Research article

On discrete-time laser model with fuzzy environment

  • Received: 20 September 2020 Accepted: 29 December 2020 Published: 13 January 2021
  • MSC : 39A10

  • In this work, dynamical behaviors of discrete time laser model with fuzzy parameters are studied. It provides a flexible model to fit fuzzy uncertainty data. For four different fuzzy parameters and fuzzy initial conditions, using a generalization of division (g-division) of fuzzy number, it can represent dynamical behaviors including boundedness and global asymptotical stability of positive solution. Finally, two examples are given to demonstrate the effectiveness of the results obtained.

    Citation: Qianhong Zhang, Ouyang Miao, Fubiao Lin, Zhongni Zhang. On discrete-time laser model with fuzzy environment[J]. AIMS Mathematics, 2021, 6(4): 3105-3120. doi: 10.3934/math.2021188

    Related Papers:

  • In this work, dynamical behaviors of discrete time laser model with fuzzy parameters are studied. It provides a flexible model to fit fuzzy uncertainty data. For four different fuzzy parameters and fuzzy initial conditions, using a generalization of division (g-division) of fuzzy number, it can represent dynamical behaviors including boundedness and global asymptotical stability of positive solution. Finally, two examples are given to demonstrate the effectiveness of the results obtained.


    加载中


    [1] J. Ion, Laser processing of engineering materials: principles, procedure and industrial application, Elsevier, 2005.
    [2] Z. Guo, S. Kumar, Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media, Appl. Optics, 40 (2001), 3156–3163. doi: 10.1364/AO.40.003156
    [3] X. Jiang, C. M. Soukoulis, Time dependent theory for random lasers, Phys. Rev. Lett., 85 (2000), 70. doi: 10.1103/PhysRevLett.85.70
    [4] A. R. Jha, Infrared technology, applications to electro-optics, photonic devices, and sensors, Infrared, 11 (2000), 1944–1948.
    [5] B. A. Lengyel, B. A. Lengyel, Introduction to laser physics, New York: Wiley, 1966.
    [6] J. Ohtsubo, Semiconductor lasers stability, instability and chaos, Springer, 2012.
    [7] M. J. Weber, Science and technology of laser glass, J. Non-Cryst. Solids, 123 (1990), 208–222. doi: 10.1016/0022-3093(90)90786-L
    [8] H. Haken, Laser theory, Springer Science and Business Media, 2012.
    [9] K. F. Renk, Basics of laser physics, Berlin Heidelberg: Springer, 2012.
    [10] J. A. C. Gallas, Lasers, stability, and numbers, Phys. Scripta, 94 (2018), 014003.
    [11] H. Haken, Synergetics, 3 Eds., Berlin: Springer, 1983.
    [12] A. Q. Khan, K. Sharif, Global dynamics, forbidden set and transcritical bifurcation of a one-dimensional discrete-time laser model, Math. Method. Appl. Sci., 43 (2020), 4409–4421.
    [13] E. Y. Deeba, A. De Korvin, Analysis by fuzzy difference equations of a model of $CO_2$ level in the blood, Appl. Math. Lett., 12 (1999), 33–40. doi: 10.1016/S0893-9659(98)00168-2
    [14] G. Papaschinopoulos, B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1} = A + B/x_n$, Soft Comput., 6 (2002), 456–461. doi: 10.1007/s00500-001-0161-7
    [15] G. Papaschinopoulos, B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1} = A+x_n/x_{n-m}$, Fuzzy Sets Syst., 129 (2002), 73–81. doi: 10.1016/S0165-0114(01)00198-1
    [16] G. Stefanidou, G. Papaschinopoulos, C. J. Schinas, On an exponential-type fuzzy Difference equation, Adv. Differ. Equ., 2010 (2010), 1–19.
    [17] Q. Din, Asymptotic behavior of a second order fuzzy rational difference equations, J. Discrete Math., 2015 (2015), 1–7.
    [18] K. A. Chrysafis, B. K. Papadopoulos, G. Papaschinopoulos, On the fuzzy difference equations of finance, Fuzzy Set. Syst., 159 (2008), 3259–3270. doi: 10.1016/j.fss.2008.06.007
    [19] Q. Zhang, L. Yang, D. Liao, Behaviour of solutions of to a fuzzy nonlinear difference equation, Iranion J. Fuzzy Syst., 9 (2012), 1–12.
    [20] Q. Zhang, L. Yang, D. Liao, On first order fuzzy Riccati difference equation, Inform. Sci., 270 (2014), 226–236. doi: 10.1016/j.ins.2014.02.086
    [21] Q. Zhang, J. Liu, Z. Luo, Dynamical behaviour of a third-order rational fuzzy difference equation, Adv. Differ. Equ., 2015 (2015), 108. doi: 10.1186/s13662-015-0438-2
    [22] A. Khastan, Z. Alijani, On the new solutions to the fuzzy difference equation $x_{n+1} = A + B/x_n$, Fuzzy Set. Syst., 358 (2019), 64–83. doi: 10.1016/j.fss.2018.03.014
    [23] A. Khastan, New solutions for first order linear fuzzy difference equations, J. Comput. Appl. Math., 312 (2017), 156–166. doi: 10.1016/j.cam.2016.03.004
    [24] Q. Zhang, F. Lin, X. Zhong, Asymptotic behavior of discretetime fuzzy single species model, Discrete Dyn. Nat. Soc., 2019 (2019), 1–9.
    [25] Q. Zhang, F. Lin, X. Zhong, On discrete time Beverton-Holt population model with fuzzy environment, Math. Biosci. Eng., 16 (3), 1471–1488.
    [26] D. Dubois, H. Prade, Possibility theory: an approach to computerized processing of uncertainty, New York: Plenum Publishing Corporation, 1998.
    [27] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set. Syst., 161 (2010), 1564–1584. doi: 10.1016/j.fss.2009.06.009
    [28] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with application, Dordrecht: Kluwer Academic Publishers, 1993.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2147) PDF downloads(104) Cited by(1)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog