Research article Special Issues

Bifurcation analysis and classification of all single traveling wave solution in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation

  • The current work studies the bifurcation and the classification of single traveling wave solutions of the coupled version of Radhakrishnan-Kundu-Lakshmanan equation that usually describes the dynamics of optical pulses in fiber Bragg gratings, which is also described by a family of nonlinear Schrödinger equations with cubic nonlinear terms. The solutions of the hyperbolic functions, the rational functions, the trigonometric functions and the Jacobian functions are retrieved by using the complete discrimination system of polynomial. By selecting appropriate parameters, phase portraits, two-dimension graphics and three-dimension graphics of the obtained solutions are drawn.

    Citation: Kun Zhang, Xiaoya He, Zhao Li. Bifurcation analysis and classification of all single traveling wave solution in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation[J]. AIMS Mathematics, 2022, 7(9): 16733-16740. doi: 10.3934/math.2022918

    Related Papers:

    [1] Chun Huang, Zhao Li . Soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(8): 14460-14473. doi: 10.3934/math.2022797
    [2] Emad H. M. Zahran, Omar Abu Arqub, Ahmet Bekir, Marwan Abukhaled . New diverse types of soliton solutions to the Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2023, 8(4): 8985-9008. doi: 10.3934/math.2023450
    [3] Dan Chen, Da Shi, Feng Chen . Qualitative analysis and new traveling wave solutions for the stochastic Biswas-Milovic equation. AIMS Mathematics, 2025, 10(2): 4092-4119. doi: 10.3934/math.2025190
    [4] Feiting Fan, Xingwu Chen . Dynamical behavior of traveling waves in a generalized VP-mVP equation with non-homogeneous power law nonlinearity. AIMS Mathematics, 2023, 8(8): 17514-17538. doi: 10.3934/math.2023895
    [5] Tianyong Han, Zhao Li, Jun Yuan . Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative. AIMS Mathematics, 2022, 7(8): 15282-15297. doi: 10.3934/math.2022837
    [6] Hui Wang, Xue Wang . Bifurcations of traveling wave solutions for the mixed Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(1): 1652-1663. doi: 10.3934/math.2024081
    [7] Chunyan Liu . The traveling wave solution and dynamics analysis of the fractional order generalized Pochhammer–Chree equation. AIMS Mathematics, 2024, 9(12): 33956-33972. doi: 10.3934/math.20241619
    [8] Zhao Li, Shan Zhao . Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation. AIMS Mathematics, 2024, 9(8): 22590-22601. doi: 10.3934/math.20241100
    [9] Kun Zhang, Tianyong Han, Zhao Li . New single traveling wave solution of the Fokas system via complete discrimination system for polynomial method. AIMS Mathematics, 2023, 8(1): 1925-1936. doi: 10.3934/math.2023099
    [10] Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314
  • The current work studies the bifurcation and the classification of single traveling wave solutions of the coupled version of Radhakrishnan-Kundu-Lakshmanan equation that usually describes the dynamics of optical pulses in fiber Bragg gratings, which is also described by a family of nonlinear Schrödinger equations with cubic nonlinear terms. The solutions of the hyperbolic functions, the rational functions, the trigonometric functions and the Jacobian functions are retrieved by using the complete discrimination system of polynomial. By selecting appropriate parameters, phase portraits, two-dimension graphics and three-dimension graphics of the obtained solutions are drawn.



    The Radhakrishnan-Kundu-Lakshmanan (RKL) equation in polarization-preserving fibers is given as [1,2,3,4,5,6,7,8,9,10,11]

    iqt+aqxx+b|q|2q=iλ(|q|2q)xiδqxxx, (1.1)

    where q=q(t,x) stands for the wave profile. The parameters a, b, λ and δ are real constants.

    The RKL equation are usually used to describe the pulse propagation in polarization-preserving fibers. In recent years, many experts have focused on the research of the RKL equation. Moreover, many classical methods are also used to construct the traveling wave solutions [12,13,14,15,16,17,18,19,20] of the RKL equation (for details, please refer to [1,2,3,4,5,6,7,8,9,10] and its references). But the coupled systems are usually used to simulate models form the fields of physics, nonlinear optics and engineering technology, see [21,22,23]. Therefore, the discussion of the coupled version of RKL equation has very important practical and theoretical significance.

