Loading [MathJax]/jax/output/SVG/jax.js
Research article

Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems

  • Received: 06 February 2023 Revised: 14 March 2023 Accepted: 20 March 2023 Published: 27 March 2023
  • MSC : 49J20, 65N22, 65N30

  • In this paper, a mixed finite element method combined with Crank-Nicolson scheme approximation of parabolic optimal control problems with control constraint is investigated. For the state and co-state, the order m=1 Raviart-Thomas mixed finite element spaces and Crank-Nicolson scheme are used for space and time discretization, respectively. The variational discretization technique is used for the control variable. We derive optimal priori error estimates for the control, state and co-state. Some numerical examples are presented to demonstrate the theoretical results.

    Citation: Yuelong Tang. Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems[J]. AIMS Mathematics, 2023, 8(5): 12506-12519. doi: 10.3934/math.2023628

    Related Papers:

    [1] Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang . Multipoint flux mixed finite element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962
    [2] Zuliang Lu, Ruixiang Xu, Chunjuan Hou, Lu Xing . A priori error estimates of finite volume element method for bilinear parabolic optimal control problem. AIMS Mathematics, 2023, 8(8): 19374-19390. doi: 10.3934/math.2023988
    [3] Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Fei Huang . Error estimates of variational discretization for semilinear parabolic optimal control problems. AIMS Mathematics, 2021, 6(1): 772-793. doi: 10.3934/math.2021047
    [4] Jie Liu, Zhaojie Zhou . Finite element approximation of time fractional optimal control problem with integral state constraint. AIMS Mathematics, 2021, 6(1): 979-997. doi: 10.3934/math.2021059
    [5] Zuliang Lu, Fei Cai, Ruixiang Xu, Chunjuan Hou, Xiankui Wu, Yin Yang . A posteriori error estimates of hp spectral element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(4): 5220-5240. doi: 10.3934/math.2022291
    [6] Changling Xu, Hongbo Chen . A two-grid $ P_0^2 $-$ P_1 $ mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342
    [7] Yanjie Zhou, Xianxiang Leng, Yuejie Li, Qiuxiang Deng, Zhendong Luo . A novel two-grid Crank-Nicolson mixed finite element method for nonlinear fourth-order sin-Gordon equation. AIMS Mathematics, 2024, 9(11): 31470-31494. doi: 10.3934/math.20241515
    [8] Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553
    [9] Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893
    [10] Jagbir Kaur, Vivek Sangwan . Stability estimates for singularly perturbed Fisher's equation using element-free Galerkin algorithm. AIMS Mathematics, 2022, 7(10): 19105-19125. doi: 10.3934/math.20221049
  • In this paper, a mixed finite element method combined with Crank-Nicolson scheme approximation of parabolic optimal control problems with control constraint is investigated. For the state and co-state, the order m=1 Raviart-Thomas mixed finite element spaces and Crank-Nicolson scheme are used for space and time discretization, respectively. The variational discretization technique is used for the control variable. We derive optimal priori error estimates for the control, state and co-state. Some numerical examples are presented to demonstrate the theoretical results.



    There are numerous research on finite element methods (FEMs) solving elliptic optimal control problems (OCPs) with control constraint. A systematic introduction can be seen in [1,2,3,4,5,6]. Due to the low regularity of the control variable, it is usually approximated by piecewise constant functions. Then the optimal priori error estimate is O(h) [7,8,9]. In order to improve the efficiency and accuracy of FEMs for solving such problems, many experts have considered its superconvergence [10,11,12], a posteriori error estimation [13,14,15], adaptive algorithm [16,17] and variational discretization technique [18,19,20].

    In the past two decades, many scholars have proposed different numerical methods for elliptic or parabolic OCPs, such as FEMs [21], space-time FEMs [22,23], characteristic FEMs [24,25], mixed finite element methods (MFEMs) [26,27], splitting positive definite mixed FEMs [28,29], finite volume methods [30,31], spectral method [32,33,34], virtual element methods (VEMs) [35,36,37]. Unfortunately, almost of these numerical methods for parabolic OCPs use the backward Euler scheme (BES) for time discretization, and the error estimates of time variable is O(k). In recent years, there are also a few works using the Crank-Nicolson scheme (CNS) for time discretization [38,39,40,41], which can improve the error convergence order of the time variable to O(k2).

    To the best of our knowledge, all reported fully discrete MFEMs for parabolic OCPs use BES for time discretization and optimal error estimates of time variable is O(k). The purpose of this paper is to develop a MFEM combined with CNS approximation of parabolic OCPs and establish optimal a priori error estimates O(h2+k2).

