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Abstract: The current work studies the bifurcation and the classification of single traveling wave
solutions of the coupled version of Radhakrishnan-Kundu-Lakshmanan equation that usually describes
the dynamics of optical pulses in fiber Bragg gratings, which is also described by a family of nonlinear
Schrodinger equations with cubic nonlinear terms. The solutions of the hyperbolic functions, the
rational functions, the trigonometric functions and the Jacobian functions are retrieved by using the
complete discrimination system of polynomial. By selecting appropriate parameters, phase portraits,
two-dimension graphics and three-dimension graphics of the obtained solutions are drawn.
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1. Introduction

The Radhakrishnan-Kundu-Lakshmanan (RKL) equation in polarization-preserving fibers is given
as [1-11]

iQI + aqxx + b|Q|2q = l/l(lq|2Q)x - i6QXxx, (11)

where g = ¢(t, x) stands for the wave profile. The parameters a, b, A and ¢ are real constants.

The RKL equation are usually used to describe the pulse propagation in polarization-preserving
fibers. In recent years, many experts have focused on the research of the RKL equation. Moreover,
many classical methods are also used to construct the traveling wave solutions [12-20] of the RKL
equation (for details, please refer to [1-10] and its references). But the coupled systems are usually
used to simulate models form the fields of physics, nonlinear optics and engineering technology,
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see [21-23]. Therefore, the discussion of the coupled version of RKL equation has very important
practical and theoretical significance.
The coupled version of RKL equation in fiber Bragg gratings is described as follows [24]

- 2 2 . ) 2 2
iy + a\Vy + (b1lul™ + i VI)u + iayu, + Biv + ou'v: = il (ul"u) + yi(VITu)y — 01t

2 =LV, + 71 (uPv) = 62V,

: ) . . (1.2)
iV, + Gy, + (DoV|” + colul”)v + iy, + Bou + 0xv'u
where u = u(t,x) and v = v(t, x) denote the wave profiles, the parameters a;, bj, ¢, a;, Bj, ¥j, 0
and A;(j = 1,2) are real constants. Equation (1.2) usually describe the dynamics of optical pulses
in fiber Bragg gratings, which is also described by a family of nonlinear Schrodinger equations with
cubic nonlinear terms. In [24], Elsayed et al. obtained the bright, dark and singular solitons solutions
of Eq (1.2) by using the extended auxiliary equation method and unified Riccati equation technique.
However, as far as I can, the discussion on the work of phase diagrams and single wave solutions has
not been reported. This paper will focus on this issue.
The article is organized as follows. In Section 2, we draw the phase portraits and obtain the
classification of single traveling wave solution of the coupled version of RKL equation. In Section 3,
we present a conclusion.

2. Bifurcation analysis and single traveling wave solution of (1.2)

2.1. Mathematical analysis

Substituting the traveling wave transformation
u(t, x) = U™ v(t, x) = V(€)™ & = x — ct, 0(t,x) = —kx + wt + 6, 2.1)
into Eq (1.2), then integrating it again and separating real parts and imaginary parts of Eq (1.2), we
have
a\V' +386kU" - (w—ak +6,k)U — (a1k* = 1)V + (by — AU + (¢; + oy — ky,)UV? =0,
U +36kV" — (W — ask + 6:k3)V — (axk? = B)U + (by — AV? + (c3 + 05 — ky2)VU? = 0,
6 U —(c—ay + 326U = 2a1kV' =30, UU -2y, UVV —y U V* =0,

",

V" —(c—ayr + 3k*6,)V = 2a,kU" —3,V?V = 29,UVU -,V U? =0,

(2.2)

where ¢ stands for the speed. k represents wave number. w is the phase constant. (¢, x) represents
phase component of soliton.
Making V = AU (A # 1), and substituting it into Eq (2.2) yields
(@A + 361U — [w— ark + 6,k + A(a1 k> = BOIU + [by — Ak + AX(c1 + o — ky)U? =0,
(a2 + 36,kAVU” = [axk® — By + AW — sk + 8:k°) U + A[A%(by — k) + ¢ + 05 — ky,]U = 0
61U — (¢ — ay + 3K261 + 2a1kA)U - 3(A; + v AHU'U? = 0,
AU = [2a2k + A(c — @ + 3K26,)1U = 3A(LA% +y,)U'U?* = 0.

T (2.3)

Integrating both sides of the third and fourth equations of Eq (2.3) at the same time, we can get

651U" = (c — ay + 3k%6, + 2a:kA)U — (A, + y1A>U? =0,

,, : R o4
0,AU —[2axk + A(C — @y + 3k 62)]U - A(/le + )/z)U* =0.
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From (2.4), we can easily obtain
81 = Ady, ¢ —ay + 3k%6; + 2a1kA = 2ark + A(c — @y + 3K°68,), A +71A% = A(LAY +7,).  (2.5)

Then, we can calculate that

a) — Aay — 2a1kA + 2axk

— 2.6
¢ T—4 (2.6)
Therefore, the first equation of Eq (2.4) can be simplified to
U'®) - LUE - LU @) =0, 2.7)
Where ll — c—(xl+3k(2$j51+2a1kA’ lz — /ll+(gIIA2’ 61 7& 0.
2.2. Phase portraits
Here, we denote ‘fl—g =y, then system (2.7) becomes the following two-dimensional system
e _
E 3 2.8)
& = LU + LU ),
with Hamiltonian system
1 l l
H(U.y) = 5y = U@ - 7U'@) = h. (2.9)

The phase portraits of system (2.8) are shown in Figure 1.

A\

7l
2 / \ 13 ~Y 5 0|
%QEEEE§\ ¢££E
(@ <0,L<0 b) 1, >0,l, <0 © L <0,L>0 @1 >0,6L>0

Figure 1. Phase portraits of system (2.8).

2.3. Single traveling wave solution

Multiplying U" both sides of Eq (2.7) and integrating once with respect to &, we can get

/
(Uf:§W+AW+ym (2.10)

where [j is the constant. Then, we take the following transformation

U=xQ2L) 30, p=4L2L)75, q=8l2L) 77, & = 2h)I¢E. Q2.11)
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Inserting (2.11) into (2.10), we have
(D) = D(D* + pd + q).

Next, we can get the integral expression of Eq (2.12)

N
T Jo@  p0 )

(2.12)

(2.13)

Here, we set F(®) = ®* + p® + g and A = p? — 4q. According to the root of F(®) = 0, the solution

of Eq (2.13) has the following four cases.

Case 1. A =0and ® > 0.
When p < 0 and /; < 0, the solution of Eq (1.2) is

l —21))2 ,
u(t,x) = + \/_l_l tanhz(( 21)2 (r—ct - go))ez(—kx+wt+90)’
2

I —21,)z .
(L, x) = + \/ _1_1 cothz(—( 21)2 (x — ct — &))e'Rrrmieto)

2

When p > 0 and /; > 0, the solution of Eq (1.2) is

! 21,)z ,
uz(t, x) = \/i tanz(%(x —ct — fo))el(_k“WH'gO),

When p = 0 and [, > 0, the solution of Eq (1.2) is

us(t, x) = + \/;ei(—kx+wt+90)'

hL(x = ct = &)?

(2.14)

(2.15)

(2.16)

(2.17)

By selecting appropriate parameters, we draw the solution |u; (¢, x)| and |us(¢, x)| of two-dimensional

and three-dimensional graphics as shown in Figures 2 and 3, respectively.
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(a) Three-dimension graphic. (b) Two-dimension graphic.

Figure 2. The solution of Eq (1.2) when 6; = 2, A =2,a, = -l,a1 =2, k=1,c =1,
_ 1 _ 1 _
Yi=3d= 5,50—0
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(a) Three-dimension graphic. (b) Two-dimension graphic.

Figure 3. The solution of Eq (1.2) when 6; = 2, A =2,a, = -l,a1 =2, k=1,c =1,
Y1 = 1,/11 = —3,50 =0.

Case2. A >0and g =0.
When © > —p and p < 0, the solution of Eq (1.2) is

i 20
B (x = et - ) = 2o, 219

[
us(t,x) = + \/i tanhz(T L
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ue(1, %) = \/ﬁz o’ (2L D" et gy - 20 el (2.19)

When @ > —p and p > 0, the solution of Eq (1.2) is

m@@:iJ%h <“2)<—r—&»+ 20 gickermnst), (220)

Case3. A >0and p # 0.
Assume that there are constants @, 8 and y satisfying @ < 8 < 7y, here one of them is zero and two
other constants are the roots of F(®) = 0. Thus, when a@ < ® < 3, we have

us(r,x) = \/ (b)) 3 [a + (B - a)sn¥( y2n) (&1 — &), m]e/ R, (2.21)
—Bsn2
wo(t. 1) = 1| 2) Bsn2(3 \y = a2h)3 (£ - &), m)+7] — (2.22)
cn?(3 vy = ah)} (€ - &).m)
where m? = 'i:—z
Case4. A < 0.
When @ > 3, we have
2 i(—
uio(t, x) = + 2( %) 1 — 1]eHrtrrto) (2.23)
L 1+ en2loh)# (€ - &), m)

— Q) 3 l L
2(2lp) 2

where m?

Remark 2.1. From the linear transformation V = AU, traveling wave transformation (2.1) and the
obtained solution u(z, x), we can easily get the solution v(¢, x).

3. Conclusions

In this paper, the phase diagram is drawn with the help of Maple software and planar dynamic
system theory. Moreover, the complete discrimination system of polynomial method has been applied
to construct the single traveling wave solutions of the coupled version of RKL equation in fiber Bragg
gratings. The solution obtained in the paper is also very effective in physics, which can help physicists
understand the propagation of traveling wave in coupled RKL equation. Moreover, we have also
depicted two-dimensional and three-dimensional graphs of Eq (1.2).
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