    The coupled version of RKL equation in fiber Bragg gratings is described as follows [24]

    iut+a1vxx+(b1|u|2+c1|v|2)u+iα1ux+β1v+σ1uv2=i[λ1(|u|2u)x+γ1(|v|2u)xδ1uxxx],ivt+a2uxx+(b2|v|2+c2|u|2)v+iα2vx+β2u+σ2vu2=i[λ2(|v|2v)x+γ1(|u|2v)xδ2vxxx], (1.2)

    where u=u(t,x) and v=v(t,x) denote the wave profiles, the parameters aj, bj, cj, αj, βj, γj, σj and λj(j=1,2) are real constants. Equation (1.2) usually describe the dynamics of optical pulses in fiber Bragg gratings, which is also described by a family of nonlinear Schrödinger equations with cubic nonlinear terms. In [24], Elsayed et al. obtained the bright, dark and singular solitons solutions of Eq (1.2) by using the extended auxiliary equation method and unified Riccati equation technique. However, as far as I can, the discussion on the work of phase diagrams and single wave solutions has not been reported. This paper will focus on this issue.

    The article is organized as follows. In Section 2, we draw the phase portraits and obtain the classification of single traveling wave solution of the coupled version of RKL equation. In Section 3, we present a conclusion.

    Substituting the traveling wave transformation

    u(t,x)=U(ξ)eiθ(t,x), v(t,x)=V(ξ)eiθ(t,x),ξ=xct, θ(t,x)=kx+wt+θ0, (2.1)

    into Eq (1.2), then integrating it again and separating real parts and imaginary parts of Eq (1.2), we have

    a1V+3δ1kU(wα1k+δ1k3)U(a1k2β1)V+(b1λk)U3+(c1+σ1kγ1)UV2=0,a2U+3δ2kV(wα2k+δ2k3)V(a2k2β2)U+(b2λk)V3+(c2+σ2kγ2)VU2=0,δ1U(cα1+3k2δ1)U2a1kV3λ1U2U2γ1UVVγ1UV2=0,δ2V(cα2+3k2δ2)V2a2kU3λ2V2V2γ2UVUγ2VU2=0, (2.2)

    where c stands for the speed. k represents wave number. w is the phase constant. θ(t,x) represents phase component of soliton.

    Making V=AU (A1), and substituting it into Eq (2.2) yields

    (a1A+3δ1k)U[wα1k+δ1k3+A(a1k2β1)]U+[b1λ1k+A2(c1+σ1kγ1)]U3=0,(a2+3δ2kA)U[a2k2β2+A(wα2k+δ2k3)]U+A[A2(b2λ2k)+c2+σ2kγ2]U3=0,δ1U(cα1+3k2δ1+2a1kA)U3(λ1+γ1A2)UU2=0,δ2AU[2a2k+A(cα2+3k2δ2)]U3A(λ2A2+γ2)UU2=0. (2.3)

    Integrating both sides of the third and fourth equations of Eq (2.3) at the same time, we can get

    δ1U(cα1+3k2δ1+2a1kA)U(λ1+γ1A2)U3=0,δ2AU[2a2k+A(cα2+3k2δ2)]UA(λ2A2+γ2)U3=0. (2.4)

    From (2.4), we can easily obtain

    δ1=Aδ2, cα1+3k2δ1+2a1kA=2a2k+A(cα2+3k2δ2),λ1+γ1A2=A(λ2A2+γ2). (2.5)

    Then, we can calculate that

    c=α1Aα22a1kA+2a2k1A. (2.6)

    Therefore, the first equation of Eq (2.4) can be simplified to

    U(ξ)l1U(ξ)l2U3(ξ)=0, (2.7)

    where l1=cα1+3k2δ1+2a1kAδ1, l2=λ1+γ1A2δ1, δ10.

    Here, we denote dUdξ=y, then system (2.7) becomes the following two-dimensional system

    {dU(ξ)dξ=y,dydξ=l1U(ξ)+l2U3(ξ), (2.8)

    with Hamiltonian system

    H(U,y)=12y2l12U2(ξ)l24U4(ξ)=h. (2.9)

    The phase portraits of system (2.8) are shown in Figure 1.

    Figure 1.  Phase portraits of system (2.8).

    Multiplying U both sides of Eq (2.7) and integrating once with respect to ξ, we can get

    (U)2=l22U4+l1U2+2l0, (2.10)

    where l0 is the constant. Then, we take the following transformation

    U=±(2l2)13Φ, p=4l1(2l2)23, q=8l0(2l2)13, ξ1=(2l2)13ξ. (2.11)

    Inserting (2.11) into (2.10), we have

    (Φξ1)2=Φ(Φ2+pΦ+q). (2.12)

    Next, we can get the integral expression of Eq (2.12)

    ±(ξ1ξ0)=dΦΦ(Φ2+pΦ+q). (2.13)

    Here, we set F(Φ)=Φ2+pΦ+q and Δ=p24q. According to the root of F(Φ)=0, the solution of Eq (2.13) has the following four cases.

