Citation: Christelle Dleuna Nyoumbi, Antoine Tambue. A fitted finite volume method for stochastic optimal control problems in finance[J]. AIMS Mathematics, 2021, 6(4): 3053-3079. doi: 10.3934/math.2021186
[1] | D. N. DE G. Allen, R. V. Southwell, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder, Q. J. Mech. Appl. Math., 8 (1955), 129–145. doi: 10.1093/qjmam/8.2.129 |
[2] | C. Benezet, J. Chassagneux, C. Reisinger, A numerical scheme for the quantile hedging problem. Available from: https://arXiv.org/abs/1902.11228v1. |
[3] | V. Henderson, K. Kladvko, M. Monoyios, C. Reisinger, Executive stock option exercise with full and partial information on a drift change point. Available from: arXiv: 1709.10141v4. |
[4] | C. S. Huang, C. H. Hung, S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297–320. doi: 10.1007/s00607-006-0164-4 |
[5] | N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, Springer-Verlag, New York, 1980. |
[6] | S. Wang, A Novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699–720. doi: 10.1093/imanum/24.4.699 |
[7] | P. Forsyth, G. Labahn, Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance, J. Comput. Finance, 11 (2007), 1–43. |
[8] | P. Wilmott, The Best of Wilmott 1: Incorporating the Quantitative Finance Review, John Wiley & Sons, 2005. |
[9] | H. Pham, Optimisation et contrôle stochastique appliqués à la finance, Mathématiques et applications, Springer-Verlag, New York, 2000. |
[10] | L. Angermann, S. Wang, Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing, Numerische Math., 106 (2007), 1–40. doi: 10.1007/s00211-006-0057-7 |
[11] | H. Peyrl, F. Herzog, H. P. Geering, Numerical solution of the Hamilton-Jacobi-Bellman equation for stochastic optimal control problems, WSEAS international conference on Dynamical systems and control, 2005. |
[12] | N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients, Probab. Theory Relat. Fields, 117 (2000), 1–16. doi: 10.1007/s004400050264 |
[13] | N. V. Krylov, The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients, Appl. Math. Optim., 52 (2005), 365–399. doi: 10.1007/s00245-005-0832-3 |
[14] | E. R. Jakobsen, On the rate of convergence of approximations schemes for Bellman equations associated with optimal stopping time problems, Math. Models Methods Appl. Sci., 13 (2003), 613–644. doi: 10.1142/S0218202503002660 |
[15] | M. G. Crandall, P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277 (1983), 1–42. doi: 10.1090/S0002-9947-1983-0690039-8 |
[16] | J. Holth, Merton's portfolio problem, constant fraction investment strategy and frequency of portfolio rebalancing, Master Thesis, University of Oslo, 2011. Available from: http://hdl.handle.net/10852/10798. |
[17] | Iain Smears, Hamilton-Jacobi-Bellman Equations, Analysis and Numerical Analysis, Research report, 2011. Available from: http://fourier.dur.ac.uk/Ug/projects/highlights/PR4/Smears_HJB_report.pdf |
[18] | N. Krylov, Approximating value functions for controlled degenerate diffusion processes by using piece-wise constant policies, Electron. J. Probab., 4 (1999), 1–19. doi: 10.1214/ECP.v4-999 |
[19] | M. G. Crandall, H. Ishii, P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1–67. doi: 10.1090/S0273-0979-1992-00266-5 |
[20] | C. S. Huang, S. Wang, K. L. Teo, On application of an alternating direction method to Hamilton-Jacobi-Bellman equations, J. Comput. Appl. Math., 27 (2004), 153–166. |
[21] | N. Song, W. K. Ching, T. K. Siu, C. K. F. Yiu, On optimal cash management under a stochastic volatility model, East Asian J. Appl. Math., 3 (2013), 81–92. doi: 10.4208/eajam.070313.220413a |
[22] | K. Debrabant, Espen R. Jakobsen, Semi-Lagrangian schemes for linear and fully non-linear diffusion equations, Math. Comput., 82 (2013), 1433–1462. |
[23] | G. Barles, P. E. Souganidis, Convergence of approximation schemesfor fully nonlinear second order equations, Asymptot. Anal., 4 (1991), 271–283. doi: 10.3233/ASY-1991-4305 |