    We are concerned with the following parabolic OCPs: Find (y,p,u) such that

    minuK12T0(ppd2+yyd2+u2)dt (1.1)
    yt(x,t)+divp(x,t)=f(x,t)+u(x,t),  xΩ,tJ, (1.2)
    p(x,t)=y(x,t), xΩ, tJ, (1.3)
    y(x,t)=0,  xΩ,tJ, (1.4)
    y(x,0)=y0(x),xΩ, (1.5)

    where ΩR2 is a rectangle, J=(0,T]. Let U=L2(J;L2(Ω)), f,ydU, pdU2 and y0H1(Ω). K is a closed convex subset of U defined by

    K={vU:av(x,t)b,a.e.inΩ×J,a,bR}.

    Throughout the paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with a norm m,p given by vpm,p=|α|mDαvpLp(Ω), a semi-norm ||m,p given by |v|pm,p=|α|=mDαvpLp(Ω). For p=2, we denote Hm(Ω)=Wm,2(Ω),Hm0(Ω)={vWm,p(Ω):v|Ω=0}, and m=m,2,=0,2. We denote by Ls(J;Wm,p(Ω)) all Ls integrable functions from J into Wm,p(Ω) with norm vLs(J;Wm,p(Ω))=(T0||v||sWm,p(Ω)dt)1/sfors[1,), and the standard modification for s=. For ease of presentation, we denote vLs(J;Wm,p(Ω)) by vLs(Wm,p). Similarly, one can define the spaces Hl(Wm,p). In addition C denotes a general positive constant.

    The layout of this paper is as follows. In Section 2, we construct a MFEM combined with CNS approximation of the parabolic OCPs (1.1)–(1.5). In Section 3, we introduce some useful intermediate variables and important error estimates. In Section 4, we derive a priori error estimates for the control, state and co-state. In Section 5, we provide some numerical examples to illustrate our theoretical results.

    In this section, we shall consider a MFEM combined with CNS approximation of parabolic OCPs (1.1)–(1.5). For simplicity, we shall take the following state spaces L=H1(J;V) and Q=H1(J;W), where V and W are defined as follows:

    V=H(div;Ω)={v(L2(Ω))2,divvL2(Ω)},W=L2(Ω).

    Furthermore, we define the space

    K={vW:av(x)b,a.e. inΩ}.

    Then OCPs (1.1)–(1.5) can be recast as the following weak form: Find (y,p,u)Q×L×K such that

    minuK12T0(ppd2+yyd2+u2)dt (2.1)
    (yt,w)+(divp,w)=(f+u,w),wW,tJ, (2.2)
    (p,v)(y,divv)=0,vV,tJ, (2.3)
    y(x,0)=y0(x),xΩ. (2.4)

    It follows from [3] that OCPs (2.1)–(2.4) has a unique solution (y,p,u), and that a triplet (y,p,u)Q×L×K is the solution of (2.1)–(2.4) if and only if there is a co-state (z,q)Q×L such that (y,p,z,q,u) satisfies the following optimality conditions:

    (yt,w)+(divp,w)=(f+u,w),wW,tJ, (2.5)
    (p,v)(y,divv)=0,vV,tJ, (2.6)
    y(x,0)=y0(x),xΩ, (2.7)
    (zt,w)+(divq,w)=(yyd,w),wW,tJ, (2.8)
    (q,v)(z,divv)=(ppd,v),vV,tJ, (2.9)
    z(x,T)=0,xΩ, (2.10)
    (u+z,˜uu)0,˜uK,tJ. (2.11)

    We introduce a pointwise projection P[a,b], which satisfies: For any φW,

    P[a,b]φ(x)=min{b,max{a,φ(x)}},xΩ.

    Then the variational inequality (2.11) can be equivalently expressed as

    u=P[a,b](z). (2.12)

    We use the Raviart-Thomas mixed finite element of the order m=1 for space discretization. Let Th be a regular triangulations of the domain Ω, he denotes the diameter of e and h=maxeTh{he}. Let Pm(e) indicates the space of polynomials of total degree no more than m on e and Vh×WhV×W denote Raviart-Thomas mixed finite element spaces [1,2] associated with the triangulations Th of Ω, namely,

    Vh:={vhV:vh|e(Pm(e))2+xPm(e),eTh,},Wh:={whW:wh|ePm(e),eTh}.

    We shall use the CNS for time discretization. Let N be a positive integer, k=T/N and tn=nk,n=0,1,,N. Set In=[tn,tn+1],n=0,1,,N1. For any function φ, we define φn=φ(x,tn),

    dtφn=(φn+1φn)/k,φn+12=(φn+1+φn)/2,

    and discrete time-dependent norms

    φlp(Wm,q)=(N1n=0kφn+12pWm,q)1/p.