    Case 1. Δ=0 and Φ>0.

    When p<0 and l1<0, the solution of Eq (1.2) is

    u1(t,x)=±l1l2tanh2((2l1)122(xctξ0))ei(kx+wt+θ0), (2.14)
    u2(t,x)=±l1l2coth2((2l1)122(xctξ0))ei(kx+wt+θ0). (2.15)

    When p>0 and l1>0, the solution of Eq (1.2) is

    u3(t,x)=l1l2tan2((2l1)122(xctξ0))ei(kx+wt+θ0). (2.16)

    When p=0 and l2>0, the solution of Eq (1.2) is

    u4(t,x)=±2l2(xctξ0)2ei(kx+wt+θ0). (2.17)

    By selecting appropriate parameters, we draw the solution |u1(t,x)| and |u3(t,x)| of two-dimensional and three-dimensional graphics as shown in Figures 2 and 3, respectively.

    Figure 2.  The solution of Eq (1.2) when δ1=2, A=2, a1=1, α1=2, k=1, c=1, γ1=12, λ1=12, ξ0=0.
    Figure 3.  The solution of Eq (1.2) when δ1=2, A=2, a1=1, α1=2, k=1, c=1, γ1=1, λ1=3, ξ0=0.

    Case 2. Δ>0 and q=0. When Φ>p and p<0, the solution of Eq (1.2) is

    u5(t,x)=±l1l2tanh2((2l1)122(xctξ0))2l1l2ei(kx+wt+θ0), (2.18)
    u6(t,x)=l1l2coth2((2l1)122(xctξ0))2l1l2ei(kx+wt+θ0). (2.19)

    When Φ>p and p>0, the solution of Eq (1.2) is

    u7(t,x)=±l1l2tan2((2l1)122(xctξ0))+2l1l2ei(kx+wt+θ0). (2.20)

    Case 3.Δ>0 and p0.

    Assume that there are constants α, β and γ satisfying α<β<γ, here one of them is zero and two other constants are the roots of F(Φ)=0. Thus, when α<Φ<β, we have

    u8(t,x)=±(2l2)13[α+(βα)sn2(γα2)(2l2)13(ξ1ξ0),m]ei(kx+wt+θ0), (2.21)
    u9(t,x)=±(2l2)13[βsn2(12γα(2l2)13(ξξ0),m)+γcn2(12γα(2l2)13(ξξ0),m)]ei(kx+wt+θ0), (2.22)

    where m2=βαγα.

    Case 4. Δ<0.

    When Φ>β, we have

    u10(t,x)=±2(l0l2)12[21+cn(2(l0l2)14(ξξ0),m)1]ei(kx+wt+θ0), (2.23)

    where m2=(2l0)12l12(2l0)12.

    Remark 2.1. From the linear transformation V=AU, traveling wave transformation (2.1) and the obtained solution u(t,x), we can easily get the solution v(t,x).

    In this paper, the phase diagram is drawn with the help of Maple software and planar dynamic system theory. Moreover, the complete discrimination system of polynomial method has been applied to construct the single traveling wave solutions of the coupled version of RKL equation in fiber Bragg gratings. The solution obtained in the paper is also very effective in physics, which can help physicists understand the propagation of traveling wave in coupled RKL equation. Moreover, we have also depicted two-dimensional and three-dimensional graphs of Eq (1.2).

    The authors declare no conflict of interest.



    [1] A. Biswas, Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis, Optik, 171 (2018), 217–220. http://dx.doi.org/10.1016/j.ijleo.2018.06.043 doi: 10.1016/j.ijleo.2018.06.043
    [2] M. Annamalai, N. Veerakumar, S. Narasimhan, A. Selvaraj, Q. Zhou, A. Biswas, et al., Algorithm for dark solitons with Radhakrishnan-Kundu-Lakshmanan model in an optical fiber, Results Phys., 30 (2021), 104806. http://dx.doi.org/10.1016/j.rinp.2021.104806 doi: 10.1016/j.rinp.2021.104806
    [3] A. Biswas, M. Ekici, A. Sonmezoglu, A. Alshomrani, Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by extended trial function scheme, Optik, 160 (2018), 415–427. http://dx.doi.org/10.1016/j.ijleo.2018.02.017 doi: 10.1016/j.ijleo.2018.02.017
    [4] S. ur Rehman, J. Ahmad, Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing, Alex. Eng. J., 60 (2021), 1339–1354. http://dx.doi.org/10.1016/j.aej.2020.10.055 doi: 10.1016/j.aej.2020.10.055
    [5] A. Biswas, Y. Yıldırım, E. Yasar, M. Mahmood, A. Alshorani, Q. Zhou, et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes, Optik, 163 (2018), 126–136. http://dx.doi.org/10.1016/j.ijleo.2018.02.109 doi: 10.1016/j.ijleo.2018.02.109
    [6] Y. Yıldırım, A. Biswas, Q. Zhou, A. Alzahrani, M. Belic, Optical solitons in birefringent fibers with Radhakrishnan-Kundu-Lakshmanan equation by a couple of strategically sound integration architectures, Chinese J. Phys., 65 (2020), 341–354. http://dx.doi.org/10.1016/j.cjph.2020.02.029 doi: 10.1016/j.cjph.2020.02.029
    [7] D. Lu, A. Seadawy, M. Khater, Dispersive optical soliton of the generalized Radhakrishnan-Kundu-Lakshmanan dynamical equation with power law nonlinearity and its applications, Optik, 164 (2018), 54–64. http://dx.doi.org/10.1016/j.ijleo.2018.02.082 doi: 10.1016/j.ijleo.2018.02.082
    [8] N. Raza, A. Javid, Dynamics of optical solitons with Radhakrishnan-Kundu-Lakshmanan model via two reliable integration schemes, Optik, 178 (2019), 557–566. http://dx.doi.org/10.1016/j.ijleo.2018.09.133 doi: 10.1016/j.ijleo.2018.09.133
    [9] A. Ghose-Choudhury, S. Garai, Solutions of the variabel coefficient Radhakrishnan-Kundu-Lakshmanan equation using the method of similarity reduction, Optik, 241 (2021), 167254. http://dx.doi.org/10.1016/j.ijleo.2021.167254 doi: 10.1016/j.ijleo.2021.167254
    [10] S. Garai, A. Ghose-Choudhury, On the solution of the generalized Radhakrishnan-Kundu-Lakshmanan equation, Optik, 243 (2021), 167374. http://dx.doi.org/10.1016/j.ijleo.2021.167374 doi: 10.1016/j.ijleo.2021.167374
    [11] G. Akram, M. Sadaf, M. Dawood, Abundant soliton solutions for Radhakrishnan-Kundu-Lakshmanan equation with Kerr law non-linearity by improved tan(Φ(ξ)2)-expansion technique, Optik, 247 (2021), 167787. http://dx.doi.org/10.1016/j.ijleo.2021.167787 doi: 10.1016/j.ijleo.2021.167787
    [12] W. Rabie, A. Seadawy, H. Ahmed, Highly dispersive optical solitons to the generalized third-order nonlinear Schrödinger dynamical equation with applications, Optik, 241 (2021), 167109. http://dx.doi.org/10.1016/j.ijleo.2021.167109 doi: 10.1016/j.ijleo.2021.167109
    [13] M. El-Sheikh, H. Ahmed, A. Arnous, W. Rabie, A. Biswas, A. Alshomrani, et al., Optical solitons in birefringent fibers with Lakshmanan-Porsezian-Daniel model by modified simple equation, Optik, 192 (2019), 162899. http://dx.doi.org/10.1016/j.ijleo.2019.05.105 doi: 10.1016/j.ijleo.2019.05.105
    [14] H. Eldidamony, H. Ahmed, A. Zaghrout, Y. Ali, A. Arnous, Optical solitons with Kudryashov's quintuple power law nonlinearity having nonlinear chromatic dispersion using modified extended direct algebraic method, Optik, 262 (2022), 169235. http://dx.doi.org/10.1016/j.ijleo.2022.169235 doi: 10.1016/j.ijleo.2022.169235
    [15] I. Samir, N. Badra, A. Seadawy, H. Ahmed, A. Arnous, Exact wave solutions of the fourth order nonlienar partial differential equation of optical fiber pulses by using different methods, Optik, 230 (2021), 166313. http://dx.doi.org/10.1016/j.ijleo.2021.166313 doi: 10.1016/j.ijleo.2021.166313
    [16] A. Seadawy, H. Ahmed, W. Rabie, A. Biswas, Chirp-free optical solitons in fiber bragg gratings with dispersive reflectivity having polynomial law of nonlinearity, Optik, 225 (2021), 165681. http://dx.doi.org/10.1016/j.ijleo.2020.165681 doi: 10.1016/j.ijleo.2020.165681
    [17] K. Nisar, M. Inc, A. Jhangeer, M. Muddasar, B. Infal, New soliton solutions of Heisenberg ferromagnetic spin chain model, Pramana-J. Phys., 96 (2022), 28. http://dx.doi.org/10.1007/s12043-021-02266-y doi: 10.1007/s12043-021-02266-y
    [18] M. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. Akbar, M. Inc, Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod, Mod. Phys. Lett. B, 35 (2021), 2150381. http://dx.doi.org/10.1142/S0217984921503814 doi: 10.1142/S0217984921503814
    [19] Z. Li, Bifurcation and traveling wave solution to fractional Biswas-Arshed equation with the beta time derivative, Chaos Soliton. Fract., 160 (2022), 112249. http://dx.doi.org/10.1016/j.chaos.2022.112249 doi: 10.1016/j.chaos.2022.112249
    [20] A. Jhangeer, M. Muddassar, J. Awrejcewicz, Z. Naz, M. Riaz, Phase portrait, multi-stability, sensitivity and chaotic analysis of Gardner's equation with their wave turbulence and solitons solutions, Results Phys., 32 (2022), 104981. http://dx.doi.org/10.1016/j.rinp.2021.104981 doi: 10.1016/j.rinp.2021.104981
    [21] Z. Li, Z. Lian, Optical solitons and single traveling wave solutions for the Triki-Biswas equation describing monomode optical fibers, Optik, 258 (2022), 168835. http://dx.doi.org/10.1016/j.ijleo.2022.168835 doi: 10.1016/j.ijleo.2022.168835
    [22] T. Han, Z. Li, Classification of all single traveling wave solutions of fractional coupled Boussinesq equations via the complete discrimination system method, Adv. Math. Phys., 2021 (2021), 3668063. http://dx.doi.org/10.1155/2021/3668063 doi: 10.1155/2021/3668063
    [23] T. Han, Z. Li, X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation, Phys. Lett. A, 395 (2021), 127217. http://dx.doi.org/10.1016/j.physleta.2021.127217 doi: 10.1016/j.physleta.2021.127217
    [24] E. Zayed, R. Shohib, M. Alngar, Y. Yıldırım, Optical solitons in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation using two integration schemes, Optik, 245 (2021), 167635. http://dx.doi.org/10.1016/j.ijleo.2021.167635 doi: 10.1016/j.ijleo.2021.167635
  • This article has been cited by:

    1. Kun Zhang, Tianyong Han, Zhao Li, New single traveling wave solution of the Fokas system via complete discrimination system for polynomial method, 2023, 8, 2473-6988, 1925, 10.3934/math.2023099
    2. Hasan Cakicioglu, Muslum Ozisik, Aydin Secer, Mustafa Bayram, Optical soliton solutions of Schrödinger–Hirota equation with parabolic law nonlinearity via generalized Kudryashov algorithm, 2023, 55, 0306-8919, 10.1007/s11082-023-04634-x
    3. Cheng Chen, Lu Li, Wei Liu, Some New Optical Solitons of the Generalized Radhakrishnan–Kundu–Lakshmanan Equations with Powers of Nonlinearity, 2022, 14, 2073-8994, 2626, 10.3390/sym14122626
    4. Chao Tang, Zhao Li, Andr Nicolet, Phase Portraits and Traveling Wave Solutions of Fokas System in Monomode Optical Fibers, 2023, 2023, 1687-9139, 1, 10.1155/2023/8783222
    5. Mustafa Bayram, Optical soliton solutions of the stochastic perturbed Radhakrishnan-Kundu-Lakshmanan equation via Itô Calculus, 2023, 98, 0031-8949, 115201, 10.1088/1402-4896/acfbff
    6. Farzaneh Alizadeh, Kamyar Hosseini, Sekson Sirisubtawee, Evren Hincal, Classical and nonclassical Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to a 3D-modified nonlinear wave equation in liquid involving gas bubbles, 2024, 2024, 1687-2770, 10.1186/s13661-024-01921-8
    7. Chen Peng, Zhao Li, Soliton solutions and dynamics analysis of fractional Radhakrishnan–Kundu–Lakshmanan equation with multiplicative noise in the Stratonovich sense, 2023, 53, 22113797, 106985, 10.1016/j.rinp.2023.106985
    8. Tianyong Han, Ying Liang, Wenjie Fan, Dynamics and soliton solutions of the perturbed Schrödinger-Hirota equation with cubic-quintic-septic nonlinearity in dispersive media, 2025, 10, 2473-6988, 754, 10.3934/math.2025035
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1729) PDF downloads(82) Cited by(8)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog