^{1}, y^{1}, z^{1} \in \mathfrak{g}_{-1}$ and $r \in \mathbb{R}$.
Theorem 7.1. With above notations, $\left(\mathbb{R}, \mathfrak{g}_{-1}, \mathfrak{g}_{0}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{3}, \mathrm{I}_{4}\right)$ is a Lie 3-algebra, called the higher analogue of the string Lie 2-algebra.

Proof. It follows from direct verification of the coherence conditions for I_{3} and I_{4} using the invariant conditions (7.7)-(7.9). We omit details.

References

1. C. A. Abad, M. Crainic, Representations up to homotopy of Lie algebroids, J. Reine. Angew. Math., 663 (2012), 91-126. https://doi.org/10.1515/CRELLE. 2011.095
2. C. A. bad, M. Crainic, Representations up to homotopy and Bott's spectral sequence for Lie groupoids, Adv. Math., 248 (2013), 416-452. https://doi.org/10.1016/j.aim.2012.12.022
3. M. Ammar, N. Poncin, Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2 n$-ary Graded and Homotopy Algebras, Ann. Inst. Fourier (Grenoble), 60 (2010), 355-387. https://doi.org/10.5802/aif. 2525
4. J. C. Baez, A. S. Crans, Higher-Dimensional Algebra VI: Lie 2-Algebras, Theory. Appl. Categ., 12 (2004), 492-528.
5. G. Bonavolontà, N. Poncin, On the category of Lie n-algebroids, J. Geom. Phys., 73 (2013), 70-90. https://doi.org/10.1016/j.geomphys.2013.05.004
6. P. Bressler, The first Pontryagin class, Compos. Math., 143 (2007), 1127-1163. https://doi.org/10.1112/S0010437X07002710
7. H. Bursztyn, A. Cabrera, M. del Hoyo, Vector bundles over Lie groupoids and algebroids. Adv. Math., 290 (2016), 163-207. https://doi.org/10.1016/j.aim.2015.11.044
8. H. Bursztyn, G. Cavalcanti, M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Adv. Math., 211 (2007), 726-765. https://doi.org/10.1016/j.aim.2006.09.008
9. H. Bursztyn, D. Iglesias Ponte, P. Severa, Courant morphisms and moment maps, Math. Res. Lett., 16 (2009), 215-232. https://doi.org/10.4310/MRL.2009.v16.n2.a2
10. Z. Chen, Z. J. Liu, Omni-Lie algebroids, J. Geom. Phys., 60 (2010),799-808. https://doi.org/10.1016/j.geomphys.2010.01.007
11. Z. Chen, Z. J. Liu, Y. Sheng, E-Courant algebroids, Int. Math. Res. Notices., 22(2010), 4334-4376. https://doi.org/10.1093/imrn/rnq053
12. Z. Chen, Y. Sheng, Z. Liu, On Double Vector Bundles, Acta. Math. Sinica., 30, (2014), 1655-1673. https://doi.org/10.1007/s10114-014-2412-4
13. Z. Chen, M. Stiénon, P. Xu, On regular Courant algebroids, J. Symplectic. Geom., 11(2013),1-24. https://doi.org/10.4310/JSG.2013.v11.n1.a1
14. F. del Carpio-Marek, Geometric structures on degree 2 manifolds, PhD thesis, IMPA, Rio de Janeiro, 2015.
15. T. Drummond, M. Jotz Lean, C. Ortiz, VB-algebroid morphisms and representations up to homotopy, Diff. Geom. Appl., 40 (2015), 332-357. https://doi.org/10.1016/j.difgeo.2015.03.005
16. K. Grabowska, J. Grabowski, On n-tuple principal bundles, Int.J.Geom.Methods. Mod.Phys., 15 (2018), 1850211. https://doi.org/10.1142/S0219887818502110
17. M. Gualtieri, Generalized complex geometry, Ann.of. Math., 174 (2011), 75-123. https://doi.org/10.4007/annals.2011.174.1.3
18. A. Gracia-Saz, M. Jotz Lean, K. C. H. Mackenzie, R. Mehta, Double Lie algebroids and representations up to homotopy, J. Homotopy. Relat. Struct., 13 (2018), 287-319. https://doi.org/10.1007/s40062-017-0183-1
19. A. Gracia-Saz, R. A. Mehta, Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math., 223 (2010), 1236-1275. https://doi.org/10.1016/j.aim.2009.09.010
20. A. Gracia-Saz, R. A. Mehta, VB-groupoids and representation theory of Lie groupoids, J. Symplectic. Geom., 15 (2017), 741-783. https://doi.org/10.4310/JSG.2017.v15.n3.a5
21. M. Grutzmann, H-twisted Lie algebroids. J. Geom. Phys., 61 (2011), 476-484. https://doi.org/10.1016/j.geomphys.2010.10.016
22. N. J. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math., 54 (2003), 281-308. https://doi.org/10.1093/qmath/hag025
23. N. Ikeda, K. Uchino, QP-structures of degree 3 and 4D topological field theory, Comm. Math. Phys., 303 (2011),317-330. https://doi.org/10.1007/s00220-011-1194-0
24. M. Jotz Lean, N-manifolds of degree 2 and metric double vector bundles, arXiv:1504.00880.
25. M. Jotz Lean, Lie 2-algebroids and matched pairs of 2-representations-a geometric approach, Pacific. J. Math., 301 (2019),143-188. https://doi.org/10.2140/pjm.2019.301.143
26. M. Jotz Lean, The geometrization of N-manifolds of degree 2, J. Geom. Phys., 133 (2018), 113-140. https://doi.org/10.1016/j.geomphys.2018.07.007
27. Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, 46 (1996), 1243-1274. https://doi.org/10.5802/aif. 1547
28. T. Lada, M. Markl, Strongly homotopy Lie algebras, Comm. Algebra., 23 (1995), 2147-2161. https://doi.org/10.1080/00927879508825335
29. T. Lada, J. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys., 32(1993), 1087-1103. https://doi.org/10.1007/BF00671791
30. H. Lang, Y. Li, Z. Liu, Double principal bundles, J. Geom. Phys., 170 (2021), 104354. https://doi.org/10.1016/j.geomphys.2021.104354
31. H. Lang, Y. Sheng, A. Wade, VB-Courant algebroids, E-Courant algebroids and generalized geometry, Canadian, Math. Bulletin., 61 (2018), 588-607. https://doi.org/10.4153/CMB-2017-079-7
32. D. Li-Bland, $\mathcal{L \mathcal { A }}$-Courant algebroids and their applications, thesis, University of Toronto, 2012, arXiv:1204.2796v1.
33. D. Li-Bland, E. Meinrenken, Courant algebroids and Poisson geometry, Int. Math. Res. Not., 11(2009), 2106-2145. https://doi.org/10.1093/imrn/rnp048
34. J. Liu, Y. Sheng, QP-structures of degree 3 and CLWX 2-algebroids, J. Symplectic. Geom., 17(2019), 1853-1891. https://doi.org/10.4310/JSG.2019.v17.n6.a8
35. Z. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom., 45(1997), 547-574. https://doi.org/10.4310/jdg/1214459842
36. M. Livernet, Homologie des algèbres stables de matrices sur une A_{∞}-algèbre, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 113-116. https://doi.org/10.1016/S0764-4442(99)80472-8
37. K. C. H. Mackenzie, Double Lie algebroids and second-order geometry. I, Adv. Math., 94 (1992), 180-239. https://doi.org/10.1016/0001-8708(92)90036-K
38. K. C. H. Mackenzie, Double Lie algebroids and the double of a Lie bialgebroid, arXiv:math.DG/9808081.
39. K. C. H. Mackenzie, Double Lie algebroids and second-order geometry. II, Adv. Math., 154 (2000), 46-75. https://doi.org/10.1006/aima.1999.1892
40. K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, volume 213 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005.
41. K. C. H. Mackenzie, Ehresmann doubles and Drindel'd doubles for Lie algebroids and Lie bialgebroids, J. Reine Angew. Math., 658 (2011), 193-245. https://doi.org/10.1515/crelle. 2011.092
42. K. C. H. Mackenzie, P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415-452. https://doi.org/10.1215/S0012-7094-94-07318-3
43. R. Mehta, X. Tang, From double Lie groupoids to local Lie 2-groupoids, Bull. Braz. Math. Soc., 42 (2011), 651-681. https://doi.org/10.1007/s00574-011-0033-4
44. D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, PhD thesis, UC Berkeley, 1999.
45. D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math., 315 (2002), 169-185. https://doi.org/10.1090/conm/315/05479
46. D. Roytenberg, AKSZ-BV formalism and Courant algebroid-induced topological field theories, Lett. Math. Phys., 79 (2007), 143-159. https://doi.org/10.1007/s11005-006-0134-y
47. P. Severa, Poisson-Lie T-duality and Courant algebroids, Lett. Math. Phys., 105 (2015), 1689-1701. https://doi.org/10.1007/s11005-015-0796-4
48. P. Severa, F. Valach, Ricci flow, Courant algebroids, and renormalization of Poisson-Lie T-duality, Lett. Math. Phys., 107 (2017), 1823-1835. https://doi.org/10.1007/s11005-017-0968-5
49. Y. Sheng, The first Pontryagin class of a quadratic Lie 2-algebroid, Comm. Math. Phys., 362 (2018), 689-716. https://doi.org/10.1007/s00220-018-3220-y
50. Y. Sheng, Z. Liu, Leibniz 2-algebras and twisted Courant algebroids, Comm. Algebra., 41 (2013), 1929-1953. https://doi.org/10.1080/00927872.2011.608201
51. Y. Sheng, C. Zhu, Semidirect products of representations up to homotopy, Pacific J. Math., 249 (2001), 211-236. https://doi.org/10.2140/pjm.2011.249.211
52. Y. Sheng, C. Zhu, Higher extensions of Lie algebroids, Comm. Contemp. Math., 19 (2017), 1650034. https://doi.org/10.1142/S0219199716500346
53. T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra., 202 (2005), 133-153. https://doi.org/10.1016/j.jpaa.2005.01.010
54. T. Voronov, Q-manifolds and Higher Analogs of Lie Algebroids, Amer. Inst. Phys., 1307 (2010), 191-202. https://doi.org/10.1063/1.3527417
55. T. Voronov, Q-manifolds and Mackenzie theory, Comm. Math. Phys., 315 (2012), 279-310. https://doi.org/10.1007/s00220-012-1568-y

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