    Then a MFEM combined with CNS approximation of (2.1)–(2.4) is as follows: Find (yh,ph,uh)Wh×Vh×K such that

    minun+12hK12N1n=0(pn+12hpn+12d2+yn+12hyn+12d2+un+12h2), (2.13)
    (dtynh,wh)+(divpn+12h,wh)=(fn+12+un+12h,wh),whWh,n=0,1,,N1, (2.14)
    (pn+12h,vh)(yn+12h,divvh)=0,vhVh,n=0,1,,N1, (2.15)
    y0h(x)=Rhy0(x),xΩ, (2.16)

    where Rh is a L2 projection operator, which will be specific later.

    Like in [6], the OCPs (2.13)–(2.16) has a unique solution (ynh,pnh,unh),n=0,1,,N and the triplet (ynh,pnh,unh)Wh×Vh×K,n=0,1,,N is the solution of (2.13)–(2.16) if and only if there is a co-state (znh,qnh)Wh×Vh,(n=N,,1,0) such that (ynh,pnh,zh,qnh,unh),(n=0,1,,N) satisfies the following optimality conditions:

    (dtynh,wh)+(divpn+12h,wh)=(fn+12+un+12h,wh),whWh, (2.17)
    (pn+12h,vh)(yn+12h,divvh)=0,vhVh, (2.18)
    y0h(x)=Rhy0(x),xΩ, (2.19)
    (dtznh,wh)+(divqn+12h,wh)=(yn+12hyn+12d,wh),whWh, (2.20)
    (qn+12h,vh)(zn+12h,divvh)=(pn+12hpn+12d,vh),vhVh, (2.21)
    zNh(x)=0,xΩ, (2.22)
    (un+12h+zn+12h,˜uun+12h)0,˜uK. (2.23)

    Here, we use the variational discretization technique for the variational inequality. Similarly to (2.12), the variational inequality (2.23) can be equivalently rewritten as

    un+12h=P[a,b](zn+12h),n=0,1,,N1. (2.24)

    This means that, we can obtain un+12h from zn+12h by using the relation (2.24).

    The following projection operators are commonly used in the following error estimates of MFEMs approximation of OCPs. First, we define the standard L2(Ω)-projection [2] Rh: WWh, which satisfies: For any ϕW,

    (Rhϕϕ,wh)=0,whWh, (2.25)
    ϕRhϕ0,ρChrϕr,ρ,0ρ,ϕWr,ρ(Ω),1r1+m. (2.26)

    Second, we define the Fortin projection [2] Πh: VVh, which satisfies: For any qV,

    (div(Πhqq),wh)=0,whWh, (2.27)
    qΠhqChrqr,q(Hr(Ω))2,1r1+m, (2.28)
    div(qΠhq)Chrdivqr,divqHr(Ω),1r1+m. (2.29)

    In this section, we will introduce some important intermediate variables and error estimates. For any ˜uK, we define variables (ynh(˜u),pnh(˜u),znh(˜u),qnh(˜u)),n=0,1,,N, associated with ˜u, which satisfies

    (dtynh(˜u),wh)+(divpn+12h(˜u),wh)=(fn+12+˜un+12,wh),whWh, (3.1)
    (pn+12h(˜u),vh)(yn+12h(˜u),divvh)=0,vhVh, (3.2)
    y0h(˜u)(x)=Rhy0(x),xΩ, (3.3)
    (dtznh(˜u),wh)+(divqn+12h(˜u),wh)=(yn+12h(˜u)yn+12d,wh),whWh, (3.4)
    (qn+12h(˜u),vh)(zn+12h(˜u),divvh)=(pn+12h(˜u)pn+12d,vh),vhVh, (3.5)
    zNh(˜u)(x)=0,xΩ. (3.6)

    According to standard Raviart-Thomas mixed finite element approximation error analysis like in [20,26], we can derive the following error estimates.

    Lemma 3.1. Let (ph,yh,qh,zh,uh) and (ph(u),yh(u),qh(u),zh(u)) be the discrete solutions of (2.17)–(2.23) and (3.1)–(3.6) with ˜u=u, respectively. Then we have

    |||yhyh(u)|||l(L2)+|||phph(u)|||l2(L2)C|||uuh|||l2(L2), (3.7)
    |||zhzh(u)|||l(L2)+|||qhqh(u)|||l2(L2)C|||uuh|||l2(L2). (3.8)

    Proof. Let α=yhyh(u) and β=phph(u). From (2.17), (2.18), (3.1) and (3.2) with ˜u=u, we have the following error equations

    (dtαn,wh)+(divβn+12,wh)=(un+12hun+12,wh),whWh, (3.9)
    (βn+12,vh)(αn+12,divvh)=0,vhVh. (3.10)

    Selecting wh=αn+12 and vh=βn+12 in (3.9) and (3.10), respectively. Then add those equations, we get

    (dtαn,αn+12)+(βn+12,βn+12)=(un+12hun+12,αn+12). (3.11)

    Note that (dtαn,αn+12)=αn+1   2αn 22k. From (3.11) and Young inequality, we obtain

    αn+12αn22k+βn+122εαn+122+C(ε)un+12hun+122. (3.12)

    Multiplying both sides of (3.12) by 2k and summing n from 0 to M(0MN1), we have

    αM+12α02+2Mn=0kβn+1222εMn=0kαn+122+2C(ε)Mn=0kun+12hun+122. (3.13)

    According to α0=0, |||α|||l2(L2)C|||α|||l(L2) and (3.13), we get (3.7).

    Set η=zhzh(u) and θ=qhqh(u). Subtract (3.4) and (3.5) from (2.20) and (2.21) to get the following error equations

    (dtηn,wh)+(divθn+12,wh)=(αn+12,wh),whWh, (3.14)
    (θn+12,vh)(ηn+12,divvh)=(βn+12,vh),vhVh. (3.15)

    Choosing wh=ηn+12 and vh=θn+12 in (3.14) and (3.15), respectively. We derive

    (dtηn,ηn+12)+(θn+12,θn+12)=(αn+12,ηn+12)(βn+12,θn+12). (3.16)

    Note that ηN=0 and |||η|||l2(L2)C|||η|||l(L2), similarly to (3.11)–(3.13), we can arrive at

    |||η|||l(L2)+|||θ|||l2(L2)|||α|||l2(L2)+|||β|||l2(L2). (3.17)

    From (3.7) and (3.17), it is easy to get (3.8).

    For convenience, we use the following notations

    ρy=yyh(u),ϱp=pph(u),ζy=yRhy,ξp=pΠhp,υy=Rhyyh(u),ϑp=Πhpph(u).

    Lemma 3.2. Let (p,y,q,z,u) and (ph(u),yh(u),qh(u),zh(u)) be the solutions of (2.5)–(2.11) and (3.1)–(3.6) with ˜u=u respectively. Assume that y,zL2(H2), p,qL2((H2)2) and yttt,ztttL2(L2), then we have

    |||yyh(u)|||l(L2)+|||pph(u)|||l2(L2)C(h2+k2), (3.18)
    |||zzh(u)|||l(L2)+|||qqh(u)|||l2(L2)C(h2+k2). (3.19)

    Proof. Set t=tn+1+tn2 in (2.5) and (2.6) then subtract (3.1) and (3.2), we have

    (dtρny,wh)+(divϱn+12p,wh)=(dtynyn+12t,wh),whWh, (3.20)
    (ϱn+12p,vh)(ρn+12y,divvh)=0,vhVh. (3.21)

    Taking wh=υn+12y and vh=ϑn+12p in (3.20) and (3.21), respectively. According to the definition of Rh and Πh, we derive

    (dtυny,υn+12y)+(divϑn+12p,υn+12y)=(dtynyn+12t,υn+12y), (3.22)
    (ϑn+12p,ϑn+12p)(υn+12y,divϑn+12p)=(ξn+12p,ϑn+12p). (3.23)

    From (3.22)–(3.23), we get

    (dtυny,υn+12y)+(ϑn+12p,ϑn+12p)=(dtynyn+12t,υn+12y)(ξn+12p,ϑn+12p). (3.24)

    By using (2.28), Cauchy-Schwarz inequality, Young inequality and interpolation theory, we have

    (dtynyn+12t,υn+12y)=(1ktn+1tn(ytyn+12t)dt,υn+12y)Ck32(tn+1tn3yt32dt)1/2υn+12yC(ε)k33yt32L2(In;L2)+ευn+12y2 (3.25)

    and

    (ξn+12p,ϑn+12p)C(ε)h4p22+εϑn+12p2. (3.26)

    Combining (3.24)–(3.26), we obtain

    υn+1y2υny22k+ϑn+12p2C(ε)k33yt32L2(In;L2)+C(ε)h4p22. (3.27)

    Multiplying both sides of (3.27) by 2k and summing n from 0 to M(0MN1), we have

    υM+1y2υ0y2+2Mn=0kϑn+12p22C(ε)k4Mn=03yt32L2(In;L2)+C(ε)h4Mn=0kp22. (3.28)

    Noting that ρ0y=0. From (3.28), we arrive at

    υyl(L2)+ϑpl2(L2)C(k2+h2). (3.29)

    Then (3.18) follows from (2.26), (2.28), (3.29) and triangle inequality.

    Analogously, we can define ρz,ζz,υz and ϱq,ξq,ϑq. Let t=tn+1+tn2 in (2.8) and (2.9) then subtract (3.4) and (3.5), we get

    (dtρnz,wh)+(divϱn+12q,wh)=(ρn+12y,wh)+(zn+12tdtzn,wh), (3.30)
    (ϱn+12q,vh)(ρn+12z,divvh)=(ϱn+12p,vh). (3.31)

    Choosing wh=υn+12z and vh=ϑn+12q in (3.30) and (3.31), respectively. From the definition of Rh and Πh, we arrive at

    (dtυnz,υn+12z)+(divϑn+12q,υn+12z)=(υn+12y,υn+12z)+(zn+12tdtzn,υn+12z), (3.32)
    (ϑn+12q,ϑn+12q)(υn+12z,divϑn+12q)=(ξn+12q,ϑn+12q)(ξn+12p,ϑn+12q)(ϑn+12p,ϑn+12q). (3.33)

    Similarly to (3.22)–(3.28), we can derive

    υM+1z2υNz2+2Mn=N1kϑn+12q22C(ε)h4Mn=N1k(yn+1222+qn+1222+pn+1222)+2C(ε)Mn=N1kϑn+12p2+2C(ε)k4Mn=N13zt32L2(In;L2). (3.34)

    Since ρNz=0, (3.19) follows from (2.26), (2.28), (3.18), (3.34) and triangle inequality.

    In this section, we shall derive a priori error estimates of the MFEM combined with CNS approximation scheme (2.17)–(2.23).

    Theorem 4.1. Let (p,y,q,z,u) be the solution of (2.5)–(2.11) and (ph,yh,qh,zh,uh) be the solution of (2.17)–(2.23). Assume that all the conditions in Lemmas 3.1 and 3.2 are valid. Then, we have

    |||uuh|||l2(L2)C(h2+k2). (4.1)

    Proof. From (2.11) and (2.23), we have

    (un+12+zn+12,un+12hun+12)0, (4.2)

    and

    (un+12h+zn+12h,un+12un+12h)0. (4.3)

    It follows from (4.2) and (4.3) that

    |||uuh|||2l2(L2)=N1n=0k(un+12un+12h,un+12un+12h)N1n=0k(zn+12hzn+12,un+12un+12h)=N1n=0k(zn+12hzn+12h(u),un+12un+12h)+N1n=0k(zn+12h(u)zn+12,un+12un+12h). (4.4)

    It follows from (2.17)–(2.22) and (3.1)–(3.6) that

    N1n=0k(zn+12hzn+12h(u),un+12un+12h)=N1n=0k(yn+12hyn+12h(u),yn+12hyn+12h(u))N1n=0k(pn+12hpn+12h(u),pn+12hpn+12h(u))yhyh(u)2l2(L2)phph(u)2l2(L2)0. (4.5)

    By using Hölder's inequality, Young's inequality and Lemma 3.2, we have

    N1n=0k(zn+12h(u)zn+12,un+12un+12h)C(ε)N1n=0kzn+12h(u)zn+122+εN1n=0kun+12un+12h2C(ε)(h2+k2)2+εuuh2l2(L2). (4.6)

    Combining (4.4)–(4.6), we obtain (4.1).

    Theorem 4.2. Let (p,y,q,z,u) and (ph,yh,qh,zh,uh) be the solution of (2.5)–(2.11) and the solution of (2.17)–(2.23), respectively. Assume that all the conditions in Theorem 4.1 are valid. Then we have

    |||yyh|||l(L2)+|||pph|||l2(L2)C(h2+k2), (4.7)
    |||zzh|||L(l2)+|||qqh|||l2(L2)C(h2+k2). (4.8)

    Proof. By using the triangle inequality, Lemmas 3.1 and 3.2, Theorem 4.1, it is easy to get (4.7) and (4.8).

    In this section, we present two numerical examples to validate our theoretical results. The following parabolic OCPs were dealt numerically with codes developed based on AFEPack, which is a freely available software package and the details can be found in [42]. Their discretization schemes are described as (2.17)–(2.23) in Section 2. Let Ω=(0,1)×(0,1) and T=1.

    Example 1. The data under testing are as follows:

    a=0.5,b=0.5,y(x,t)=tsin(2πx1)sin(2πx2),p(x,t)=(2πtcos(2πx1)sin(2πx2),2πtsin(2πx1)cos(2πx2)),z(x,t)=(1t)sin(2πx1)sin(2πx2),q(x,t)=(2π(1t)cos(2πx1)sin(2πx2),2π(1t)sin(2πx1)cos(2πx2)),u(x,t)=max{a,min{b,z(x,t)}},f(x,t)=yt(x,t)+divp(x,t)u(x,t),yd(x,t)=zt(x,t)divq(x,t)+y(x,t),pd(x,t)=q(x,t)+z(x,t)+p(x,t).

    In Table 1, we list errors of |||uuh|||l2(L2), |||yyh|||l(L2), |||pph|||l2(L2), |||zzh|||l(L2) and |||qqh|||l2(L2) based on a sequence of uniformly refined meshes. In Figure 1, we show the relationship between log10(error) and log10(node). It is easy to see that |||uuh|||l2(L2)=O(h2+k2), |||yyh|||l(L2)+|||pph|||l2(L2)=O(h2+k2) and |||zzh|||l(L2)+|||qqh|||l2(L2)=O(h2+k2).

    Table 1.  Numerical results of Example 1.
    h=k 110 120 140 180
    |||uuh|||l2(L2) 4.1056e-02 1.0265e-02 2.5638e-03 6.4095e-04
    |||yyh|||l(L2) 2.8315e-02 7.0790e-03 1.7697e-03 4.4242e-04
    |||pph|||l2(L2) 6.4572e-02 1.6163e-02 4.0407e-03 1.0102e-03
    |||zzh|||l(L2) 2.8854e-02 7.2135e-03 1.8036e-03 4.5090e-04
    qqh|||l2(L2) 6.6328e-02 1.6582e-02 4.1455e-03 1.0364e-03

     | Show Table
    DownLoad: CSV
    Figure 1.  The convergence rate, Example 1.

    Example 2. The data under testing are as follows:

    a=0.25,b=0.25,y(x,t)=t(x1x21)(x2x22),p(x,t)=(t(2x11)(x2x22),t(x1x21)(2x21)),z(x,t)=(1t)(x1x21)(x2x22),q(x,t)=((1t)(2x11)(x2x22),(1t)(x1x21)(2x21)),u(x,t)=max{a,min{b,z(x,t)}},f(x,t)=yt(x,t)+divp(x,t)u(x,t),yd(x,t)=zt(x,t)divq(x,t)+y(x,t),pd(x,t)=q(x,t)+z(x,t)+p(x,t).

    The numerical results based on a sequence of uniformly refined meshes are reported in Table 2. We show the relationship between log10(error) and log10(node) in Figure 2. It is easy to see that errors of |||uuh|||l2(L2), |||yyh|||l(L2), |||pph|||l2(L2), |||zzh|||l(L2) and |||qqh|||l2(L2) estimates are O(h2+k2). It is consistent with the theoretical results in Section 4.

    Table 2.  Numerical results of Example 2.
    h=k 110 120 140 180
    |||uuh|||l2(L2) 2.8365e-02 7.0912e-03 1.7728e-03 4.4320e-04
    |||yyh|||l(L2) 1.4674e-02 3.6685e-03 9.1712e-04 2.2928e-04
    |||pph|||l2(L2) 4.1576e-02 1.0394e-02 2.5985e-03 6.4962e-04
    |||zzh|||l(L2) 1.6554e-02 4.1389e-03 1.0347e-03 2.5867e-04
    qqh|||l2(L2) 4.2685e-02 1.0671e-02 2.6680e-03 6.6700e-04

     | Show Table
    DownLoad: CSV
    Figure 2.  The convergence rate, Example 2.

    In this paper, we investigate a MFEM combined with CNS approximation of constrained parabolic OCPs and obtain optimal priori error estimates, namely |||uuh|||l2(L2)=O(h2+k2), |||yyh|||l(L2)+|||pph|||l2(L2)=O(h2+k2) and |||zzh|||l(L2)+|||qqh|||l2(L2)=O(h2+k2). Our results are new.

    This work is supported by the Natural Science Foundation of Hunan Province (2020JJ4323), the Scientific Research Foundation of Hunan Provincial Education Department (20A211), the construct program of applied characteristic discipline in Hunan University of Science and Engineering.

    The author declare no conflict of interest in this paper.



    [1] P. Raviart, J. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspecs of Finite Element Method, Lecture Notes in Mathematics, Springer, Berlin, 1977. https://doi.org/10.1007/BFb0064470
    [2] J. Douglas, J. Roberts, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 44 (1985), 39–52. Available from: https://www.ams.org/journals/mcom/1985-44-169/S0025-5718-1985-0771029-9/.
    [3] J. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin, 1971.
    [4] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, Berlin, 1999.
    [5] W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Science Press, Beijing, 2008.
    [6] Y. Chen, Z. Lu, High efficient and accuracy numercial methods for optimal control problems, Science Press, Beijing, 2015.
    [7] F. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28–47. https://doi.org/10.1016/0022-247X(73)90022-X doi: 10.1016/0022-247X(73)90022-X
    [8] T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), 313–328. Available from: http://www.numdam.org/item/M2AN_1979__13_4_313_0.pdf.
    [9] N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201–229. https://doi.org/10.1023/A:1020576801966 doi: 10.1023/A:1020576801966
    [10] C. Meyer, A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), 970–985. https://doi.org/10.1137/S0363012903431608 doi: 10.1137/S0363012903431608
    [11] D. Yang, Y. Chang, W. Liu, A priori error estimate and superconvergence analysis for an opitmal control problem of bilinear type, J. Comput. Math., 26 (2008), 471–487. https://www.jstor.org/stable/43693457
    [12] Y. Chen, Z. Lu, Y. Huang, Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem, Comput. Math. Appl., 66 (2013), 1498–1513. https://doi.org/10.1016/j.camwa.2013.08.019 doi: 10.1016/j.camwa.2013.08.019
    [13] W. Liu, N. Yan, A posteriori error estimates for control problems governed by nonlinear elliptic equations, Appl. Numer. Math., 47 (2003), 173–187. https://doi.org/10.1016/S0168-9274(03)00054-0 doi: 10.1016/S0168-9274(03)00054-0
    [14] R. Li, W. Liu, N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33 (2007), 155–182. https://doi.org/10.1007/s10915-007-9147-7 doi: 10.1007/s10915-007-9147-7
    [15] H. Leng, Y. Chen, Y. Huang, Equivalent a posteriori error estimates for elliptic optimal control problems with L1-control cost, Comput. Math. Appl., 77 (2019), 342–356. https://doi.org/10.1016/j.camwa.2018.09.038 doi: 10.1016/j.camwa.2018.09.038
    [16] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation of elliptic control problems, SIAM J. Control Optim., 41 (2002), 1321–1349. https://doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342
    [17] H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint, Adv. Comput. Math., 44 (2018), 367–394. https://doi.org/10.1007/s10444-017-9546-8 doi: 10.1007/s10444-017-9546-8
    [18] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45–63. https://doi.org/10.1007/s10589-005-4559-5 doi: 10.1007/s10589-005-4559-5
    [19] M. Hinze, N. Yan, Z. Zhou, Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27 (2009), 237–253. Available from: https://www.jstor.org/stable/43693504.
    [20] Y. Chen, T. Hou, N. Yi, Variational discretization for optimal control problems governed by parabolic equations, J. Syst. Sci. Complex., 26 (2013), 902–924. https://doi.org/10.1007/s11424-013-1166-x doi: 10.1007/s11424-013-1166-x
    [21] J. Liu, Z. Zhou, Finite element approximation of time fractional optimal control problem with integral state constraint, AIMS Math., 6 (2021), 979–997. Available from: https://www.aimspress.com/fileOther/PDF/Math/math-06-01-059.pdf.
    [22] D. Meidner, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraints, SIAM J. Control Optim., 47 (2008), 1301–1329. https://doi.org/10.1137/070694028 doi: 10.1137/070694028
    [23] W. Gong, M. Hinze, Z. Zhou, Space-time finite element approximation of parabolic optimal control problems, J. Numer. Math., 20 (2012), 111–145. https://doi.org/10.1515/jnum-2012-0005 doi: 10.1515/jnum-2012-0005
    [24] H. Rui, M. Tabata, A second order characteristic finite element scheme for convection-diffusion problems, Numer. Math., 92 (2002), 161–177. https://doi.org/10.1007/s002110100364 doi: 10.1007/s002110100364
    [25] H. Fu, H. Rui, A priori error estimates for optimal control problems governed by transient advection-diffusion equations, J. Sci. Comput., 38 (2009), 290–315. https://doi.org/10.1007/s10915-008-9224-6 doi: 10.1007/s10915-008-9224-6
    [26] Y. Chen, Z. Lu, Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem, Comput. Meth. Appl. Mech. Eng., 199 (2010), 1415–1423. https://doi.org/10.1016/j.cma.2009.11.009 doi: 10.1016/j.cma.2009.11.009
    [27] T. Hou, C. Liu, H. Chen, Fully discrete H1-Galerkin mixed finite element methods for parabolic optimal control problems, Numer. Theor. Meth. Appl., 12 (2019), 134–153. https://doi.org/10.4208/nmtma.2019.m1623 doi: 10.4208/nmtma.2019.m1623
    [28] H. Guo, H. Fu, J. Zhang, A splitting positive definite mixed finite element method for elliptic optimal control problem, Appl. Math. Comput., 219 (2013), 11178–11190. https://doi.org/10.1016/j.amc.2013.05.020 doi: 10.1016/j.amc.2013.05.020
    [29] H. Fu, H. Rui, J. Zhang, H. Guo, A priori error estimate of splitting positive definite mixed finite element method for parabolic optimal control problems, Numer. Math. Theor. Meth. Appl., 9 (2016), 215–238. https://doi.org/10.4208/nmtma.2016.m1409 doi: 10.4208/nmtma.2016.m1409
    [30] X. Luo, Y. Chen, Y. Huang, T. Hou, Some error estimates of finite volume element method for parabolic optimal control problems, Optim. Control Appl. Meth., 35 (2014), 145–165. https://doi.org/10.1002/oca.2059 doi: 10.1002/oca.2059
    [31] Q. Zhang, T. Hu, Finite volume elements for parabolic optimal control problems based on variational discretization, IAENG Inter. J. Appl. Math., 51 (2021), 13. Available from: https://www.iaeng.org/IJAM/issues_v51/issue_2/IJAM_51_2_13.pdf.
    [32] Y. Chen, N. Yi, W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://doi.org/10.1137/070679703 doi: 10.1137/070679703
    [33] J. Zhou, D. Yang, Legendre-Galerkin spectral methods for optimal control problems with integral constraint for state in one dimension, Comput. Optim. Appl., 61 (2015), 135–158. https://doi.org/10.1007/s10589-014-9700-x doi: 10.1007/s10589-014-9700-x
    [34] Y. Chen, X. Lin, Y. Huang, Error analysis of Galerkin spectral methods for nonlinear optimal control problems with integral control constraint, Commun. Math. Sci., 20 (2022), 1659–1683. https://dx.doi.org/10.4310/CMS.2022.v20.n6.a9 doi: 10.4310/CMS.2022.v20.n6.a9
    [35] Q. Wang, Z. Zhou, Adaptive virtual element method for optimal control problem governed by general elliptic equation, J. Sci. Comput., 88 (2021), 14. https://doi.org/10.1007/s10915-021-01528-6 doi: 10.1007/s10915-021-01528-6
    [36] Q. Wang, Z. Zhou, A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem, Numer. Algorithms, 90 (2022), 989–1105. https://doi.org/10.1007/s11075-021-01219-1 doi: 10.1007/s11075-021-01219-1
    [37] X. Wang, Q. Wang, Z. Zhou, A priori error analysis of mixed virtual element methods for optimal control problems governed by Darcy equation, East Asian J. Appl. Math., 13 (2023), 140–161. https://doi.org/10.4208/eajam.070322.210722 doi: 10.4208/eajam.070322.210722
    [38] D. Meidner, B. Vexler, A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems, SIAM J. Control Optim., 49 (2011), 2183–2211. https://doi.org/10.1137/100809611 doi: 10.1137/100809611
    [39] N. Daniels, M. Hinze, M. Vierling, Crank-Nicolson time stepping and variational discretization of control-constrained parabolic optimal control problems, SIAM J. Control Optim., 53 (2015), 1182–1198. https://doi.org/10.1137/14099680X doi: 10.1137/14099680X
    [40] T. Hou, H. Leng, Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations, Appl. Math. Lett., 102 (2020), 106150. https://doi.org/10.1016/j.aml.2019.106150 doi: 10.1016/j.aml.2019.106150
    [41] C. Yang, T. Sun, Crank-Nicolson finite difference schemes for parabolic optimal Dirichlet boundary control problems, Math. Meth. Appl. Sci., 45 (2022), 7346–7363. https://doi.org/10.1002/mma.8244 doi: 10.1002/mma.8244
    [42] R. Li, W. Liu, The AFEPack handbook, 2006. Available from: http://dsec.pku.edu.cn/rli/software.php.
  • This article has been cited by:

    1. 美玲 丁, Error Estimate for the Crank-Nicolson Finite Element Scheme Approximation of Nonlinear Parabolic Optimal Control Problems, 2023, 13, 2163-1476, 4147, 10.12677/ORF.2023.134415
    2. Yuelong Tang, Yuchun Hua, Yujun Zheng, Chao Wu, Fully discrete P02−P1 mixed elements for optimal control with parabolic equations and low regularity, 2025, 25, 25900374, 100551, 10.1016/j.rinam.2025.100551
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1437) PDF downloads(44) Cited by(2)

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog