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Abstract: In this paper, first we introduce the notion of a VB-Lie 2-algebroid, which can be viewed as
the categorification of a VB-Lie algebroid. The tangent prolongation of a Lie 2-algebroid is a VB-Lie
2-algebroid naturally. We show that after choosing a splitting, there is a one-to-one correspondence
between VB-Lie 2-algebroids and flat superconnections of a Lie 2-algebroid on a 3-term complex of
vector bundles. Then we introduce the notion of a VB-CLWX 2-algebroid, which can be viewed as
the categorification of a VB-Courant algebroid. We show that there is a one-to-one correspondence
between split Lie 3-algebroids and split VB-CLWX 2-algebroids. Finally, we introduce the notion of
an E-CLWX 2-algebroid and show that associated to a VB-CLWX 2-algebroid, there is an E-CLWX
2-algebroid structure on the graded fat bundle naturally. By this result, we give a construction of a
new Lie 3-algebra from a given Lie 3-algebra, which provides interesting examples of Lie 3-algebras
including the higher analogue of the string Lie 2-algebra.
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1. Introduction

In this paper, we study the categorification of VB-Lie algebroids and VB-Courant algebroids, and
establish the relations between these higher structures and super representations of Lie 2-algebroids,
tangent prolongations of Lie 2-algebroids, N-manifolds of degree 3, tangent prolongations of CLWX
2-algebroids and higher analogues of the string Lie 2-algebra.

1.1. Lie n-algebroids, Courant algebroids and CLWX 2-algebroids

An NQ-manifold is an N-manifoldM together with a degree 1 vector field Q satisfying [Q,Q] = 0.
It is well known that a degree 1 NQ manifold corresponds to a Lie algebroid. Thus, people usually think
that
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An NQ-manifold of degree n corresponds to a Lie n-algebroid.

Some work in this direction appeared in [54]. Strictly speaking, a Lie n-algebroid gives arise to an
NQ-manifold only after a degree 1 shift, just as a Lie algebroid A corresponds to a degree 1 NQ manifold
A[1]. To make the shifting manifest, and to present a Lie n-algebroid in a way more used to differential
geometers, that is, to use the language of vector bundles, the authors introduced the notion of a split
Lie n-algebroid in [52] to study the integration of a Courant algebroid. The equivalence between the
category of split NQ manifolds and the category of split Lie n-Lie algebroids was proved in [5]. The
language of split Lie n-algebroids has slowly become a useful tool for differential geometers to study
problems related to NQ-manifolds ([14, 24, 25]). Since Lie 2-algebras are the categorification of Lie
algebras ([4]), we will view Lie 2-algebroids as the categorification of Lie algebroids.

To study the double of a Lie bialgebroid ([42]), Liu, Weinstein and Xu introduced the notion of a
Courant algebroid in [35]. See [44] for an alternative definition. There are many important applications
of Courant algebroids, e.g. in generalized complex geometry ([8, 17, 22]), Poisson geometry ([33]),
moment maps ([9]), Poisson-Lie T-duality ([47, 48]) and topological field theory ([46]). In [34], the
authors introduced the notion of a CLWX 2-algebroid (named after Courant-Liu-Weinstein-Xu), which
can be viewed as the categorification of a Courant algebroid. Furthermore, CLWX 2-algebroids are
in one-to-one correspondence with QP-manifolds (symplectic NQ-manifolds) of degree 3, and have
applications in the fields theory. See [23] for more details. The underlying algebraic structure of a
CLWX 2-algebroid is a Leibniz 2-algebra, or a Lie 3-algebra. There is also a close relationship between
CLWX 2-algebroids and the first Pontryagin classes of quadratic Lie 2-algebroids, which are represented
by closed 5-forms. More precisely, as the higher analogue of the results given in [6, 13], it was proved
in [49] that the first Pontryagin class of a quadratic Lie algebroid is the obstruction of the existence of a
CLWX-extension.

1.2. VB-Lie algebroids and VB-Courant algebroids

Double structures in geometry can be traced back to the work of Ehresmann on connection theory,
and have been found many applications in Poisson geometry. See [40] for more details. We use the word
“doublization” to indicate putting geometric structures on double vector bundles in the sequel. In [19],
Gracia-Saz and Mehta introduced the notion of a VB-Lie algebroid, which is equivalent to Mackenzie’s
LA-vector bundle ([38]). A VB-Lie algebroid is a Lie algebroid object in the category of vector bundles
and one important property is that it is closely related to superconnection (also called representation up
to homotopy [1, 2]) of a Lie algebroid on a 2-term complex of vector bundles. Recently, the relation
between VB-algebroid morphisms and representations up to homotopy were studied in [15].

In his PhD thesis [32], Li-Bland introduced the notion of a VB-Courant algebroid which is the dou-
blization of a Courant algebroid [35], and established abstract correspondence between NQ-manifolds
of degree 2 and VB-Courant algebroids. Then in [24], Jotz Lean provided a more concrete description
of the equivalence between the category of split Lie 2-algebroids and the category of decomposed
VB-Courant algebroids.

Double structures, such as double principle (vector) bundles ([12, 16, 26, 30]), double Lie algebroids
([18, 37, 38, 39, 41, 55]), double Lie groupoids ([43]), VB-Lie algebroids ([7, 19]) and VB-Lie groupoids
([7, 20]) became more and more important recently and are widely studied. In particular, the Lie theory
relating VB-Lie algebroids and VB-Lie groupoids, i.e. their relation via differentiation and integration,
is established in [7].
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1.3. Summary of the results and outline of the paper
In this paper, we combine the aforementioned higher structures and double structures. First we

introduce the notion of a VB-Lie 2-algebroid, which can be viewed as the categorification of a VB-Lie
algebroid, or doublization of a Lie 2-algebroid:

Lie 2-algebroid
doublization

))
Lie algebroid

categorification
66

doublization ((

VB-Lie 2-algebroid.

VB-Lie algebroid

categorification
55

We show that the tangent prolongation of a Lie 2-algebroid is a VB-Lie 2-algebroid and the graded
fat bundle associated to a VB-Lie 2-algebroid is Lie 2-algebroid. Consequently, the graded jet bundle
of a Lie 2-algebroid is also a Lie 2-algebroid. In [19], the authors showed that a VB-Lie algebroid
is equivalent to a flat superconnection (representation up to homotopy ([1])) of a Lie algebroid on a
2-term complex of vector bundles after choosing a splitting. Now for a VB-Lie 2-algebroid, we establish
a higher analogous result, namely, we show that after choosing a splitting, it is equivalent to a flat
superconnection of a Lie 2-algebroid on a 3-term complex of vector bundles.

Then we introduce the notion of a VB-CLWX 2-algebroid, which can be viewed as both the dou-
blization of a CLWX 2-algebroid and the categorification of a VB-Courant algebroid. More importantly,
we show that after choosing a splitting, there is a one-to-one correspondence between VB-CLWX 2-
algebroids and split Lie 3-algebroids (NQ-manifolds of degree 3). The tangent prolongation of a CLWX
2-algebroid is a VB-CLWX 2-algebroid naturally. We go on defining E-CLWX 2-algebroid, which can
be viewed as the categorification of an E-Courant algebroid introduced in [11]. As a higher analogue of
the result that associated to a VB-Courant algebroid, there is an E-Courant algebroid [24, 31], we show
that on the graded fat bundle associated to a VB-CLWX 2-algebroid, there is an E-CLWX 2-algebroid
structure naturally. Similar to the case of a CLWX 2-algebroid, an E-CLWX 2-algebroid also gives rise
to a Lie 3-algebra naturally. Thus through the following procedure:

Lie
3-algebra 7−→

VB-CLWX
2-algebroid 7−→

E-CLWX
2-algebroid 7−→

Lie
3-algebra,

we can construct a Lie 3-algebra from a Lie 3-algebra. We obtain new interesting examples, including
the higher analogue of the string Lie 2-algebra.

The paper is organized as follows. In Section 2, we recall double vector bundles, VB-Lie algebroids
and VB-Courant algebroids. In Section 3, we introduce the notion of a VB-Lie 2-algebroid, and
show that both the graded side bundle and the graded fat bundle are Lie 2-algebroids. The tangent
prolongation of a Lie 2-algebroid is a VB-Lie 2-algebroid naturally. In Section 4, first we construct
a strict Lie 3-algebroid End(E) = (End−2(E),End−1(E),D(E), p, d, [·, ·]C) from a 3-term complex of
vector bundles E : E−2

π
−→ E−1

π
−→ E0 and then we define a flat superconnection of a Lie 2-algebroid

A = (A−1, A0, a, l1, l2, l3) on this 3-term complex of vector bundles to be a morphism from A to
End(E). We show that after choosing a splitting, VB-Lie 2-algebroids one-to-one correspond to flat
superconnections of a Lie 2-algebroid on a 3-term complex of vector bundles. In Section 5, we introduce
the notion of a VB-CLWX 2-algebroid and show that after choosing a splitting, there is a one-to-one
correspondence between VB-CLWX 2-algebroids and Lie 3-algebroids. In Section 6, we introduce
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the notion of an E-CLWX 2-algebroid and show that the graded fat bundle associated to a VB-CLWX
2-algebroid is an E-CLWX 2-algebroid naturally. In particular, the graded jet bundle of a CLWX 2-
algebroid, which is the graded fat bundle of the tangent prolongation of this CLWX 2-algebroid, is a
T ∗M-CLWX 2-algebroid. We can also obtain a Lie 3-algebra from an E-CLWX 2-algebroid. In Section
7, we construct a Lie 3-algebra from a given Lie 3-algebra using the theories established in Section 5
and Section 6, and give interesting examples. In particular, we show that associated to a quadratic Lie
2-algebra, we can obtain a Lie 3-algebra, which can be viewed as the higher analogue of the string Lie
2-algebra.

2. Preliminaries

See [40, Definition 9.1.1] for the precise definition of a double vector bundle. We denote a double
vector bundle

D
πB //

πA
��

B
qB

��
A qA

// M Coo

with core C by (D; A, B; M). We use DB and DA to denote vector bundles D −→ B and D −→ A
respectively. For a vector bundle A, both the tangent bundle T A and the cotangent bundle T ∗A are
double vector bundles:

T A //

��

T M

��
A // M,

T ∗A //

��

A∗

��
A // M.

A morphism of double vector bundles

(ϕ; fA, fB; fM) : (D; A, B; M)→ (D′; A′, B′; M′)

consists of maps ϕ: D→ D′, fA : A→ A′, fB : B→ B′, fM : M → M′, such that each of (ϕ, fB), (ϕ, fA),
( fA, fM) and ( fB, fM) is a morphism of the relevant vector bundles.

The space of sections ΓB(D) of the vector bundle DB is generated as a C∞(B)-module by core sections
Γc

B(D) and linear sections Γl
B(D). See [41] for more details. For a section c : M → C, the corresponding

core section c† : B→ D is defined as

c†(bm) = 0̃bm +A c(m), ∀ m ∈ M, bm ∈ Bm,

where ·̄ means the inclusion C ↪→ D. A section ξ : B→ D is called linear if it is a bundle morphism
from B → M to D → A over a section X ∈ Γ(A). We will view B∗ ⊗ C both as Hom(B,C) and
Hom(C∗, B∗) depending on what it acts. Given ψ ∈ Γ(B∗ ⊗C), there is a linear section ψ̃ : B→ D over
the zero section 0A : M → A given by

ψ̃(bm) = 0̃bm +A ψ(bm).

Note that Γl
B(D) is locally free as a C∞(M)-module. Therefore, Γl

B(D) is equal to Γ(Â) for some vector
bundle Â→ M. The vector bundle Â is called the fat bundle of the double vector bundle (D; A, B; M).
Moreover, we have the following short exact sequence of vector bundles over M

0→ B∗ ⊗C −→ Â
pr
−→ A→ 0. (2.1)
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Definition 2.1. ([19, Definition 3.4]) A VB-Lie algebroid is a double vector bundle (D; A, B; M)
equipped with a Lie algebroid structure (DB, a, [·, ·]D) such that the anchor a : D −→ T B is linear, i.e.
a : (D; A, B; M) −→ (T B; T M, B; M) is a morphism of double vector bundles, and the Lie bracket [·, ·]D

is linear:

[Γl
B(D),Γl

B(D)]D ⊂ Γl
B(D), [Γl

B(D),Γc
B(D)]D ⊂ Γc

B(D), [Γc
B(D),Γc

B(D)]D = 0.

The vector bundle A −→ M is then also a Lie algebroid, with the anchor a and the bracket [·, ·]A

defined as follows: if ξ1, ξ2 are linear over X1, X2 ∈ Γ(A), then the bracket [ξ1, ξ2]D is linear over
[X1, X2]A.

Definition 2.2. ([32, Definition 3.1.1]) A VB-Courant algebroid is a metric double vector bundle
(D; A, B; M) such that (DB, S , J·, ·K , ρ) is a Courant algebroid and the following conditions are satisfied:

(i) The anchor map ρ : D→ T B is linear;

(ii) The Courant bracket is linear. That is
q
Γl

B(D),Γl
B(D)

y
⊆ Γl

B(D),
q
Γl

B(D),Γc
B(D)

y
⊆ Γc

B(D), JΓc
B(D),Γc

B(D)K = 0.

Theorem 2.3. ([32, Proposition 3.2.1]) There is a one-to-one correspondence between Lie 2-algebroids
and VB-Courant algebroids.

3. VB-Lie 2-algebroids

In this section, we introduce the notion of a VB-Lie 2-algebroid, which can be viewed as the
categorification of a VB-Lie algebroid introduced in [19]. First we recall the notion of a Lie n-algebroid.
See [28, 29] for more information of L∞-algebras.

Definition 3.1. ([52, Definition 2.1]) A split Lie n-algebroid is a non-positively graded vector bundle
A = A0 ⊕ A−1 ⊕ · · · ⊕ A−n+1 over a manifold M equipped with a bundle map a : A0 −→ T M (called the
anchor), and n + 1 many brackets li : Γ(∧iA) −→ Γ(A) with degree 2 − i for 1 ≤ i ≤ n + 1, such that

1. Γ(A) is an n-term L∞-algebra: ∑
i+ j=k+1

(−1)i( j−1)
∑

σ∈S h−1
i,k−i

sgn(σ)Ksgn(σ)

l j(li(Xσ(1), · · · , Xσ(i)), Xσ(i+1), · · · , Xσ(k)) = 0,

where the summation is taken over all (i, k − i)-unshuffles S h−1
i,k−i with i ≥ 1 and “Ksgn(σ)” is the

Koszul sign for a permutation σ ∈ S k, i.e.

X1 ∧ · · · ∧ Xk = Ksgn(σ)Xσ(1) ∧ · · · ∧ Xσ(k).

2. l2 satisfies the Leibniz rule with respect to the anchor a:

l2(X0, f X) = f l2(X0, X) + a(X0)( f )X, ∀ X0 ∈ Γ(A0), f ∈ C∞(M), X ∈ Γ(A).
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3. For i , 2, li’s are C∞(M)-linear.

Denote a split Lie n-algebroid by (A−n+1, · · · , A0, a, l1, · · · , ln+1), or simply byA. We will only use a
split Lie 2-algebroid (A−1, A0, a, l1, l2, l3) and a split Lie 3-algebroid (A−2, A−1, A0, a, l1, l2, l3, l4). For a
split Lie n-algebroid, we have a generalized Chevalley-Eilenberg complex (Γ(Symm(A[1])∗), δ). See
[5, 52] for more details. ThenA[1] is an NQ-manifold of degree n. A split Lie n-algebroid morphism
A → A′ can be defined to be a graded vector bundle morphism f : Symm(A[1]) → Symm(A′[1])
such that the induced pull-back map f ∗ : C(A′[1])→ C(A[1]) between functions is a morphism of NQ
manifolds. However it is rather complicated to write down a morphism between split Lie n-algebroids
in terms of vector bundles, anchors and brackets, please see [5, Section 4.1] for such details. We
only give explicit formulas of a morphism from a split Lie 2-algebroid to a strict split Lie 3-algebroid
(l3 = 0, l4 = 0) and this is what we will use in this paper to define flat superconnections.

Definition 3.2. LetA = (A−1, A0, a, l1, l2, l3) be a split Lie 2-algebroid andA′ = (A′
−2, A

′
−1, A

′
0, a

′, l′1, l
′
2)

a strict split Lie 3-algebroid. A morphism F fromA toA′ consists of:

• a bundle map F0 : A0 −→ A′0,

• a bundle map F1 : A−1 −→ A′
−1,

• a bundle map F2
0 : ∧2A0 −→ A′

−1,

• a bundle map F2
1 : A0 ∧ A−1 −→ A′

−2,

• a bundle map F3 : ∧3A0 −→ A′
−2,

such that for all X0,Y0,Z0, X0
i ∈ Γ(A0), i = 1, 2, 3, 4, X1,Y1 ∈ Γ(A−1), we have

a′ ◦ F0 = a,

l′1 ◦ F1 = F0 ◦ l1,

F0l2(X0,Y0) − l′2(F0(X0), F0(Y0)) = l′1F2
0(X0,Y0),

F1l2(X0,Y1) − l′2(F0(X0), F1(Y1)) = F2
0(X0, l1(Y1)) − l′1F2

1(X0,Y1),
l′2(F1(X1), F1(Y1)) = F2

1(l1(X1),Y1) − F2
1(X1, l1(Y1)),

l′2(F0(X0), F2(Y0,Z0)) − F2
0(l2(X0,Y0),Z0) + c.p. = F1(l3(X0,Y0,Z0))

+l′1F3(X0,Y0,Z0),
l′2(F0(X0), F2

1(Y0,Z1)) + l′2(F0(Y0), F2
1(Z1, X0)) + l′2(F1(Z1), F2

0(X0,Y0))
= F2

1(l2(X0,Y0),Z1) + c.p. + F3(X0,Y0, l1(Z1)),

and

4∑
i=1

(−1)i+1
(
F2

1(X0
i , l3(X0

1 , · · · , X̂
0
i , · · · X

0
4)) + l′2(F0(X0

i ), F3(X0
1 , · · · , X̂

0
i , · · · X

0
4))

)
+

∑
i< j

(−1)i+ j
(
F3(l2(X0

i , X
0
j ), X

0
k , X

0
l ) + c.p. −

1
2

l′2(F2
0(X0

i , X
0
j ), F

2
0(X0

k , X
0
l ))

)
= 0,

where k < l and {k, l} ∩ {i, j} = ∅.
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Let (A−1, A0, a, l1, l2, l3) be a split Lie 2-algebroid. Then for all X0,Y0 ∈ Γ(A0) and X1 ∈ Γ(A−1), Lie
derivatives L0

X0 : Γ(A∗
−i) −→ Γ(A∗

−i), i = 0, 1, L1
X1 : Γ(A∗

−1) −→ Γ(A∗0) and L3
X0,Y0 : Γ(A∗

−1) −→ Γ(A∗0) are
defined by 

〈L0
X0α

0,Y0〉 = ρ(X0)〈Y0, α0〉 − 〈α0, l2(X0,Y0)〉,
〈L0

X0α
1,Y1〉 = ρ(X0)〈Y1, α1〉 − 〈α1, l2(X0,Y1)〉,

〈L1
X1α

1,Y0〉 = −〈α1, l2(X1,Y0)〉,
〈L3

X0,Y0α
1,Z0〉 = −〈α1, l3(X0,Y0,Z0)〉,

(3.1)

for all α0 ∈ Γ(A∗0), α1 ∈ Γ(A∗
−1), Y1 ∈ Γ(A−1), Z0 ∈ Γ(A0). If (A∗[1], a, l1, l2, l3) is also a split Lie

2-algebroid, we denote by L0,L1,L3, δ∗ the corresponding operations.
A graded double vector bundle consists of a double vector bundle of degree −1 and a double vector

bundle of degree 0:

D−1
πB−1 //

πA−1

��

B−1

qB−1

��
A−1

qA−1
// M−1 C−1,oo

D0
πB0 //

πA0

��

B0

qB0

��
A0

qA0
// M0 C0.oo

We denote a graded double vector bundle by
(

D−1; A−1, B−1; M−1

D0; A0, B0; M0

)
. Morphisms between graded

double vector bundles can be defined in an obvious way. We will denote byD andA the graded vector
bundles DB

0 ⊕ DB
−1 and A0 ⊕ A−1 respectively. Now we are ready to introduce the main object in this

section.

Definition 3.3. A VB-Lie 2-algebroid is a graded double vector bundle(
D−1; A−1, B; M
D0; A0, B; M

)
equipped with a Lie 2-algebroid structure (DB

−1,D
B
0 , a, l1, l2, l3) onD such that

(i) The anchor a : D0 −→ T B is linear, i.e. we have a bundle map a : A0 −→ T M such that
(a; a, idB; idM) is a double vector bundle morphism (see Diagram (i));

(ii) l1 is linear, i.e. we have a bundle map l1 : A−1 −→ A0 such that (l1; l1, idB; idM) is a double vector
bundle morphism (see Diagram (ii));

(iii) l2 is linear, i.e.

l2(Γl
B(D0),Γl

B(D0)) ⊂ Γl
B(D0), l2(Γl

B(D0),Γc
B(D0)) ⊂ Γc

B(D0),
l2(Γl

B(D0),Γl
B(D−1)) ⊂ Γl

B(D−1), l2(Γl
B(D0),Γc

B(D−1)) ⊂ Γc
B(D−1),

l2(Γc
B(D0),Γl

B(D−1)) ⊂ Γc
B(D−1), l2(Γc

B(D0),Γc
B(D−1)) = 0;

l2(Γc
B(D0),Γc

B(D0)) = 0.

(iv) l3 is linear, i.e.

l3(Γl
B(D0),Γl

B(D0),Γl
B(D0)) ⊂ Γl

B(D−1),
l3(Γl

B(D0),Γl
B(D0),Γc

B(D0)) ⊂ Γc
B(D−1),

l3(Γc
B(D0),Γc

B(D0), ·) = 0.
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D0
//

a

��

��
B
��

A0
//

a

��

M C0
oo

T B
��

// B
��

T M // M B,oo

Diagram (i)

D−1
//

l1

��

��
B
��

A−1
//

l1

��

M C−1
oo

D0
��

// B
��

A0
// M C0.oo

Diagram (ii)

Since Lie 2-algebroids are the categorification of Lie algebroids, VB-Lie 2-algebroids can be viewed
as the categorification of VB-Lie algebroids.

Recall that if (D; A, B; M) is a VB-Lie algebroid, then A is a Lie algebroid. The following result is its
higher analogue.

Theorem 3.4. Let
(

D−1; A−1, B; M
D0; A0, B; M

)
be a VB-Lie 2-algebroid. Then

(A−1, A0, a, l1, l2, l3)

is a split Lie 2-algebroid, where l2 is defined by the property that if ξ0
1, ξ

0
2, ξ

0 ∈ Γl
B(D0) are linear

sections over X0
1 , X0

2 , X0 ∈ Γ(A0), and ξ1 ∈ Γl
B(D−1) is a linear section over X1 ∈ Γ(A−1), then

l2(ξ0
1, ξ

0
2) ∈ Γl

B(D0) is a linear section over l2(X0
1 , X

0
2) ∈ Γ(A0) and l2(ξ0, ξ1) ∈ Γl

B(D−1) is a linear
section over l2(X0, X1) ∈ Γ(A−1). Similarly, l3 is defined by the property that if ξ0

1, ξ
0
2, ξ

0
3 ∈ Γl

B(D0)
are linear sections over X0

1 , X0
2 , X0

3 ∈ Γ(A0), then l3(ξ0
1, ξ

0
2, ξ

0
3) ∈ Γl

B(D−1) is a linear section over
l3(X0

1 , X
0
2 , X

0
3) ∈ Γ(A−1).

Proof. Since l2 is linear, for any ξi ∈ Γl
B(D−i) satisfying πA−i(ξi) = 0, we have

πA−(i+ j)(l2(ξi, η j)) = 0, ∀ η j ∈ Γl
B(D− j).

This implies that l2 is well-defined. Similarly, l3 is also well-defined.
By the fact that l1 : D−1 −→ D0 is a double vector bundle morphism over l1 : A−1 −→ A0, we can

deduce that (Γ(A−1),Γ(A0), l1, l2, l3) is a Lie 2-algebra. We only give a proof of the property

l1(l2(X0, X1)) = l2(X0, l1(X1)), ∀X0 ∈ Γ(A0), X1 ∈ Γ(A−1). (3.2)

The other conditions in the definition of a Lie 2-algebra can be proved similarly. In fact, let ξ0 ∈

Γl
B(D0), ξ1 ∈ Γl

B(D−1) be linear sections over X0, X1 respectively, then by the equality l1(l2(ξ0, ξ1)) =

l2(ξ0, l1(ξ1)), we have
πA0l1(l2(ξ0, ξ1)) = πA0 l2(ξ0, l1(ξ1)).

Since l1 : D−1 −→ D0 is a double vector bundle morphism over l1 : A−1 −→ A0, the left hand side is
equal to

πA0l1(l2(ξ0, ξ1)) = l1π
A−1l2(ξ0, ξ1) = l1l2(X0, X1),

and the right hand side is equal to

πA0l2(ξ0, l1(ξ1)) = l2(πA0(ξ0), πA0(l1(ξ1))) = l2(X0, l1(X1)).
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Thus, we deduce that (3.2) holds.
Finally, for all X0 ∈ Γ(A0), Y i ∈ Γ(A−i) and f ∈ C∞(M), let ξ0 ∈ Γl

B(D0) and ηi ∈ Γl
B(D−i), i = 0, 1 be

linear sections over X0 and Y i. Then q∗B( f )ηi is a linear section over f Y i. By the fact that a is a double
vector bundle morphism over a, we have

l2(X0, f Y i) = πA−il2(ξ0, q∗B( f )ηi) = πA−i
(
q∗B( f )l2(ξ0, ηi) + a(ξ0)(q∗B( f ))ηi)

= f l2(X0,Y i) + a(X0)( f )Y i.

Therefore, (A−1, A0, a, l1, l2, l3) is a Lie 2-algebroid.

Remark 1. By the above theorem, we can view a VB-Lie 2-algebroid as a Lie 2-algebroid object in the
category of double vector bundles.

Consider the associated graded fat bundle Â−1 ⊕ Â0, obviously we have

Proposition 1. Let
(

D−1; A−1, B; M
D0; A0, B; M

)
be a VB-Lie 2-algebroid. Then (Â−1, Â0, â, l̂1, l̂2, l̂3) is a split

Lie 2-algebroid, where â = a ◦ pr and l̂1, l̂2, l̂3 are the restriction of l1, l2, l3 on linear sections
respectively.

Consequently, we have the following exact sequences of split Lie 2-algebroids:

0 −−−−−→ B∗ ⊗C−1 −−−−−→ Â−1
pr

−−−−−→ A−1 −−−−−→ 0y l̂1

y l1

y
0 −−−−−→ B∗ ⊗C0 −−−−−→ Â0

pr
−−−−−→ A0 −−−−−→ 0

(3.3)

It is helpful to give the split Lie 2-algebroid structure on B∗ ⊗ C−1 ⊕ B∗ ⊗ C0. Since l1 is linear, it
induces a bundle map lC1 : C−1 −→ C0. The restriction of l̂1 on B∗ ⊗C−1 is given by

l̂1(φ1) = lC1 ◦ φ
1, ∀φ1 ∈ Γ(B∗ ⊗C−1) = Γ(Hom(B,C−1)). (3.4)

Since the anchor a : D0 −→ T B is a double vector bundle morphism, it induces a bundle map
% : C0 −→ B via

〈%(c0), ξ〉 = −a(c0)(ξ), ∀c0 ∈ Γ(C0), ξ ∈ Γ(B∗). (3.5)

Then by the Leibniz rule, we deduce that the restriction of l̂2 on Γ(B∗ ⊗C−1 ⊕ B∗ ⊗C0) is given by

l̂2(φ0, ψ0) = φ0 ◦ % ◦ ψ0 − ψ0 ◦ % ◦ φ0, (3.6)
l̂2(φ0, ψ1) = −l̂2(ψ1, φ0) = −ψ1 ◦ % ◦ φ0, (3.7)

for all φ0, ψ0 ∈ Γ(B∗ ⊗ C0) = Γ(Hom(B,C0)), ψ1 ∈ Γ(B∗ ⊗ C−1) = Γ(Hom(B,C−1)). Since l3 is linear,
the restriction of l3 on B∗ ⊗ C−1 ⊕ B∗ ⊗ C0 vanishes. Obviously, the anchor is trivial. Thus, the split
Lie 2-algebroid structure on B∗ ⊗ C−1 ⊕ B∗ ⊗ C0 is exactly given by (3.4), (3.6) and (3.7). Therefore,
B∗ ⊗C−1 ⊕ B∗ ⊗C0 is a graded bundle of strict Lie 2-algebras.

An important example of VB-Lie algebroids is the tangent prolongation of a Lie algebroid. Now we
explore the tangent prolongation of a Lie 2-algebroid. Recall that for a Lie algebroid A −→ M, T A is a
Lie algebroid over T M. A section σ : M −→ A gives rise to a linear section σT , dσ : T M −→ T A

Journal of Geometric Mechanics Volume 15, Issue 1, 27–58



36

and a core section σC : T M −→ T A by contraction. Any section of T A over T M is generated by such
sections. A function f ∈ C∞(M) induces two types of functions on T M by

fC = q∗ f , fT = d f ,

where q : T M −→ M is the projection. We have the following relations about the module structure:

( fσ)C = fCσC, ( fσ)T = fTσC + fCσT . (3.8)

In particular, for A = T M, we have

XT ( fT ) = X( f )T , XT ( fC) = X( f )C, XC( fT ) = X( f )C, XC( fC) = 0, (3.9)

for all X ∈ X(M). See [32, Example 2.5.4] and [40] for more details.
Now for split Lie 2-algebroids, we have

Proposition 2. LetA = (A−1, A0, a, l1, l2, l3) be a split Lie 2-algebroid. Then

(T A−1,T A0, a, l1, l2, l3)

is a split Lie 2-algebroid over T M, where a : T A0 −→ TT M is given by

a(σ0
T ) = a(σ0)T , a(σ0

C) = a(σ0)C, (3.10)

l1 : ΓT M(T A−1) −→ ΓT M(T A0) is given by

l1(σ1
T ) = l1(σ1)T , l1(σ1

C) = l1(σ1)C, (3.11)

l2 : ΓT M(T A−i) × ΓT M(T A− j) −→ ΓT M(T A−(i+ j)) is given by

l2(σ0
T , τ

0
T ) = l2(σ0, τ0)T , l2(σ0

T , τ
0
C) = l2(σ0, τ0)C, l2(σ0

C, τ
0
C) = 0,

l2(σ0
T , τ

1
T ) = l2(σ0, τ1)T , l2(σ0

T , τ
1
C) = l2(σ0, τ1)C, l2(σ0

C, τ
1
T ) = l2(σ0, τ1)C,

l2(σ0
C, τ

1
C) = 0,

and l3 : ∧3ΓT M(T A0) −→ ΓT M(T A−1) is given by

l3(σ0
T , τ

0
T , ς

0
T ) = l3(σ0, τ0, ς0)T , l3(σ0

T , τ
0
T , ς

0
C) = l3(σ0, τ0, ς0)C, (3.12)

and l3(σ0
T , τ

0
C, ς

0
C) = 0, for all σ0, τ0, ς0 ∈ Γ(A0) and σ1, τ1 ∈ Γ(A−1).

Moreover, we have the following VB-Lie 2-algebroid:

T A−1
//

��

��
T M

��

��
A−1

//

��

M

��

A−1
oo

T A0
//

��
T M

��
A0

// M A0.oo
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Proof. By the fact thatA = (A−1, A0, a, l1, l2, l3) is a split Lie 2-algebroid, it is straightforward to deduce
that (T A−1,T A0, a, l1, l2, l3) is a split Lie 2-algebroid over T M. Moreover, a, l1, l2, l3 are all linear,
which implies that it is a VB-Lie 2-algebroid.

The associated fat bundles of double vector bundles (T A−1; A−1,T M; M) and (T A0; A0,T M; M) are
the jet bundles JA−1 and JA0 respectively. By Proposition 2 and Proposition 1, we obtain the following
result, which is the higher analogue of the fact that the jet bundle of a Lie algebroid is a Lie algebroid.

Corollary 1. Let (A−1, A0, a, l1, l2, l3) be a split Lie 2-algebroid. Then we obtain that
(JA−1,JA0, â, l̂1, l̂2, l̂3) is a split Lie 2-algebroid, where â, l̂1, l̂2, l̂3 is given by

â(σ0
T ) = a(σ0),

l̂2(σ0
T , τ

0
T ) = l2(σ0, τ0)T ,

l̂2(σ0
T , τ

1
T ) = l2(σ0, τ1)T ,

l̂3(σ0
T , τ

0
T , ζ

0
T ) = l2(σ0, τ0, ζ0)T ,

for all σ0, τ0, ζ0 ∈ Γ(A0) and τ1 ∈ Γ(A−1).

4. Superconnections of a split Lie 2-algebroid on a 3-term complex of vector bundles

In the section, we introduce the notion of a superconnection of a split Lie 2-algebroid on a 3-term
complex of vector bundles, which generalizes the notion of a superconnection of a Lie algebroid on a
2-term complex of vector bundles studied in [19]. We show that a VB-Lie 2-algebroid structure on a
split graded double vector bundle is equivalent to a flat superconnection of a split Lie 2-algebroid on a
3-term complex of vector bundles.

Denote a 3-term complex of vector bundles E−2
π
−→ E−1

π
−→ E0 by E. Sections of the covariant

differential operator bundle D(E) are of the form d = (d0, d1, d2), where di : Γ(E−i) −→ Γ(E−i) are
R-linear maps such that there exists X ∈ X(M) satisfying

di( f ei) = f di(ei) + X( f )ei, ∀ f ∈ C∞(M), ei ∈ Γ(E−i).

Equivalently, D(E) = D(E0) ×T M D(E−1) ×T M D(E−2). Define p : D(E) −→ T M by

p(d0, d1, d2) = X. (4.1)

Then the covariant differential operator bundle D(E) fits the following exact sequence:

0 −→ End(E0) ⊕ End(E−1) ⊕ End(E−2) −→ D(E) −→ T M −→ 0. (4.2)

Denote by End−1(E) = Hom(E0, E−1) ⊕ Hom(E−1, E−2). Denote by End−2(E) = Hom(E0, E−2). Define
d : End−2(E) −→ End−1(E) by

d(θ2) = π ◦ θ2 − θ2 ◦ π, ∀θ2 ∈ Γ(Hom(E0, E−2)), (4.3)

and define d : End−1(E) −→ D(E) by

d(θ1) = π ◦ θ1 + θ1 ◦ π, ∀θ1 ∈ Γ(Hom(E0, E−1) ⊕ Hom(E−1, E−2)). (4.4)
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Then we define a degree 0 graded symmetric bracket operation [·, ·]C on the section space of the graded
bundle End−2(E) ⊕ End−1(E) ⊕D(E) by

[d, t]C = d ◦ t − t ◦ d, ∀d, t ∈ Γ(D(E)), (4.5)
[d, θi]C = d ◦ θi − θi ◦ d, ∀d ∈ Γ(D(E)), θi ∈ Γ(End−i(E)), (4.6)

[θ1, ϑ1]C = θ1 ◦ ϑ1 + ϑ1 ◦ θ1, ∀θ1, ϑ1 ∈ Γ(End−1(E)). (4.7)

Denote by Dπ(E) ⊂ D(E) the subbundle of D(E) whose section d ∈ Γ(Dπ(E)) satisfying π ◦ d = d ◦ π,
or in term of components,

d0 ◦ π = π ◦ d1, d1 ◦ π = π ◦ d2.

It is obvious that Γ(Dπ(E)) is closed under the bracket operation [·, ·]C and

d(End−1(E)) ⊂ Dπ(E).

Then it is straightforward to verify that

Theorem 4.1. Let E−2
π
−→ E−1

π
−→ E0 be a 3-term complex of vector bundles over M. Then

(End−2(E),End−1(E),Dπ(E), p, d, [·, ·]C) is a strict split Lie 3-algebroid.

With above preparations, we give the definition of a superconnection of a split Lie 2-algebroid on a
3-term complex of vector bundles as follows.

Definition 4.2. A superconnection of a split Lie 2-algebroid (A−1, A0, a, l1, l2, l3) on a 3-term complex
of vector bundles E−2

π
−→ E−1

π
−→ E0 consists of:

• a bundle morphism F0 : A0 −→ Dπ(E),

• a bundle morphism F1 : A−1 −→ End−1(E),

• a bundle morphism F2
0 : ∧2A0 −→ End−1(E),

• a bundle morphism F2
1 : A0 ∧ A−1 −→ End−2(E),

• a bundle morphism F3 : ∧3A0 −→ End−2(E).

A superconnection is called flat if (F0, F1, F2
0 , F

2
1 , F

3) is a Lie n-algebroid morphism from the split Lie 2-
algebroid (A−1, A0, a, l1, l2, l3) to the strict split Lie 3-algebroid (End−2(E),End−1(E),Dπ(E), p, d, [·, ·]C).

Remark 2. If the split Lie 2-algebroid reduces to a Lie algebroid A and the 3-term complex reduces to
a 2-term complex E−1

π
−→ E0, a superconnection will only consists of

• a bundle morphism F0 = (F0
0 , F

0
1) : A −→ Dπ(E),

• a bundle morphism F2
0 : ∧2A0 −→ Hom(E0, E−1).

Thus, we recover the notion of a superconnection (also called representation up to homotopy if it is flat)
of a Lie algebroid on a 2-term complex of vector bundles. See [1, 19] for more details.
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Now we come back to VB-Lie 2-algebroids. Let (DB
−1,D

B
0 , a, l1, l2, l3) be a VB-Lie 2-algebroid

structure on the graded double vector bundle
(

D−1; A−1, B; M
D0; A0, B; M

)
. Recall from Theorem 3.4 and

Proposition 1 that both (A−1, A0, a, l1, l2, l3) and (Â−1, Â0, â, l̂1, l̂2, l̂3) are split Lie 2-algebroids.
Choose a horizontal lift s = (s0, s1) : A0 ⊕ A−1 −→ Â0 ⊕ Â−1 of the short exact sequence of split Lie

2-algebroids (3.3). Define ∇B : A0 −→ D(B) by

〈∇B
X0b, ξ〉 = a(X0)〈ξ, b〉 − 〈b, â(s0(X0))(ξ)〉, ∀X0 ∈ Γ(A0), b ∈ Γ(B), ξ ∈ Γ(B∗).

Since for all φ0 ∈ Γ(B∗ ⊗C0), we have â(φ0) = 0, it follows that ∇B is well-defined.
We define ∇0 : A0 −→ D(C0) and ∇1 : A0 −→ D(C−1) by

∇0
X0c0 = l2(s0(X0), c0), ∇1

X0c1 = l2(s0(X0), c1), (4.8)

for all X0 ∈ Γ(A0), c0 ∈ Γ(C0), c1 ∈ Γ(C−1).
Define Υ1 : A−1 −→ Hom(B,C0) and Υ2 : A−1 −→ Hom(C0,C−1) by

Υ1
X1 = s0(l1(X1)) − l̂1(s1(X1)), Υ2

X1c0 = l2(s1(X1), c0), (4.9)

for all X1 ∈ Γ(A−1), c0 ∈ Γ(C0). Since l2 is linear, ∇0, ∇1 and Υ are well-defined.
Define R0 : ∧2Γ(A0) −→ Γ(Hom(B,C0)), Λ : ∧2Γ(A0) −→ Γ(Hom(C0,C−1)) and R1 : Γ(A0) ∧

Γ(A−1) −→ Γ(Hom(B,C−1)) by

R0(X0,Y0) = s0l2(X0,Y0) − l̂2(s0(X0), s0(Y0)), (4.10)
Λ(X0,Y0)(c0) = −l3(s0(X0), s0(Y0), c0), (4.11)

R1(X0,Y1) = s1l2(X0,Y1) − l̂2(s0(X0), s1(Y1)), (4.12)

for all X0, Y0 ∈ Γ(A0) and Y1 ∈ Γ(A−1)
Finally, define Ξ : ∧3Γ(A0) −→ Hom(B,C−1) by

Ξ(X0,Y0,Z0)) = s1l3(X0,Y0,Z0) − l̂3(s0(X0), s0(Y0), s0(Z0)). (4.13)

By the equality l1l2(s0(X0), c1) = l2(s0(X0), lC1 (c1)), we obtain

lC1 ◦ ∇
1
X0 = ∇0

X0 ◦ lC1 . (4.14)

By the fact that a : D0 −→ T B preserves the bracket operation, we obtain

〈∇B
X0%(c0), ξ〉 = a(X0)〈%(c0), ξ〉 − 〈%(c0), a(s0(X0))(ξ)〉

= −[a(s0(X0)), a(c0)]T B(ξ) = −a
(
l2(s0(X0), c0)

)
(ξ)

= 〈%∇0
X0c0, ξ〉,

which implies that
∇B

X0 ◦ % = % ◦ ∇0
X0 . (4.15)

By (4.14) and (4.15), we deduce that (∇B
X0 ,∇

0
X0 ,∇

1
X0) ∈ D(E), where E is the 3-term complex of

vector bundles C−1
lC1
−→ C0

%
−→ B . Then we obtain a superconnection (F0, F1, F2

0 , F
2
1 , F

3) of the Lie

2-algebroid (A−1, A0, a, l1, l2, l3) on the 3-term complex of vector bundles C−1
lC1
−→ C0

%
−→ B, where

F0 = (∇B,∇0,∇1), F1 = (Υ1,Υ2), F2
0 = (R0,Λ), F2

1 = R1, F3 = Ξ.
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Theorem 4.3. There is a one-to-one correspondence between VB-Lie 2-algebroids(
D−1; A−1, B; M
D0; A0, B; M

)
and flat superconnections (F0, F1, F2

0 , F
2
1 , F

3) of the split Lie 2-algebroid

(A−1, A0, a, l1, l2, l3) on the 3-term complex of vector bundles C−1
lC1
−→ C0

%
−→ B by choosing a horizontal

lift s = (s0, s1) : A0 ⊕ A−1 −→ Â0 ⊕ Â−1.

Proof. First it is obvious that
p ◦ F0 = a. (4.16)

Using equalities a ◦ l1 = 0 and a ◦ l1 = 0, we have

〈∇B
l1X1b, ξ〉 = a(l1(X1))〈b, ξ〉 − 〈b, a(s0(l1(X1)))(ξ)〉 = −〈b, a(Υ1

X1)(ξ)〉,

which implies that
∇B
l1X1 = % ◦ Υ1

X1 . (4.17)

For ∇0, we can obtain

∇0
l1(X1) = l2(s0l1(X1), ·)|C0 = l2(l1(s1(X1)) + Υ1

X1 , ·)|C0

= lC1 ◦ Υ2
X1 + Υ1

X1 ◦ %. (4.18)

For ∇1, we have

∇1
l1(X1) = l2(s0l1(X1), ·)|C1 = l2(l1(s1(X1)) + Υ1

X1 , ·)|C1 = Υ2
X1 ◦ lC1 . (4.19)

By (4.17), (4.18) and (4.19), we deduce that

F0 ◦ l1 = d ◦ F1. (4.20)

By straightforward computation, we have

〈∇B
l2(X0,Y0)b − ∇

B
X0∇

B
Y0b + ∇B

Y0∇
B
X0b, ξ〉

= 〈b, a
(
l̂2(s0(X0), s0(Y0)) − s0l2(X0,Y0)

)
(ξ)〉

= 〈b,−a
(
R0(X0,Y0)

)
(ξ)〉,

which implies that
∇B
l2(X0,Y0) − ∇

B
X0∇

B
Y0 + ∇B

Y0∇
B
X0 = % ◦ R0(X0,Y0). (4.21)

Similarly, we have

∇0
l2(X0,Y0)c

0 − ∇0
X0∇

0
Y0c0 + ∇0

Y0∇
0
X0c0

= l2(s0l2(X0,Y0), c0) − l2(s0(X0), l2(s0(Y0), c0)) + l2(s0(Y0), l2(s0(X0), c0))
= −l1l3(s0(X0), s0(Y0), c0) + l2(R0(X0,Y0), c0),

which implies that

∇0
l2(X0,Y0) − ∇

0
X0∇

0
Y0 + ∇0

Y0∇
0
X0 = lC1 ◦ Λ(X0,Y0) + R0(X0,Y0) ◦ %, (4.22)

Journal of Geometric Mechanics Volume 15, Issue 1, 27–58



41

and

∇1
l2(X0,Y0)c

1 − ∇1
X0∇

1
Y0c1 + ∇1

Y0∇
1
X0c1

= l2(s0l2(X0,Y0), c1) − l2(s0(X0), l2(s0(Y0), c1)) + l2(s0(Y0), l2(s0(X0), c1))
= −l3(s0(X0), s0(Y0), l1(c1)) + l2(R0(X0,Y0), c1),

which implies that
∇1
l2(X0,Y0) − ∇

1
X0∇

1
Y0 + ∇1

Y0∇
1
X0 = Λ(X0,Y0) ◦ lC1 . (4.23)

By (4.21), (4.22) and (4.23), we obtain

F0(l2(X0,Y0)) − [F0(X0), F0(Y0)]C = dF2
0(X0,Y0). (4.24)

By the equality

l2(s0(X0), l2(s1(Y1), c0)) + c.p. = l̂3(s0(X0), l1(s1(Y1)), c0),

we obtain
[F0(X0),Υ2

Y1]C − Υ2
l2(X0,Y1) = −Λ(X0, l1(Y1)) − R1(X0,Y1) ◦ %. (4.25)

Furthermore, we have

Υ1
l2(X0,Y1) = s0l1(l2(X0,Y1)) − l̂1s1(l2(X0,Y1))

= s0l2(X0, l1(Y1)) − l̂1 l̂2(s0(X0), s1(Y1)) − l̂1R1(X0,Y1)
= s0l2(X0, l1(Y1)) − l̂2(s0(X0), l̂1s1(Y1)) − lC1 ◦ R1(X0,Y1)
= s0l2(X0, l1(Y1)) − l̂2(s0(X0), s0l1(Y1) − Υ1

Y1) − lC1 ◦ R1(X0,Y1)
= [F0(X0),Υ1

Y1]C + R0(X0, l1(Y1)) − lC1 ◦ R1(X0,Y1). (4.26)

By (4.25) and (4.26), we deduce that

F1(l2(X0,Y1)) − [F0(X0), F1(Y1)]C = F2
0(X0, l1(Y1)) − dF2

1(X0,Y1). (4.27)

By straightforward computation, we have

R1(l1(X1),Y1) − R1(X1, l1(Y1))
= s1l2(l1(X1),Y1) − l̂2(s0l1(X1), s1(Y1))
−s1l2(X1, l1(Y1)) + l̂2(s1(X1), s0l1(Y1))

= l̂2(s1(X1), l̂1s1(Y1)) + l̂2(s1(X1),Υ1
Y1) − l̂2(s0l1(X1), s1(Y1))

= −l̂2(Υ1
X1 , s1(Y1)) + l̂2(s1(X1),Υ1

Y1)
= [Υ1

X1 + Υ2
X1 ,Υ

1
Y1 + Υ2

Y1]C. (4.28)

By the equality

l̂2(s0(X0), l̂2(s0(Y0), s0(Z0))) + c.p. = l̂1l̂3(s0(X0), s0(Y0), s0(Z0)),
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we deduce that

[F0(X0),R0(Y0,Z0)]C + R0(X0, l2(Y0,Z0)) + c.p.

= Υ1
l3(X0,Y0,Z0) + lC1 ◦ Ξ(X0,Y0,Z0). (4.29)

By the equality

l2(s0(X0), l3(s0(Y0), s0(Z0), c0)) − l3(l2(s0(X0), s0(Y0)), s0(Z0), c0) + c.p. = 0,

we deduce that

−[F0(X0),Λ(Y0,Z0)]C + Λ(l2(X0,Y0),Z0) + c.p.

+Υ2
l3(X0,Y0,Z0) − Ξ(X0,Y0,Z0) ◦ % = 0. (4.30)

By (4.29) and (4.30), we obtain

[F0(X0), F2
0(Y0,Z0)]C + F2

0(X0, l2(Y0,Z0)) + c.p.

= F1(l3(X0,Y0,Z0)) + dF3(X0,Y0,Z0). (4.31)

Then by the equality

l̂2(s0(X0), l̂2(s0(Y0), s1(Z1))) + c.p. = l̂3(s0(X0), s0(Y0), l̂1(s1(Z1))),

we deduce that

[F0(X0),R1(Y0,Z1)]C + [F0(Y0),R1(Z1, X0)]C + [Υ2
Z1 ,R0(X0,Y0)]C

+R1(X0, l2(Y0,Z1)) + R1(Y0, l2(Z1, X0)) + R1(Z1, l2(X0,Y0))
= Ξ(X0,Y0, l1(Z1)) − [Λ(X0,Y0),Υ1

Z1]C. (4.32)

Finally, by the equality

4∑
i=1

(−1)i+1l̂2
(
s0(X0

i ), l̂3(s0(X0
1), · · · , ŝ0(X0

i ), · · · , s0(X0
4))

)
+

∑
i< j,k<l

(−1)i+ jl̂3
(
l̂2(s0(X0

i ), s0(X0
j )), s0(X0

k ), s0(X0
l )
)

= 0,

we deduce that

4∑
i=1

(−1)i+1
(
[F0(X0

i ),Ξ(X0
1 , · · · , X̂

0
i , · · · , X

0
4)]C

+R1(X0
i , l3(X0

1 , · · · , X̂
0
i , · · · , X

0
4))

)
+

∑
i< j

(−1)i+ j
(
Ξ(l2(X0

i , X
0
j ), X

0
1 , · · · , X̂

0
i , · · · , X̂

0
j , · · · , X

0
4)

−[R0(X0
i , X

0
j ),Λ(X0

1 , · · · , X̂
0
i , · · · , X̂

0
j , · · · , X

0
4)]C

)
= 0. (4.33)
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By (4.16), (4.20), (4.24), (4.27), (4.28), (4.31)-(4.33), we deduce that (F0, F1, F2
0 , F

2
1 , F

3) is a mor-
phism from the split Lie 2-algebroid (A−1, A0, a, l1, l2, l3) to the strict split Lie 3-algebroid

(End−2(E),End−1(E),Dπ(E), p, d, [·, ·]C).

Conversely, let (A−1, A0, a, l1, l2, l3) be a split Lie 2-algebroid and (F0, F1, F2
0 , F

2
1 , F

3) a flat supercon-

nection on the 3-term complex C−1
lC1
−→ C0

%
−→ B. Then we can obtain a VB-Lie 2-algebroid structure on

the split graded double vector bundle
(

A−1 ⊕ B ⊕C−1; A−1, B; M
A0 ⊕ B ⊕C0; A0, B; M

)
. We leave the details to readers.

The proof is finished.

5. VB-CLWX 2-algebroids

In this section, first we recall the notion of a CLWX 2-algebroid. Then we explore what is a metric
graded double vector bundle, and introduce the notion of a VB-CLWX 2-algebroid, which can be viewed
as the categorification of a VB-Courant algebroid introduced in [32].

As a model for “Leibniz algebras that satisfy Jacobi identity up to all higher homotopies”, the notion
of a strongly homotopy Leibniz algebra, or a Lod∞-algebra was given in [36] by Livernet, which was
further studied by Ammar and Poncin in [3]. In [50], the authors introduced the notion of a Leibniz
2-algebra, which is the categorification of a Leibniz algebra, and proved that the category of Leibniz
2-algebras and the category of 2-term Lod∞-algebras are equivalent. Due to this reason, a 2-term
Lod∞-algebra will be called a Leibniz 2-algebra directly in the sequel.

Definition 5.1. ([34]) A CLWX 2-algebroid is a graded vector bundle E = E−1 ⊕ E0 over M equipped
with a non-degenerate graded symmetric bilinear form S on E, a bilinear operation � : Γ(E−i) ×
Γ(E− j) −→ Γ(E−(i+ j)), 0 ≤ i + j ≤ 1, which is skewsymmetric on Γ(E0) × Γ(E0), an E−1-valued 3-form
Ω on E0, two bundle maps ∂ : E−1 −→ E0 and ρ : E0 −→ T M, such that E−1 and E0 are isotropic and
the following axioms are satisfied:

(i) (Γ(E−1),Γ(E0), ∂, �,Ω) is a Leibniz 2-algebra;

(ii) for all e ∈ Γ(E), e � e = 1
2DS (e, e), whereD : C∞(M) −→ Γ(E−1) is defined by

S (D f , e0) = ρ(e0)( f ), ∀ f ∈ C∞(M), e0 ∈ Γ(E0); (5.1)

(iii) for all e1
1, e

1
2 ∈ Γ(E−1), S (∂(e1

1), e1
2) = S (e1

1, ∂(e1
2));

(iv) for all e1, e2, e3 ∈ Γ(E), ρ(e1)S (e2, e3) = S (e1 � e2, e3) + S (e2, e1 � e3);

(v) for all e0
1, e

0
2, e

0
3, e

0
4 ∈ Γ(E0), S (Ω(e0

1, e
0
2, e

0
3), e0

4) = −S (e0
3,Ω(e0

1, e
0
2, e

0
4)).

Denote a CLWX 2-algebroid by (E−1, E0, ∂, ρ, S , �,Ω), or simply by E. Since the section space of a
CLWX 2-algebroid is a Leibniz 2-algebra, the section space of a Courant algebroid is a Leibniz algebra
and Leibniz 2-algebras are the categorification of Leibniz algebras, we can view CLWX 2-algebroids as
the categorification of Courant algebroids.

As a higher analogue of Roytenberg’s result about symplectic NQ manifolds of degree 2 and Courant
algebroids ([45]), we have
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Theorem 5.2. ([34]) Let (T ∗[3]A∗[2],Θ) be a symplectic NQ manifold of degree 3, where A is an
ordinary vector bundle and Θ is a degree 4 function on T ∗[3]A∗[2] satisfying {Θ,Θ} = 0. Here {·, ·}
is the canonical Poisson bracket on T ∗[3]A∗[2]. Then (A∗[1], A, ∂, ρ, S , �,Ω) is a CLWX 2-algebroid,
where the bilinear form S is given by

S (X + α,Y + β) = 〈X, β〉 + 〈Y, α〉, ∀ X,Y ∈ Γ(A), α, β ∈ Γ(A∗),

and ∂, ρ, � and Ω are given by derived brackets. More precisely, we have

∂α = {α,Θ}, ∀ α ∈ Γ(A∗),
ρ(X)( f ) = { f , {X,Θ}}, ∀ X ∈ Γ(A), f ∈ C∞(M),

X � Y = {Y, {X,Θ}}, ∀ X,Y ∈ Γ(A),
X � α = {α, {X,Θ}}, ∀ X ∈ Γ(A), α ∈ Γ(A∗),
α � X = −{X, {α,Θ}}, ∀ X ∈ Γ(A), α ∈ Γ(A∗),

Ω(X,Y,Z) = {Z, {Y, {X,Θ}}}, ∀ X,Y,Z ∈ Γ(A).

See [27, 53] for more information of derived brackets. Note that various kinds of geometric structures
were obtained in the study of QP manifolds of degree 3, e.g. Grutzmann’s H-twisted Lie algebroids
[21] and Ikeda-Uchino’s Lie algebroids up to homotopy [23].

Definition 5.3. A metric graded double vector bundle is a graded double vector bundle(
D−1; A−1, B; M
D0; A0, B; M

)
equipped with a degree 1 nondegenerate graded symmetric bilinear form S

on the graded bundle DB
−1 ⊕ DB

0 such that it induces an isomorphism between graded double vector
bundles

D−1
//

��
B
��

A−1
// M C−1
oo

D0
//

��
B
��

A0
// M C0
oo

and D?B
0 [1] //

��
B
��

C∗0 // M A∗0oo

D?B
−1 [1] //

��
B
��

C∗
−1

// M A∗
−1,

oo

where ?B means dual over B.

Given a metric graded double vector bundle, we have

C0 � A∗−1, C−1 � A∗0.

In the sequel, we will always identify C0 with A∗
−1, C−1 with A∗0. Thus, a metric graded double vector

bundle is of the following form:

D−1
//

��
B
��

A−1
// M A∗0oo

D0
//

��
B
��

A0
// M A∗

−1.
oo

Now we are ready to put a CLWX 2-algebroid structure on a graded double vector bundle.
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Definition 5.4. A VB-CLWX 2-algebroid is a metric graded double vector bundle((
D−1; A−1, B; M
D0; A0, B; M

)
, S

)
,

equipped with a CLWX 2-algebroid structure (DB
−1,D

B
0 , ∂, ρ, S , �,Ω) such that

(i) ∂ is linear, i.e. there exists a unique bundle map ∂ : A−1 −→ A0 such that ∂ : D−1 −→ D0 is a
double vector bundle morphism over ∂ : A−1 −→ A0 (see Diagram (iii));

(ii) the anchor ρ is a linear, i.e. there exists a unique bundle map ρ : A0 −→ T M such that ρ : D0 −→

T B is a double vector bundle morphism over ρ : A0 −→ T M (see Diagram (iv));

D−1
//

∂

��

��
B
��

A−1
//

∂

��

M A∗0oo

D0
��

// B
��

A0
// M A∗

−1
oo

Diagram (iii)

D0
//

ρ

��

��
B
��

A0
//

ρ

��

M A∗
−1

oo

T B
��

// B
��

T M // M B,oo

Diagram (iv)

(iii) the operation � is linear;

(iv) Ω is linear.

Since a CLWX 2-algebroid can be viewed as the categorification of a Courant algebroid, we can view
a VB-CLWX 2-algebroid as the categorification of a VB-Courant algebroid.

Example 1. Let (A−1, A0, a, l1, l2, l3) be a Lie 2-algebroid. Let E0 = A0 ⊕ A∗
−1, E−1 = A−1 ⊕ A∗0 and

E = E0 ⊕ E−1. Then (E−1, E0, ∂, ρ, S , �,Ω) is a CLWX 2-algebroid, where ∂ : E−1 −→ E0 is given by

∂(X1 + α0) = l1(X1) + l∗1(α0), ∀X1 ∈ Γ(A−1), α0 ∈ Γ(A∗0),

ρ : E0 −→ T M is given by

ρ(X0 + α1) = a(X0), ∀X0 ∈ Γ(A0), α1 ∈ Γ(A∗−1),

the symmetric bilinear form S = (·, ·)+ is given by

(X0 + α1 + X1 + α0,Y0 + β1 + Y1 + β0)+ = 〈X0, β0〉 + 〈Y0, α0〉 + 〈X1, β1〉 + 〈Y1, α1〉,

the operation � is given by
(X0 + α1) � (Y0 + β1) = l2(X0,Y0) + L0

X0β
1 − L0

Y0α
1,

(X0 + α1) � (X1 + α0) = l2(X0, X1) + L0
X0α

0 + ιX1δ(α1),
(X1 + α0) � (X0 + α1) = l2(X1, X0) + L1

X1α
1 − ιX0δ(α0),

(5.2)

and the E−1-valued 3-form Ω is defined by

Ω(X0 + α1,Y0 + β1,Z0 + ζ1) = l3(X0,Y0,Z0) + L3
X0,Y0ζ

1 + L3
Z0,X0β

1 + L3
Y0,Z0α

1,
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where L0, L1, L3 are given by (3.1). It is straightforward to see that this CLWX 2-algebroid gives rise to
a VB-CLWX 2-algebroid:

A−1 ×M A∗0 //

��

��
M

��
A−1

//

��

M

A0 ×M A∗
−1

//

��
M

��
A0

// M.

Example 2. For any manifold M, (T ∗[1]M,T M, ∂ = 0, ρ = id, S , �,Ω = 0) is a CLWX 2-algebroid,
where S is the natural symmetric pairing between T M and T ∗M, and � is the standard Dorfman bracket
given by

(X + α) � (Y + β) = [X,Y] + LXβ − ιYdα, ∀ X,Y ∈ X(M), α, β ∈ Ω1(M). (5.3)

See [34, Remark 3.4] for more details. In particular, for any vector bundle E, (T ∗E∗,T E∗, ∂ = 0, ρ =

id, S , �,Ω = 0) is a CLWX 2-algebroid, which gives rise to a VB-CLWX 2-algebroid:

T ∗E∗ //

��

��

E∗
��

E //

��

M T ∗Moo

T E∗ //

��
E∗

��
T M // M E∗.oo

We have a higher analogue of Theorem 2.3:

Theorem 5.5. There is a one-to-one correspondence between split Lie 3-algebroids and split VB-CLWX
2-algebroids.

Proof. LetA = (A−2, A−1, A0, a, l1, l2, l3, l4) be a split Lie 3-algebroid. Then T ∗[3]A[1] is a symplectic
NQ manifold of degree 3. Note that

T ∗[3]A[1] = T ∗[3](A0 ×M A∗−1 ×M A∗−2)[1],

where A0 ×M A∗
−1 ×M A∗

−2 is viewed as a vector bundle over the base A∗
−2 and A−1 ×M A∗0 ×M A∗

−2 is its dual
bundle. Denote by (xi, µ j, ξ

k, θl, pi, µ
j, ξk, θ

l) a canonical (Darboux) coordinate on T ∗[3](A0 ×M A∗
−1 ×M

A∗
−2)[1], where xi is a smooth coordinate on M, µ j ∈ Γ(A−2) is a fibre coordinate on A∗

−2, ξk ∈ Γ(A∗0) is
a fibre coordinate on A0, θl ∈ Γ(A−1) is a fibre coordinate on A∗

−1 and (pi, µ
j, ξk, θ

l) are the momentum
coordinates for (xi, µ j, ξ

k, θl). About their degrees, we have(
xi µ j ξk θl pi µ j ξk θl

0 0 1 1 3 3 2 2

)
The symplectic structure is given by

ω = dxidpi + dµ jdµ j + dξkdξk + dθldθl,

which is degree 3. The Lie 3-algebroid structure gives rise to a degree 4 function Θ satisfying {Θ,Θ} = 0.
By Theorem 5.2, we obtain a CLWX 2-algebroid (D−1,D0, ∂, ρ, S , �,Ω), where D−1 = A−1×M A∗0×M A∗

−2
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and D0 = A0 ×M A∗
−1 ×M A∗

−2 are vector bundles over A∗
−2. Obviously, they give the graded double vector

bundle (
A−1 ×M A∗0 ×M A∗

−2; A−1, A∗−2; M
A0 ×M A∗

−1 ×M A∗
−2; A0, A∗−2; M

)
.

The section space ΓA∗
−2

(D0) are generated by Γ(A∗
−1) (the space of core sections) and Γ(A−2⊗A∗

−1)⊕Γ(A0)
(the space of linear sections) as C∞(A∗

−2)-module. Similarly, The section space ΓA∗
−2

(D−1) are generated
by Γ(A∗0) and Γ(A−2 ⊗ A∗0) ⊕ Γ(A−1) as C∞(A∗

−2)-module. Thus, in the sequel we only consider core
sections and linear sections.

The graded symmetric bilinear form S is given by

S (e0, e1) = S (X0 + ψ1 + α1, X1 + ψ0 + α0)
= 〈α1, X1〉 + 〈α0, X0〉 + ψ1(X1) + ψ0(X0),

for all e0 = X0 + ψ1 + α1 ∈ ΓA∗
−2

(D0) and e1 = X1 + ψ0 + α0 ∈ ΓA∗
−2

(D−1), where Xi ∈ Γ(A−i),
ψi ∈ Γ(A−2 ⊗ A∗

−i) and αi ∈ Γ(A∗
−i). Then it is obvious that((

A−1 ×M A∗0 ×M A∗
−2; A−1, A∗−2; M

A0 ×M A∗
−1 ×M A∗

−2; A0, A∗−2; M

)
, S

)
is a metric graded double vector bundle.

The bundle map ∂ : D−1 −→ D0 is given by

∂(X1 + ψ0 + α0) = l1(X1) + l2(X1, ·)|A−1 + ψ0 ◦ l1 + l∗1(α0).

Thus, ∂ : D−1 −→ D0 is a double vector bundle morphism over l1 : A−1 −→ A0.
Note that functions on A∗

−2 are generated by fibrewise constant functions C∞(M) and fibrewise linear
functions Γ(A−2). For all f ∈ C∞(M) and X2 ∈ Γ(A−2), the anchor ρ : D0 −→ T A∗

−2 is given by

ρ(X0 + ψ1 + α1)( f + X2) = a(X0)( f ) + 〈α1, l1(X2)〉 + l2(X0, X2) + ψ1(l1(X2)).

Therefore, for a linear section X0 + ψ1 ∈ Γl
A∗
−2

(D0), the image ρ(X0 + ψ1) is a linear vector field and for a
core section α1 ∈ Γ(A∗

−1), the image ρ(α1) is a constant vector field. Thus, ρ is linear.
The bracket operation � is given by

(X0 + ψ1 + α1) � (Y0 + φ1 + β1)
= l2(X0,Y0) + l3(X0,Y0, ·)|A−1 + l2(X0, φ1(·)) − φ1 ◦ l2(X0, ·)|A−1 + L0

X0
β1

+ψ1 ◦ l2(Y0, ·)|A−1 − l2(Y0, ψ1(·)) + ψ1 ◦ l1 ◦ φ
1 − φ1 ◦ l1 ◦ ψ

1 − β1 ◦ l1 ◦ ψ
1

−L0
Y0
α1 + α1 ◦ l1 ◦ φ

1,

(X0 + ψ1 + α1) � (Y1 + φ0 + β0)
= l2(X0,Y1) + l3(X0, ·,Y1)|A0 + l2(X0, φ0(·)) − φ0 ◦ l2(X0, ·)|A0 + L0

X0β
0

−ψ1l2(·,Y1)|A0 + δ(ψ1(Y1)) + ψ1 ◦ l1 ◦ φ
0 + ιY1δα

1 + α1 ◦ l1 ◦ φ
0,

(Y1 + φ0 + β0) � (X0 + ψ1 + α1)
= l2(Y1, X0) − l3(X0, ·,Y1)|A0 − l2(X0, φ0(·)) + φ0 ◦ l2(X0, ·)|A0 + δ(φ0(X0))
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−ιX0δβ0 + ψ1l2(·,Y1)|A0 − ψ
1 ◦ l1 ◦ φ

0 + L1
Y1
α1 − α1 ◦ l1 ◦ φ

0.

Then it is straightforward to see that the operation � is linear.
Finally, Ω is given by

Ω(X0 + ψ1 + α1,Y0 + φ1 + β1,Z0 + ϕ1 + γ1)
= l3(X0,Y0,Z0) + l4(X0,Y0,Z0, ·)
−ϕ1 ◦ l3(X0,Y0, ·)|A0 − φ

1 ◦ l3(Z0, X0, ·)|A0 − ψ
1 ◦ l3(Y0,Z0, ·)|A0

+L3
X0,Y0γ

1 + L3
Y0,Z0α

1 + L3
Z0,X0β

1,

which implies that Ω is also linear.
Thus, a split Lie 3-algebroid gives rise to a split VB-CLWX 2-algebroid:

D−1
//

∂

��

��
A∗
−2
��

A−1
//

��

M A∗0oo

D0
//

��
A∗
−2
��

A0
// M A∗

−1.
oo

Conversely, given a split VB-CLWX 2-algebroid:

D−1
//

∂

��

��
B
��

A−1
//

��

M A∗0oo

D0
//

��
B
��

A0
// M A∗

−1,
oo

where D−1 = A−1 ×M A∗0 ×M B and D0 = A0 ×M A∗
−1 ×M B, then we can deduce that the corresponding

symplectic NQ-manifold of degree 3 is T ∗[3]A[1], whereA = A0 ⊕ A−1 ⊕ B is a graded vector bundle
in which B is of degree −2, and the Q-structure gives rise to a Lie 3-algebroid structure onA. We omit
details.

Remark 3. Since every double vector bundle is splitable, every VB-CLWX 2-algebroid is isomorphic to
a split one. Meanwhile, by choosing a splitting, we obtain a split Lie 3-algebroid from an NQ-manifold
of degree 3 (Lie 3-algebroid). Thus, we can enhance the above result to be a one-to-one correspondence
between Lie 3-algebroids and VB-CLWX 2-algebroids. We omit such details.

Recall that the tangent prolongation of a Courant algebroid is a VB-Courant algebroid ([32, Propo-
sition 3.4.1]). Now we show that the tangent prolongation of a CLWX 2-algebroid is a VB-CLWX
2-algebroid. The notations used below is the same as the ones used in Section 3.

Proposition 3. Let (E−1, E0, ∂, ρ, S , �,Ω) be a CLWX 2-algebroid. Then we obtain that
(T E−1,T E0, ∂̃, ρ̃, S̃ , �̃, Ω̃) is a CLWX 2-algebroid over T M, where the bundle map ∂̃ : T E−1 −→ T E0 is
given by

∂̃(σ1
T ) = ∂(σ1)T , ∂̃(σ1

C) = ∂(σ1)C,
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the bundle map ρ̃ : T E0 −→ TT M is given by

ρ̃(σ0
T ) = ρ(σ0)T , ρ̃(σ0

C) = ρ(σ0)C,

the degree 1 bilinear form S̃ is given by

S̃ (σ0
T , τ

1
T ) = S (σ0, τ1)T , S̃ (σ0

T , τ
1
C) = S (σ0, τ1)C,

S̃ (σ0
C, τ

1
T ) = S (σ0, τ1)C, S̃ (σ0

C, τ
1
C) = 0,

the bilinear operation �̃ is given by

σ0
T �̃τ

0
T = (σ0�τ0)T , σ0

T �̃τ
0
C = −τ0

C�̃σ
0
T = (σ0 � τ0)C, σ0

C�̃τ
0
C = 0,

σ0
T �̃τ

1
T = (σ0�τ1)T , σ0

T �̃τ
1
C = σ0

C�̃τ
1
T = (σ0 � τ1)C, σ0

C�̃τ
1
C = 0,

τ1
T �̃σ

0
T = (τ1 � σ0)T , τ1

C�̃σ
0
T = τ1

T �̃σ
0
C = (τ1 � σ0)C, τ1

C�̃σ
0
C = 0,

and Ω̃ : ∧3T E0 −→ T E−1 is given by

Ω̃(σ0
T , τ

0
T , ς

0
T ) = Ω(σ0, τ0, ς0)T , Ω̃(σ0

T , τ
0
T , ς

0
C) = Ω(σ0, τ0, ς0)C, Ω̃(σ0

T , τ
0
C, ς

0
C) = 0,

for all σ0, τ0, ς0 ∈ Γ(E0) and σ1, τ1 ∈ Γ(E−1).
Moreover, we have the following VB-CLWX 2-algebroid:

T E−1
//

��

��
T M

��

��
E−1

//

��

M

��

E−1
oo

T E0
//

��
T M

��
E0

// M E0.oo

Proof. Since (E−1, E0, ∂, ρ, S , �,Ω) is a CLWX 2-algebroid, it is straightforward to deduce that
(T E−1,T E0, ∂̃, ρ̃, S̃ , �̃, Ω̃) is a CLWX 2-algebroid over T M. Moveover, it is obvious that ∂̃, ρ̃, S̃ , �̃, Ω̃ are
all linear, which implies that we have a VB-CLWX 2-algebroid.

6. E-CLWX 2-algebroid

In this section, we introduce the notion of an E-CLWX 2-algebroid as the categorification of an
E-Courant algebroid introduced in [11]. We show that associated to a VB-CLWX 2-algebroid, there is
an E-CLWX 2-algebroid structure on the corresponding graded fat bundle.

There is an E-valued pairing 〈·, ·〉E between the jet bundle JE and the first order covariant differential
operator bundle DE defined by

〈µ, d〉E , d(u), ∀ d ∈ (DE)m, µ ∈ (JE)m, u ∈ Γ(E) statisfying µ = [u]m.

Definition 6.1. Let E be a vector bundle. An E-CLWX 2-algebroid is a 6-tuple (K , ∂, ρ,S, �,Ω), where
K = K−1 ⊕ K0 is a graded vector bundle over M and
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• ∂ : K−1 −→ K0 is a bundle map;

• S : K ⊗ K → E is a surjective graded symmetric nondegenerate E-valued pairing of degree 1,
which induces an embedding: K ↪→ Hom(K , E);

• ρ : K0 → DE is a bundle map, called the anchor, such that ρ?(JE) ⊂ K−1, i.e.

S(ρ?(µ), e0) =
〈
µ, ρ(e0)

〉
E
, ∀ µ ∈ Γ(JE), e0 ∈ Γ(K0);

• � : Γ(K−i) × Γ(K− j) −→ Γ(K−(i+ j)), 0 ≤ i + j ≤ 1 is an R-bilinear operation;

• Ω : ∧3K0 −→ K−1 is a bundle map,

such that the following properties hold:

(E1) (Γ(K), ∂, �,Ω) is a Leibniz 2-algebra;

(E2) for all e ∈ Γ(K), e � e = 1
2DS(e, e), whereD : Γ(E) −→ Γ(K−1) is defined by

S(Du, e0) = ρ(e0)(u), ∀u ∈ Γ(E), e0 ∈ Γ(K0); (6.1)

(E3) for all e1
1, e

1
2 ∈ Γ(K−1), S(∂(e1

1), e1
2) = S(e1

1, ∂(e1
2));

(E4) for all e1, e2, e3 ∈ Γ(K), ρ(e1)S(e2, e3) = S(e1 � e2, e3) + S(e2, e1 � e3);

(E5) for all e0
1, e

0
2, e

0
3, e

0
4 ∈ Γ(K0), S(Ω(e0

1, e
0
2, e

0
3), e0

4) = −S(e0
3,Ω(e0

1, e
0
2, e

0
4));

(E6) for all e0
1, e

0
2 ∈ Γ(K0), ρ(e0

1 � e0
2) = [ρ(e0

1), ρ(e0
2)]D, where [·, ·]D is the commutator bracket on Γ(DE).

A CLWX 2-algebroid can give rise to a Lie 3-algebra ([34, Theorem 3.11]). Similarly, an E-CLWX
2-algebroid can also give rise to a Lie 3-algebra. Consider the graded vector space e = e−2 ⊕ e−1 ⊕ e0,
where e−2 = Γ(E), e−1 = Γ(K−1) and e0 = Γ(K0). We introduce a skew-symmetric bracket on Γ(K),

Je1, e2K =
1
2

(e1 � e2 − e2 � e1), ∀ e1, e2 ∈ Γ(K), (6.2)

which is the skew-symmetrization of �.

Theorem 6.2. An E-CLWX 2-algebroid (K , ∂, ρ,S, �,Ω) gives rise to a Lie 3-algebra (e, l1, l2, l3, l4),
where li are given by

l1(u) = D(u), ∀ u ∈ Γ(E),
l1(e1) = ∂(e1), ∀ e1 ∈ Γ(K−1),

l2(e0
1, e

0
2) =

q
e0

1, e
0
2

y
, ∀ e0

1, e
0
2 ∈ Γ(K0),

l2(e0, e1) = Je0, e1K , ∀ e0 ∈ Γ(K0), e1 ∈ Γ(K−1),
l2(e0, f ) = 1

2S(e0,D f ), ∀ e0 ∈ Γ(K0), f ∈ Γ(E),
l2(e1

1, e
1
2) = 0, ∀ e1

1, e
1
2 ∈ Γ(K−1),

l3(e0
1, e

0
2, e

0
3) = Ω(e0

1, e
0
2, e

0
3), ∀ e0

1, e
0
2, e

0
3 ∈ Γ(K0),

l3(e0
1, e

0
2, e

1) = −T (e0
1, e

0
2, e

1), ∀ e0
1, e

0
2 ∈ Γ(K0), e1 ∈ Γ(K−1),

l4(e0
1, e

0
2, e

0
3, e

0
4) = Ω(e0

1, e
0
2, e

0
3, e

0
4), ∀ e0

1, e
0
2, e

0
3, e

0
4 ∈ Γ(K0),
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where the totally skew-symmetric T : Γ(K0) × Γ(K0) × Γ(K−1) −→ Γ(E) is given by

T (e0
1, e

0
2, e

1) =
1
6
(
S(e0

1,
q

e0
2, e

1
y

) + S(e1,
q

e0
1, e

0
2

y
) + S(e0

2,
q

e1, e0
1

y
)
)
, (6.3)

and Ω : ∧4Γ(K0) −→ Γ(E) is given by

Ω(e0
1, e

0
2, e

0
3, e

0
4) = S(Ω(e0

1, e
0
2, e

0
3), e0

4).

Proof. The proof is totally parallel to the proof of [34, Theorem 3.11], we omit the details.

Let (DB
−1,D

B
0 , ∂, ρ, S , �,Ω) be a VB-CLWX 2-algebroid on the graded double vector bundle(

D−1; A−1, B; M
D0; A0, B; M

)
. Then we have the associated graded fat bundles Â−1 ⊕ Â0, which fit the ex-

act sequences:

0→ B∗ ⊗ A∗0 −→ Â−1 −→ A−1 → 0,
0→ B∗ ⊗ A∗

−1 −→ Â0 −→ A0 → 0.

Since the bundle map ∂ is linear, it induces a bundle map ∂̂ : Â−1 −→ Â0. Since the anchor ρ is linear,
it induces a bundle map ρ̂ : Â0 −→ DB∗, where sections of DB∗ are viewed as linear vector fields on
B. Furthermore, the restriction of S on linear sections will give rise to linear functions on B. Thus, we
obtain a B∗-valued degree 1 graded symmetric bilinear form Ŝ on the graded fat bundle Â−1 ⊕ Â0. Since
the operation � is linear, it induces an operation �̂ : Â−i × Â− j −→ Â−(i+ j), 0 ≤ i + j ≤ 1. Finally, since Ω

is linear, it induces an Ω̂ : Γ(∧3Â0) −→ Â−1. Then we obtain:

Theorem 6.3. A VB-CLWX 2-algebroid gives rise to a B∗-CLWX 2-algebroid structure on the corre-
sponding graded fat bundle. More precisely, let (DB

−1,D
B
0 , ∂, ρ, S , �,Ω) be a VB-CLWX 2-algebroid on

the graded double vector bundle
(

D−1; A−1, B; M
D0; A0, B; M

)
with the associated graded fat bundle Â−1 ⊕ Â0.

Then (Â−1, Â0, ∂̂, ρ̂, Ŝ , �̂, Ω̂) is a B∗-CLWX 2-algebroid.

Proof. Since all the structures defined on the graded fat bundle Â−1 ⊕ Â0 are the restriction of the
structures in the VB-CLWX 2-algebroid, it is straightforward to see that all the axioms in Definition 6.1
hold.

Example 3. Consider the VB-CLWX 2-algebroid given in Example 2, the corresponding E-CLWX
2-algebroid is ((JE)[1],DE, ∂ = 0, ρ = id,S = (·, ·)E , �,Ω = 0), where the graded symmetric nonde-
generate E-valued pairing (·, ·)E is given by

(d + µ, t + ν)E = 〈µ, t〉E + 〈ν, d〉E , ∀ d + µ, t + ν ∈ DE ⊕ JE,

and � is given by
(d + µ) � (r + ν) = [d, r]D + Ldν − Lrµ + d 〈µ, r〉E .

See [10] for more details.

Example 4. Consider the VB-CLWX 2-algebroid given in Proposition 3. The graded fat bundle is
JE−1 ⊕ JE0. It follows that the graded jet bundle associated to a CLWX 2-algebroid is a T ∗M-CLWX
2-algebroid. This is the higher analogue of the result that the jet bundle of a Courant algebroid is
T ∗M-Courant algebroid given in [11]. See also [24] for more details.
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7. Constructions of Lie 3-algebras

As applications of E-CLWX 2-algebroids introduced in the last section, we construct Lie 3-algebras
from Lie 3-algebras in this section. Let (g−2, g−1, g0, l1, l2, l3, l4) be a Lie 3-algebra. By Theorem 5.5, the
corresponding VB-CLWX 2-algebroid is given by

D−1
//

∂

��

��

g∗
−2
��

g−1
//

��

pt g∗0
oo

D0
//

��

g∗
−2
��

g0 // pt g∗
−1.

oo

where D−1 = g−1 ⊕ g
∗
0 ⊕ g

∗
−2 and D0 = g0 ⊕ g

∗
−1 ⊕ g

∗
−2.

By Theorem 6.3, we obtain:

Proposition 4. Let (g−2, g−1, g0, l1, l2, l3, l4) be a Lie 3-algebra. Then there is an E-CLWX 2-
algebroid (Hom(g0, g−2) ⊕ g−1,Hom(g−1, g−2) ⊕ g0, ∂, ρ,S, �,Ω), where for all xi, yi, zi ∈ g−i, φi, ψi, ϕi ∈

Hom(g−i, g−2), ∂ : Hom(g0, g−2) ⊕ g−1 −→ Hom(g−1, g−2) ⊕ g0 is given by

∂(φ0 + x1) = φ0 ◦ l1 + l2(x1, ·)|g−1 + l1(x1), (7.1)

ρ : Hom(g−1, g−2) ⊕ g0 −→ gl(g−2) is given by

ρ(φ1 + x0) = φ1 ◦ l1 + l2(x0, ·)|g−2 , (7.2)

the g−2-valued pairing S is given by

S(φ1 + x0, ψ0 + y1) = φ1(y1) + ψ0(x0), (7.3)

the operation � is given by

(x0 + ψ1) � (y0 + φ1) = l2(x0, y0) + l3(x0, y0, ·)|g−1 + l2(x0, φ1(·)) − φ1 ◦ l1 ◦ ψ
1

−φ1 ◦ l2(x0, ·)|g−1 + ψ1 ◦ l2(y0, ·)|g−1 − l2(y0, ψ1(·)) + ψ1 ◦ l1 ◦ φ
1,

(x0 + ψ1) � (y1 + φ0) = l2(x0, y1) + l3(x0, ·, y1)|g0 + l2(x0, φ0(·))
−φ0 ◦ l2(x0, ·)|g0 − ψ

1l2(·, y1)|g0 + δ(ψ1(y1)) + ψ1 ◦ l1 ◦ φ
0,

(y1 + φ0) � (x0 + ψ1) = l2(y1, x0) − l3(x0, ·, y1)|g0 − l2(x0, φ0(·))
+φ0 ◦ l2(x0, ·)|g0 + δ(φ0(x0)) + ψ1l2(·, y1)|g0 − ψ

1 ◦ l1 ◦ φ
0,

(7.4)

and Ω is given by

Ω(φ1 + x0, ψ1 + y0 + ϕ1 + z0) = l3(x0, y0, z0) + l4(x0, y0, z0, ·)
−ϕ1 ◦ l3(x0, y0, ·)|g0 − φ

1 ◦ l3(z0, x0, ·)|g0 − ψ
1 ◦ l3(y0, z0, ·)|g0 . (7.5)

By (7.2), it is straightforward to deduce that the corresponding D : g−2 −→ Hom(g0, g−2) ⊕ g−1 is
given by

D(x2) = l2(·, x2) + l1(x2) (7.6)

Then by Theorem 6.2, we obtain:
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Proposition 5. Let (g−2, g−1, g0, l1, l2, l3, l4) be a Lie 3-algebra. Then there is a Lie 3-algebra
(g−2, g−1, g0, l1, l2, l3, l4), where g−2 = g−2, g−1 = Hom(g0, g−2) ⊕ g−1, g0 = Hom(g−1, g−2) ⊕ g0, and
li are given by

l1(x2) = D(x2), ∀ x2 ∈ g−2,

l1(φ0 + x1) = φ0 ◦ l1 + l2(x1, ·)|g−1 + l1(x1), ∀ φ0 + x1 ∈ g−1,

l2(e0
1, e

0
2) = e0

1 � e0
2, ∀ e0

1, e
0
2 ∈ g0,

l2(e0, e1) = 1
2 (e0 � e1 − e1 � e0), ∀ e0 ∈ g0, e1 ∈ g−1,

l2(e0, x2) = 1
2S(e0,Dx2), ∀ e0 ∈ g0, x2 ∈ g−2,

l2(e1
1, e

1
2) = 0, ∀ e1

1, e
1
2 ∈ g−1,

l3(e0
1, e

0
2, e

0
3) = Ω(e0

1, e
0
2, e

0
3), ∀ e0

1, e
0
2, e

0
3 ∈ g0,

l3(e0
1, e

0
2, e

1) = −T (e0
1, e

0
2, e

1), ∀ e0
1, e

0
2 ∈ g0, e

1 ∈ g−1,

l4(e0
1, e

0
2, e

0
3, e

0
4) = Ω(e0

1, e
0
2, e

0
3, e

0
4), ∀ e0

1, e
0
2, e

0
3, e

0
4 ∈ g0,

where the operation D, �, Ω are given by (7.6), (7.4), (7.5) respectively, T : g0 × g0 × g−1 −→ g−2 is
given by

T (e0
1, e

0
2, e

1) =
1
6
(
S(e0

1, l2(e0
2, e

1)) + S(e1, l2(e0
1, e

0
2)) + S(e0

2, l2(e1, e0
1))

)
,

and Ω : ∧4g0 −→ g−2 is given by

Ω(e0
1, e

0
2, e

0
3, e

0
4) = S(Ω(e0

1, e
0
2, e

0
3), e0

4).

By Proposition 5, we can give interesting examples of Lie 3-algebras.

Example 5. We view a 3-term complex of vector spaces V−2
l1
−→ V−1

l1
−→ V0 as an abelian Lie 3-algebra.

By Proposition 5, we obtain the Lie 3-algebra

(V−2,Hom(V0,V−2) ⊕ V−1,Hom(V−1,V−2) ⊕ V0, l1, l2, l3, l4 = 0),

where li, i = 1, 2, 3 are given by

l1(x2) = l1(x2),
l1(φ0 + y1) = φ0 ◦ l1 + l1(y1),

l2(ψ1 + x0, φ1 + y0) = ψ1 ◦ l1 ◦ φ
1 − φ1 ◦ l1 ◦ ψ

1,

l2(ψ1 + x0, φ0 + y1) = 1
2 l1(ψ1(y1) − φ0(x0)) + ψ1 ◦ l1 ◦ φ

0,

l2(ψ1 + x0, x2) = 1
2ψ

1(l1(x2)),
l2(ψ0 + x1, φ0 + y1) = 0,

l3(ψ1 + x0, φ1 + y0, ϕ1 + z0) = 0,
l3(ψ1 + x0, φ1 + y0, ϕ0 + z1) = −1

4

(
ψ1 ◦ l1 ◦ φ

1(z1) − φ1 ◦ l1 ◦ ψ
1(z1)

−ψ1 ◦ l1 ◦ ϕ
0(y0) + φ1 ◦ l1 ◦ ϕ

0(x0)
)
,

for all x2 ∈ V−2, ψ
0+x1, φ0+y1, ϕ0+z1 ∈ Hom(V0,V−2)⊕V−1, ψ

1+x0, φ1+y0, ϕ1+z0 ∈ Hom(V−1,V−2)⊕V0.

Example 6. (Higher analogue of the Lie 2-algebra of string type )
A Lie 2-algebra (g−1, g0, l̃1, l̃2, l̃3) gives rise to a Lie 3-algebra (R, g−1, g0, l1, l2, l3, l4 = 0) naturally, where
li, i = 1, 2, 3 is given by

l1(r) = 0, l1(x1) = l̃1(x1),
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l2(x0, y0) = l̃2(x0, y0), l2(x0, y1) = l̃2(x0, y1), l2(x0, r) = 0, l2(x1, y1) = 0,
l3(x0, y0, z0) = l̃3(x0, y0, z0), l3(x0, y0, z1) = 0,

for all x0, y0, z0 ∈ g0, x1, y1, z1 ∈ g−1, and r, s ∈ R. By Proposition 5, we obtain the Lie 3-algebra
(R, g−1 ⊕ g

∗
0, g0 ⊕ g

∗
−1, l1, l2, l3, l4), where li, i = 1, 2, 3, 4 are given by

l1(r) = 0,
l1(x1 + α0) = l1(x1) + l∗1(α0),

l2(x0 + α1, y0 + β1) = l2(x0, y0) + ad0∗
x0β1 − ad0∗

y0α1,

l2(x0 + α1, y1 + β0) = l2(x0, y1) + ad0∗
x0β0 − ad1∗

y1α1,

l2(x1 + α0, y1 + β0) = 0,
l2(x0 + α1, r) = 0,

l3(x0 + α1, y0 + β1, z0 + ζ1) = l3(x0, y0, z0) + ad3∗
x0,y0ζ1 + ad3∗

y0,z0α1

+ad3∗
z0,x0β1,

l3(x0 + α1, y0 + β1, z1 + ζ0) =
1
2
(
〈α1, l2(y0, z1)〉 + 〈β1, l2(z1, x0)〉

+〈ζ0, l2(x0, y0)〉
)
,

l4(x0 + α1, y0 + β1, z0 + ζ1, u0 + γ1) = 〈γ1, l3(x0, y0, z0)〉 − 〈ζ1, l3(x0, y0, u0)〉
−〈α1, l3(y0, z0, u0)〉 − 〈β1, l3(z0, x0, u0)〉

for all x0, y0, z0, u0 ∈ g0, x1, y1, z1 ∈ g−1, α
1, β1, ζ1, γ1 ∈ g∗

−1, α
0, β0 ∈ g∗0, where ad0∗

x0 : g∗
−i −→ g

∗
−i,

ad1∗
x1 : g∗

−1 −→ g
∗
0 and ad3∗

x0,y0 : g∗
−1 −→ g

∗
0 are defined respectively by

〈ad0∗
x0α1, x1〉 = −〈α1, l2(x0, x1)〉, 〈ad0∗

x0α0, y0〉 = −〈α0, l2(x0, y0)〉,
〈ad1∗

x1α1, y0〉 = −〈α1, l2(x1, y0)〉, 〈ad3∗
x0,y0α1, z0〉 = −〈α1, l3(x0, y0, z0)〉.

Remark 4. For any Lie algebra (h, [·, ·]h), we have the semidirect product Lie algebra (h nad∗ h
∗, [·, ·]ad∗),

which is a quadratic Lie algebra naturally. Consequently, one can construct the corresponding Lie
2-algebra (R, h nad∗ h

∗, l1 = 0, l2 = [·, ·]ad∗ , l3), where l3 is given by

l3(x + α, y + β, z + γ) = 〈γ, [x, y]h〉 + 〈β, [z, x]h〉 + 〈α, [y, z]h〉, ∀x, y, z ∈ h, α, β, γ ∈ h∗.

This Lie 2-algebra is called the Lie 2-algebra of string type in [51]. On the other hand, associated to a Lie
2-algebra (g−1, g0, l̃1, l̃2, l̃3), there is a naturally a quadratic Lie 2-algebra structure on

(
g−1⊕g

∗
0
)
⊕
(
g0⊕g

∗
−1

)
([34, Example 4.8]). Thus, the Lie 3-algebra given in the above example can be viewed as the higher
analogue of the Lie 2-algebra of string type.

Motivated by the above example, we show that one can obtain a Lie 3-algebra associated to a
quadratic Lie 2-algebra in the sequel. This result is the higher analogue of the fact that there is a Lie
2-algebra, called the string Lie 2-algebra, associated to a quadratic Lie algebra.

A quadratic Lie 2-algebra is a Lie 2-algebra (g−1, g0, l1, l2, l3) equipped with a degree 1 graded
symmetric nondegenerate bilinear form S which induces an isomorphism between g−1 and g∗0, such that
the following invariant conditions hold:

S (l1(x1), y1) = S (l1(y1), x1), (7.7)
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S (l2(x0, y0), z1) = −S (l2(x0, z1), y0), (7.8)
S (l3(x0, y0, z0), u0) = −S (l3(x0, y0, u0), z0), (7.9)

for all x0, y0, z0, u0 ∈ g0, x1, y1 ∈ g−1.
Let (g−1, g0, l1, l2, l3, S ) be a quadratic Lie 2-algebra. On the 3-term complex of vector spaces

R ⊕ g−1 ⊕ g0, where R is of degree −2, we define li, i = 1, 2, 3, 4, by

l1(r) = 0, l1(x1) = l1(x1),
l2(x0, y0) = l2(x0, y0), l2(x0, y1) = l2(x0, y1),
l2(x0, r) = 0, l2(x1, y1) = 0,

l3(x0, y0, z0) = l3(x0, y0, z0), l3(x0, y0, z1) = 1
2S (z1, l2(x0, y0)),

l4(x0, y0, z0, u0) = S (l3(x0, y0, z0), u0),

(7.10)

for all x0, y0, z0, u0 ∈ g0, x1, y1, z1 ∈ g−1 and r ∈ R.

Theorem 7.1. With above notations, (R, g−1, g0, l1, l2, l3, l4) is a Lie 3-algebra, called the higher ana-
logue of the string Lie 2-algebra.

Proof. It follows from direct verification of the coherence conditions for l3 and l4 using the invariant
conditions (7.7)-(7.9). We omit details.
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