Citation: Qianhong Zhang, Ouyang Miao, Fubiao Lin, Zhongni Zhang. On discrete-time laser model with fuzzy environment[J]. AIMS Mathematics, 2021, 6(4): 3105-3120. doi: 10.3934/math.2021188
[1] | J. Ion, Laser processing of engineering materials: principles, procedure and industrial application, Elsevier, 2005. |
[2] | Z. Guo, S. Kumar, Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media, Appl. Optics, 40 (2001), 3156–3163. doi: 10.1364/AO.40.003156 |
[3] | X. Jiang, C. M. Soukoulis, Time dependent theory for random lasers, Phys. Rev. Lett., 85 (2000), 70. doi: 10.1103/PhysRevLett.85.70 |
[4] | A. R. Jha, Infrared technology, applications to electro-optics, photonic devices, and sensors, Infrared, 11 (2000), 1944–1948. |
[5] | B. A. Lengyel, B. A. Lengyel, Introduction to laser physics, New York: Wiley, 1966. |
[6] | J. Ohtsubo, Semiconductor lasers stability, instability and chaos, Springer, 2012. |
[7] | M. J. Weber, Science and technology of laser glass, J. Non-Cryst. Solids, 123 (1990), 208–222. doi: 10.1016/0022-3093(90)90786-L |
[8] | H. Haken, Laser theory, Springer Science and Business Media, 2012. |
[9] | K. F. Renk, Basics of laser physics, Berlin Heidelberg: Springer, 2012. |
[10] | J. A. C. Gallas, Lasers, stability, and numbers, Phys. Scripta, 94 (2018), 014003. |
[11] | H. Haken, Synergetics, 3 Eds., Berlin: Springer, 1983. |
[12] | A. Q. Khan, K. Sharif, Global dynamics, forbidden set and transcritical bifurcation of a one-dimensional discrete-time laser model, Math. Method. Appl. Sci., 43 (2020), 4409–4421. |
[13] | E. Y. Deeba, A. De Korvin, Analysis by fuzzy difference equations of a model of $CO_2$ level in the blood, Appl. Math. Lett., 12 (1999), 33–40. doi: 10.1016/S0893-9659(98)00168-2 |
[14] | G. Papaschinopoulos, B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1} = A + B/x_n$, Soft Comput., 6 (2002), 456–461. doi: 10.1007/s00500-001-0161-7 |
[15] | G. Papaschinopoulos, B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1} = A+x_n/x_{n-m}$, Fuzzy Sets Syst., 129 (2002), 73–81. doi: 10.1016/S0165-0114(01)00198-1 |
[16] | G. Stefanidou, G. Papaschinopoulos, C. J. Schinas, On an exponential-type fuzzy Difference equation, Adv. Differ. Equ., 2010 (2010), 1–19. |
[17] | Q. Din, Asymptotic behavior of a second order fuzzy rational difference equations, J. Discrete Math., 2015 (2015), 1–7. |
[18] | K. A. Chrysafis, B. K. Papadopoulos, G. Papaschinopoulos, On the fuzzy difference equations of finance, Fuzzy Set. Syst., 159 (2008), 3259–3270. doi: 10.1016/j.fss.2008.06.007 |
[19] | Q. Zhang, L. Yang, D. Liao, Behaviour of solutions of to a fuzzy nonlinear difference equation, Iranion J. Fuzzy Syst., 9 (2012), 1–12. |
[20] | Q. Zhang, L. Yang, D. Liao, On first order fuzzy Riccati difference equation, Inform. Sci., 270 (2014), 226–236. doi: 10.1016/j.ins.2014.02.086 |
[21] | Q. Zhang, J. Liu, Z. Luo, Dynamical behaviour of a third-order rational fuzzy difference equation, Adv. Differ. Equ., 2015 (2015), 108. doi: 10.1186/s13662-015-0438-2 |
[22] | A. Khastan, Z. Alijani, On the new solutions to the fuzzy difference equation $x_{n+1} = A + B/x_n$, Fuzzy Set. Syst., 358 (2019), 64–83. doi: 10.1016/j.fss.2018.03.014 |
[23] | A. Khastan, New solutions for first order linear fuzzy difference equations, J. Comput. Appl. Math., 312 (2017), 156–166. doi: 10.1016/j.cam.2016.03.004 |
[24] | Q. Zhang, F. Lin, X. Zhong, Asymptotic behavior of discretetime fuzzy single species model, Discrete Dyn. Nat. Soc., 2019 (2019), 1–9. |
[25] | Q. Zhang, F. Lin, X. Zhong, On discrete time Beverton-Holt population model with fuzzy environment, Math. Biosci. Eng., 16 (3), 1471–1488. |
[26] | D. Dubois, H. Prade, Possibility theory: an approach to computerized processing of uncertainty, New York: Plenum Publishing Corporation, 1998. |
[27] | L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set. Syst., 161 (2010), 1564–1584. doi: 10.1016/j.fss.2009.06.009 |
[28] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with application, Dordrecht: Kluwer Academic Publishers, 1993. |