This article discusses the robustness of exponential synchronization (ESy) of complex dynamic networks (CDNs) with random perturbations. Using the Gronwall-Bellman lemma and partial inequality techniques, by solving the transcendental equation, the maximum perturbation intensity of the CDN is estimated. This implies that the disturbed system achieves ESy if the disturbance intensity is within the range of our estimation. We illustrate the theoretical results with two numerical examples.
Citation: Qike Zhang, Wenxiang Fang, Tao Xie. Robustness analysis of exponential synchronization in complex dynamic networks with random perturbations[J]. AIMS Mathematics, 2023, 8(9): 20487-20509. doi: 10.3934/math.20231044
This article discusses the robustness of exponential synchronization (ESy) of complex dynamic networks (CDNs) with random perturbations. Using the Gronwall-Bellman lemma and partial inequality techniques, by solving the transcendental equation, the maximum perturbation intensity of the CDN is estimated. This implies that the disturbed system achieves ESy if the disturbance intensity is within the range of our estimation. We illustrate the theoretical results with two numerical examples.
[1] | D. J. Watts, S. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440–442. https://doi.org/10.1038/30918 doi: 10.1038/30918 |
[2] | A. L. Barabási, R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512. https://doi.org/10.1126/science.286.5439.509 doi: 10.1126/science.286.5439.509 |
[3] | J. Lü, X. Yu, G. Chen, Chaos synchronization of general complex dynamical networks, Physica A, 334 (2004), 281–302. https://doi.org/10.1016/j.physa.2003.10.052 doi: 10.1016/j.physa.2003.10.052 |
[4] | S. Strogatz, Exploring complex networks, Nature, 410 (2001), 268–176. https://doi.org/10.1038/35065725 doi: 10.1038/35065725 |
[5] | M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167–256. https://doi.org/10.1137/S003614450342480 doi: 10.1137/S003614450342480 |
[6] | Y. Shen, J. Wang, Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturban, IEEE T. Neur. Net. Lear., 45 (2011), 87–96. https://doi.org/10.1109/TNNLS.2011.2178326 doi: 10.1109/TNNLS.2011.2178326 |
[7] | W. Fang, T. Xie, B. Li, Robustness analysis of BAM cellular neural network with deviating arguments of generalized type, Discrete Dyn. Nat. Soc., 2023 (2023), 9570805. https://doi.org/10.1155/2023/9570805 doi: 10.1155/2023/9570805 |
[8] | C. Huygens, H. Oscillatorium, The pendulum clock, Trans RJ Blackwell, Ames: The Iowa State University Press, 1986. |
[9] | I. Blekhman, The problem of synchronization of dynamical systems, J. Appl. Math. Mec., 28 (1964), 239–265. https://doi.org/10.1016/0021-8928(64)90160-1 doi: 10.1016/0021-8928(64)90160-1 |
[10] | A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2004), 93–153. https://doi.org/10.1016/j.physrep.2008.09.002 doi: 10.1016/j.physrep.2008.09.002 |
[11] | Y. Xu, H. Yang, D. Tong, Y. Wang, Adaptive exponential synchronization in pth moment for stochastic time varying multi-delayed complex networks, Nonlinear Dynam., 73 (2013), 1423–1431. https://doi.org/10.1007/s11071-013-0873-0 doi: 10.1007/s11071-013-0873-0 |
[12] | Y. Li, C. Li, Complete synchronization of delayed chaotic neural networks by intermittent control with two switches in a control period, Neurocomputing, 173 (2016), 1341–1347. https://doi.org/10.1016/j.neucom.2015.09.007 doi: 10.1016/j.neucom.2015.09.007 |
[13] | G. Wang, J. Xiao, Y. Wang, J. Yi, Adaptive pinning cluster synchronization of fractional-order complex dynamical networks, Appl. Math. Comput., 231 (2014), 347–356. https://doi.org/10.1016/j.amc.2014.01.023 doi: 10.1016/j.amc.2014.01.023 |
[14] | Z. Zhang, H. Wu, Cluster synchronization in finite/fixed time for semi-markovian switching ts fuzzy complex dynamical networks with discontinuous dynamic nodes, AIMS Math., 7 (2022), 11942–11971. http://dx.doi.org/10.3934/math.2022666 doi: 10.3934/math.2022666 |
[15] | Y. Cao, Y. Kao, J. H. Park, H. Bao, Global mittag-leffler stability of the delayed fractional-coupled reaction-diffusion system on networks without strong connectedness, IEEE T. Neur. Net. Lear., 31 (2021), 6473–6483. https://doi.org/10.1109/TNNLS.2021.3080830 doi: 10.1109/TNNLS.2021.3080830 |
[16] | Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE T. Neur. Net. Lear., 32 (2020), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718 |
[17] | H. Du, P. Shi, N. Lü, Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control, Nonlinear Anal.-Real, 14 (2013), 1182–1190. https://doi.org/10.1016/j.nonrwa.2012.09.009 doi: 10.1016/j.nonrwa.2012.09.009 |
[18] | W. Wong, H. Li, S. Leung, Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties, Com. Nonlinear Sci., 17 (2012), 4877–4890. https://doi.org/10.1016/j.cnsns.2012.05.020 doi: 10.1016/j.cnsns.2012.05.020 |
[19] | R. Cheng, M. Peng, W. Yu, Pinning synchronization of delayed complex dynamical networks with nonlinear coupling, Physica A, 413 (2014), 426–431. https://doi.org/10.1016/j.physa.2014.06.034 doi: 10.1016/j.physa.2014.06.034 |
[20] | W. Shen, Z. Zeng, S. Wen, Synchronization of complex dynamical network with piecewise constant argument of generalized type, Neurocomputing, 173 (2016), 671–675. https://doi.org/10.1016/j.neucom.2015.08.014 doi: 10.1016/j.neucom.2015.08.014 |
[21] | C. Shi, G. Yang, X. Li, Event-triggered output feedback synchronization control of complex dynamical networks, Neurocomputing, 275 (2018), 29–39. https://doi.org/10.1016/j.neucom.2017.05.014 doi: 10.1016/j.neucom.2017.05.014 |
[22] | Q. Dong, S. Shi, Y. Ma, Non-fragile synchronization of complex dynamical networks with hybrid delays and stochastic disturbance via sampled-data control, ISA T., 105 (2020), 174–189. https://doi.org/10.1016/j.neucom.2017.05.014 doi: 10.1016/j.neucom.2017.05.014 |
[23] | Z. Wu, J. H. Park, H. Su, B. Song, J. Chu, Exponential synchronization for complex dynamical networks with sampled-data, J. Franklin I., 349 (2012), 2735–2749. https://doi.org/10.1016/j.jfranklin.2012.09.002 doi: 10.1016/j.jfranklin.2012.09.002 |
[24] | H. Yang, X. Wang, S. Zhong, L. Shu, Observer-based asynchronous event-triggered control for interval type-2 fuzzy systems with cyber-attacks, Inform. Sciences, 606 (2022), 805–818. https://doi.org/10.1016/j.ins.2022.05.087 doi: 10.1016/j.ins.2022.05.087 |
[25] | X. Wang, J. H. Park, Z. Liu, H. Yang, Dynamic event-triggered control for GSES of memristive neural networks under multiple cyber-attacks, IEEE T. Neur. Net. Lear., 2022. https://doi.org/10.1109/TNNLS.2022.3217461 doi: 10.1109/TNNLS.2022.3217461 |
[26] | X. Wang, J. H. Park, H. Yang, An improved protocol to consensus of delayed MASs with UNMS and aperiodic DoS cyber-attacks, IEEE T. Netw. Sci. Eng., 8 (2021), 2506–2516. https://doi.org/10.1109/TNSE.2021.3098258 doi: 10.1109/TNSE.2021.3098258 |
[27] | X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simulat., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010 |
[28] | X. Li, H. Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–397. https://doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051 |
[29] | Q. Zhang, G. Chen, L. Wan, Exponential synchronization of discrete-time impulsive dynamical networks with time-varying delays and stochastic disturbances, Neurocomputing, 309 (2018), 62–69. https://doi.org/10.1016/j.neucom.2018.04.070 doi: 10.1016/j.neucom.2018.04.070 |
[30] | H. Li, Y. Kao, H. Bao, Y. Chen, Uniform stability of complex-valued neural networks of fractional order with linear impulses and fixed time delays, IEEE T. Neur. Net. Lear., 33 (2021), 5321–5331. https://doi.org/10.1109/TNNLS.2021.3070136 doi: 10.1109/TNNLS.2021.3070136 |
[31] | W. Zhou, T. Wang, J. Mou, J. Fang, Mean square exponential synchronization in Lagrange sense for uncertain complex dynamical networks, J. Franklin I., 349 (2012), 1267–1282. https://doi.org/10.1016/j.jfranklin.2012.01.011 doi: 10.1016/j.jfranklin.2012.01.011 |
[32] | Y. Zhang, D. Gu, S. Xu, Global exponential adaptive synchronization of complex dynamical networks with neutral-type neural network nodes and stochastic disturbances, IEEE T. Circuits-I, 60 (2013), 2709–2718. https://doi.org/10.1109/TCSI.2013.2249151 doi: 10.1109/TCSI.2013.2249151 |
[33] | Y. Wang, Y. Ma, A. Chen, Exponential synchronization of markovian jump complex dynamical networks with partially uncertain transition rates and stochastic disturbances, Neurocomputing, 304 (2018), 30–46. https://doi.org/10.1016/j.neucom.2018.03.044 doi: 10.1016/j.neucom.2018.03.044 |
[34] | R. Sipahi, S. I. Niculescu, C. T. Abdallah, W. Michiels, K. Q. Gu, Stability and stabilization of systems with time delay, IEEE Contr. Syst. Mag., 31 (2011), 38–65. https://doi.org/10.1109/MCS.2010.939135 doi: 10.1109/MCS.2010.939135 |
[35] | R. Sipahi, S. I. Niculescu, C. T. Abdallah, W. Michiels, K. Q. Gu, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica, 49 (2013), 3677–3681. https://doi.org/10.1016/j.automatica.2013.09.005 doi: 10.1016/j.automatica.2013.09.005 |
[36] | H. Gao, J. Lam, G. Chen, New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys., Lett., A, 360 (2006), 263–273. https://doi.org/10.1016/j.physleta.2006.08.033 doi: 10.1016/j.physleta.2006.08.033 |
[37] | R. Cheng, M. Peng, W. Yu, B. Sun, J. Yu, Stability analysis and synchronization in discrete-time complex networks with delayed coupling, Chaos: An Interdisciplinary J. Nonlinear Sci., 23 (2013). https://doi.org/10.1063/1.4825095 doi: 10.1063/1.4825095 |
[38] | X. Liu, T. Chen, Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix, Physica A, 387 (2008), 4429–4439. https://doi.org/10.1016/j.physa.2008.03.005 doi: 10.1016/j.physa.2008.03.005 |
[39] | J. Zhu, G. Yang, Robust H dynamic output feedback synchronization for complex dynamical networks with disturbances, Neurocomputing, 175 (2016), 287–292. https://doi.org/10.1016/j.neucom.2015.10.061 doi: 10.1016/j.neucom.2015.10.061 |
[40] | P. Selvaraj, O. Kwon, R. Sakthivel, Disturbance and uncertainty rejection performance for fractional-order complex dynamical networks, Neural Networks, 112 (2019), 73–84. https://doi.org/10.1016/j.neunet.2019.01.009 doi: 10.1016/j.neunet.2019.01.009 |
[41] | W. Fang, T. Xie, B. Li, Robustness analysis of fuzzy cellular neural network with deviating argument and stochastic disturbances, IEEE Access, 11 (2023), 3717–3728. https://doi.org/10.1109/ACCESS.2023.3233946 doi: 10.1109/ACCESS.2023.3233946 |
[42] | W. Si, T. Xie, B. Li, Robustness analysis of exponential stability of neutral-type nonlinear systems with multi-interference, IEEE Access, 9 (2021), 116015–116032. https://doi.org/10.1109/ACCESS.2021.3105521 doi: 10.1109/ACCESS.2021.3105521 |
[43] | W. Si, T. Xie, B. Li, Exploration on robustness of exponentially global stability of recurrent neural networks with neutral terms and generalized piecewise constant arguments, Discrete Dyn. Nat. Soc., 2021 (2021), 9941881. https://doi.org/10.1155/2021/9941881 doi: 10.1155/2021/9941881 |
[44] | W. Si, T. Xie, B. Li, Further results on exponentially robust stability of uncertain connection weights of neutral-type recurrent neural networks, Complexity, 2021 (2021), 6941701. https://doi.org/10.1155/2021/6941701 doi: 10.1155/2021/6941701 |
[45] | B. Lia, J. Huang, D. Wang, Robustness analysis of control laws in complex dynamical networks evoked by deviating argument, Discrete Dyn. Nat. Soc., 2022 (2022). https://doi.org/10.1155/2022/2033708 doi: 10.1155/2022/2033708 |
[46] | X. Mao, Stochastic differential equations and applications, 2 Eds., UK: Woodhead Publishing, 2008. |
[47] | N. Li, H. Sun, X. Jing, Q. Zhang, Exponential synchronisation of united complex dynamical networks with multi-links via adaptive periodically intermittent control, IET Control Theory A., 7 (2013), 1725–1736. https://doi.org/10.1049/iet-cta.2013.0159 doi: 10.1049/iet-cta.2013.0159 |