Research article

On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain

  • Received: 23 October 2020 Accepted: 08 January 2021 Published: 12 January 2021
  • MSC : 30C45, 30D30

  • Utilizing the concepts from $ q $-calculus in the field of geometric function theory, we introduce a subclass of $ p $-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegö for this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions.

    Citation: Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif. On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain[J]. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185

    Related Papers:

  • Utilizing the concepts from $ q $-calculus in the field of geometric function theory, we introduce a subclass of $ p $-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegö for this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions.


    加载中


    [1] F. H. Jackson, On $q$-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193–203.
    [2] A. Aral, V. Gupta, Generalized $q$-Baskakov operators, Math. Slovaca, 61 (2011), 619–634.
    [3] A. Aral, V. Gupta, On $q$-Baskakov type operators, Demonstr. Math., 42 (2009), 109–122.
    [4] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Compu. Anal. Appl, 8 (2006), 249–261.
    [5] G. A. Anastassiu, S. G. Gal, Geometric and approximation properties of generalized singular integrals, J. Korean Math. Soci., 23 (2006), 425–443.
    [6] S. Kanas, D. Rǎducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196.
    [7] H. Aldweby, M. Darus, Some subordination results on $q$-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., (2014), Article ID 958563.
    [8] S. Mahmmod, J. Sokół, New subclass of analytic functions in conical domain associated with Ruscheweyh $q$-differential operator, Res. Math., 71 (2017), 1345–1357. doi: 10.1007/s00025-016-0592-1
    [9] T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstr. Appl. Anal., (2014), Article ID 846719.
    [10] T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145.
    [11] C. Ramachandran, T. Soupramanien, B. A. Frasin, New subclasses of analytic function associated with $q$-difference operator, Eur. J. Pure Appl. Math., 10 (2017), 348–362.
    [12] S. Kavitha, N. E. Cho, G. Murugusundaramoorthy, On $(p, q)$-Quantum Calculus Involving Quasi-Subordination, Trend in mathematics, Advance in Algebra and Analysis International Conference on Advance in Mathematical Sciences, Vellore, India, December 2017, Vol. 1,215–223.
    [13] B. A. Frasin, G. Murugusundaramoorthy, A subordination results for a class of analytic functions defined by $q$-differential operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 53–64.
    [14] B. Khan, Z. G. Liu, H. M. Serivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-derivatives, Mathematics, 8 (2020), 1–12.
    [15] H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szego type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 1–18.
    [16] M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry, 12 (2020), 1–17.
    [17] M. G. Khan, B. Ahmad, B. A. Frasin, J. Abdel, On Janowski analytic (p; q)-starlike functions in symmetric circular domain, J. Funct. Spaces, (2020), Article ID 4257907.
    [18] M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, A. Khan, Some Janowski type Harmonic $q$-starlike functions associated with symmetric points, Mathematics, 8 (2020), Article ID 629. doi: 10.3390/math8040629
    [19] H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of $q$-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61–69.
    [20] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of $q$-starlike functions associated with the Janowski functions, Filomat., 33 (2019), 2613–2626. doi: 10.2298/FIL1909613S
    [21] M. Shafiq, N. Khan, H. M. Srivastava, B. Khan, Q. Z. Ahmad, M. Tahir, Generalization of close to convex functions associated with Janowski functions, Maejo Int. J. Sci. Technol., 14 (2020), 141–155.
    [22] L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalised $q$-operator, Symmetry, 12 (2020), 1–11.
    [23] S. Islam, M. G. Khan, B. Ahmad, M. Arif, R. Chinram, Q-Extension of starlike functions subordinated with a trignometric sine function, Mathematics, 8 (2020), Article ID 1676. doi: 10.3390/math8101676
    [24] J. Sokól, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.
    [25] J. Sokól, Radius problem in the class $\mathcal {SL}^{\ast }$, Appl. Math. Comput., 214 (2009), 569–573.
    [26] S. A. Halim, R. Omar, Applications of certain functions associated with lemniscate Bernoulli, J. Indones. Math. Soc., 18 (2012), 93–99.
    [27] R. M. Ali, N. E. Chu, V. Ravichandran, S. S. Kumar, First order differential subordination for functions associated with the lemniscate of Bernoulli, Taiwan. J. Math., 16 (2012), 1017–1026. doi: 10.11650/twjm/1500406676
    [28] J. Sokól, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., 49 (2009), 349–353. doi: 10.5666/KMJ.2009.49.2.349
    [29] M, Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., 8 (1933), 85–89.
    [30] A. Pfluger, The Fekete-Szegö inequality for complex parameters, Complex Var. Theory Appl., 7 (1986), 149–160.
    [31] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Am. Math. Soc., 20 (1969), 8–12. doi: 10.1090/S0002-9939-1969-0232926-9
    [32] W. Ma, D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A., 45 (1991), 89–97.
    [33] W. Ma, D. Minda, Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl., 205, 537–553.
    [34] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159–177. doi: 10.4064/ap-23-2-159-177
    [35] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Z. Li, F. Ren, L. Yang, S. Zhang (eds.), Proceeding of the conference on Complex Analysis, (Tianjin, $1992$), Int. Press, Cambridge, 1994,157–169.
    [36] K. Ademogullari, Y. Kahramaner, q-harmonic mappings for which analytic part is $q$-convex functions, Nonlinear Anal. Di. Eqns., 4 (2016), 283–293.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2894) PDF downloads(233) Cited by(23)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog