Citation: Zui-Cha Deng, Fan-Li Liu, Liu Yang. Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equation[J]. AIMS Mathematics, 2021, 6(4): 3080-3104. doi: 10.3934/math.2021187
[1] | G. Albuja, A.I. Ávila, A family of new globally convergent linearization schemes for solving Richards' equation, Appl. Numer. Math., 159 (2021), 281-296. |
[2] | K. Beauchard, P. Cannarsa, M. Yamamoto, Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type, Inverse Problems, 30 (2014), 025006. doi: 10.1088/0266-5611/30/2/025006 |
[3] | M. Berardi, F. Difonzo, F. Notarnicola, M. Vurro, A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone, Appl. Numer. Math., 135 (2019) 264-275. |
[4] | M. Berardi, F. Difonzo, L. Lopez, A mixed MoL-TMoL for the numerical solution of the 2D Richards' equation in layered soils, Comput. Math. Appl., 79 (2020), 1990-2001. doi: 10.1016/j.camwa.2019.07.026 |
[5] | N. Brandhorst, D. Erdal, I. Neuweiler, Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters, Adv. Water Res., 110 (2017), 360-370. doi: 10.1016/j.advwatres.2017.10.022 |
[6] | P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003. doi: 10.1088/0266-5611/26/10/105003 |
[7] | P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J Control Optim, 47 (2008), 1-19. doi: 10.1137/04062062X |
[8] | P. Cannarsa, P. Martinez, J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differ. Equ., 10 (2005), 153-190. |
[9] | J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, 1984. |
[10] | J. R. Cannon, Y. Lin, S. Xu, Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations, Inverse Problems, 10 (1994), 227-243. |
[11] | J. Cheng, J. J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Problems, 24 (2008), 065012. doi: 10.1088/0266-5611/24/6/065012 |
[12] | M. Dehghan, Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numer. Meth. Part. Diff. Equ., 21 (2005), 611-622. doi: 10.1002/num.20055 |
[13] | M. Dehghan, Determination of a control function in three-dimensional parabolic equations, Math. Comput. Simul., 61 (2003), 89-100. doi: 10.1016/S0378-4754(01)00434-7 |
[14] | M. Dehghan, M. Tatari, Determination of a control parameter in a one-dimensional parabolicequation using the method of radial basis functions, Math. Comput. Model., 44 (2006), 1160-1168. doi: 10.1016/j.mcm.2006.04.003 |
[15] | M. Dehghan, An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model., 25 (2001), 743-754. doi: 10.1016/S0307-904X(01)00010-5 |
[16] | Z. C. Deng, K. Qian, X. B. Rao, L. Yang, G. W. Luo, An inverse problem of identifying the source coefficient in a degenerate heat equation, Inverse Probl. Sci. Eng., 23 (2015), 498-517. doi: 10.1080/17415977.2014.922079 |
[17] | F. L. Dimet, V. Shutyaev, J. Wang, M. Mu, The problem of data assimilation for soil water movement, ESAIM: Control, Optimisation and Calculus of Variations, 10 (2004), 331-345. doi: 10.1051/cocv:2004009 |
[18] | A. Kirsch, An introduction to the mathematical theory of inverse problem, Springer, New York, 1999. |
[19] | H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publishers, 1996. |
[20] | V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998. |
[21] | J. F. Lu, Z. Guan, Numerical Solution of Partial Differential Equations, Tsinghua University Press, Beijing, 2004. |
[22] | P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6 |
[23] | O. A. Oleinik, E. V. Radkevic, Second order differential equations with non-negative characteristic form, Rhode Island and Plenum Press, New York: American Mathematical Society, 1973. |
[24] | M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Harlow, Longman Scientific and Technical, Essex, 1995. |
[25] | I. S. Pop, Regularization Methods in the Numerical Analysis of Some Degenerate Parabolic Equations, IWR, University of Heidelberg, 1998. |
[26] | X. B. Rao, Y. X. Wang, K. Qian, Z. C. Deng, L. Yang, Numerical simulation for an inverse source problem in a degenerate parabolic equation, Appl. Math. Model., 39 (2015), 7537-7553. doi: 10.1016/j.apm.2015.03.016 |
[27] | R. B. Ricardo, Numerical Methods and Analysis for Degenerate Parabolic Equations and Reaction-Diffusion Systems, 2008. |
[28] | Z. Z. Sun, Numerical Solution of Partial Differential Equations, Science Press, Beijing, 2005. |
[29] | J. Tort, J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. I. H. Poincare-AN, 29 (2012), 683-713. doi: 10.1016/j.anihpc.2012.03.003 |
[30] | D. K. Wang, Y. Q. Hou, J. Y. Peng, Partial Differential Equation Method for Image Processing, Science Press, Beijing, 2008. |
[31] | L. Yang, Z. C. Deng, J. N. Yu, G. W. Luo, Optimization method for the inverse problem of reconstructing the source term in a parabolic equation, Math. Comput. Simul., 80 (2009), 314-326. doi: 10.1016/j.matcom.2009.06.031 |
[32] | L. Yang, Z. C. Deng, An inverse backward problem for degenerate parabolic equations, Numer. Meth. Part. Differ. Equ., 33 (2017), 1900-1923. doi: 10.1002/num.22165 |
[33] | L. Yang, Y. Liu, Z. C. Deng, Multi-parameters identification problem for a degenerate parabolic equation, J. Comput. Appl. Math., 366 (2020), 112422. doi: 10.1016/j.cam.2019.112422 |