Processing math: 51%
Research article

Global co-dynamics of viral infections with saturated incidence

  • Received: 24 February 2024 Revised: 25 March 2024 Accepted: 02 April 2024 Published: 15 April 2024
  • MSC : 34D20, 34D23, 37N25, 92B05

  • Several mathematical models of two competing viruses (or viral strains) that have been published in the literature assume that the infection rate is determined by bilinear incidence. These models do not show co-existence equilibrium; moreover, they might not be applicable in situations where the virus concentration is high. In this paper, we developed a mathematical model for the co-dynamics of two competing viruses with saturated incidence. The model included the latently infected cells and three types of time delays: discrete (or distributed): (ⅰ) The formation time of latently infected cells; (ⅱ) The activation time of latently infected cells; (ⅲ) The maturation time of newly released virions. We established the mathematical well-posedness and biological acceptability of the model by examining the boundedness and nonnegativity of the solutions. Four equilibrium points were identified, and their stability was examined. Through the application of Lyapunov's approach and LaSalle's invariance principle, we demonstrated the global stability of equilibria. The impact of saturation incidence, latently infected cells, and time delay on the viral co-dynamics was examined. We demonstrated that the saturation could result in persistent viral coinfections. We established conditions under which these types of viruses could coexist. The coexistence conditions were formulated in terms of saturation constants. These findings offered new perspectives on the circumstances under which coexisting viruses (or strains) could live in stable viral populations. It was shown that adding the class of latently infected cells and time delay to the coinfection model reduced the basic reproduction number for each virus type. Therefore, fewer treatment efficacies would be needed to keep the system at the infection-free equilibrium and remove the viral coinfection from the body when utilizing a model with latently infected cells and time delay. To demonstrate the associated mathematical outcomes, numerical simulations were conducted for the model with discrete delays.

    Citation: Ahmed M. Elaiw, Ghadeer S. Alsaadi, Aatef D. Hobiny. Global co-dynamics of viral infections with saturated incidence[J]. AIMS Mathematics, 2024, 9(6): 13770-13818. doi: 10.3934/math.2024671

    Related Papers:

    [1] Liang Hong, Jie Li, Libin Rong, Xia Wang . Global dynamics of a delayed model with cytokine-enhanced viral infection and cell-to-cell transmission. AIMS Mathematics, 2024, 9(6): 16280-16296. doi: 10.3934/math.2024788
    [2] Rongrong Yin, Ahmadjan Muhammadhaji . Dynamics in a delayed rumor propagation model with logistic growth and saturation incidence. AIMS Mathematics, 2024, 9(2): 4962-4989. doi: 10.3934/math.2024241
    [3] E. A. Almohaimeed, A. M. Elaiw, A. D. Hobiny . Modeling HTLV-1 and HTLV-2 co-infection dynamics. AIMS Mathematics, 2025, 10(3): 5696-5730. doi: 10.3934/math.2025263
    [4] Shufan Wang, Zhihui Ma, Xiaohua Li, Ting Qi . A generalized delay-induced SIRS epidemic model with relapse. AIMS Mathematics, 2022, 7(4): 6600-6618. doi: 10.3934/math.2022368
    [5] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model. AIMS Mathematics, 2023, 8(3): 6136-6166. doi: 10.3934/math.2023310
    [6] Saima Rashid, Fahd Jarad, Sobhy A. A. El-Marouf, Sayed K. Elagan . Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects. AIMS Mathematics, 2023, 8(3): 6466-6503. doi: 10.3934/math.2023327
    [7] Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny . Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity. AIMS Mathematics, 2024, 9(1): 1046-1087. doi: 10.3934/math.2024052
    [8] A. E. Matouk, Ismail Gad Ameen, Yasmeen Ahmed Gaber . Analyzing the dynamics of fractional spatio-temporal SEIR epidemic model. AIMS Mathematics, 2024, 9(11): 30838-30863. doi: 10.3934/math.20241489
    [9] A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny . Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays. AIMS Mathematics, 2024, 9(7): 19195-19239. doi: 10.3934/math.2024936
    [10] Ahmed Alshehri, Saif Ullah . Optimal control analysis of Monkeypox disease with the impact of environmental transmission. AIMS Mathematics, 2023, 8(7): 16926-16960. doi: 10.3934/math.2023865
  • Several mathematical models of two competing viruses (or viral strains) that have been published in the literature assume that the infection rate is determined by bilinear incidence. These models do not show co-existence equilibrium; moreover, they might not be applicable in situations where the virus concentration is high. In this paper, we developed a mathematical model for the co-dynamics of two competing viruses with saturated incidence. The model included the latently infected cells and three types of time delays: discrete (or distributed): (ⅰ) The formation time of latently infected cells; (ⅱ) The activation time of latently infected cells; (ⅲ) The maturation time of newly released virions. We established the mathematical well-posedness and biological acceptability of the model by examining the boundedness and nonnegativity of the solutions. Four equilibrium points were identified, and their stability was examined. Through the application of Lyapunov's approach and LaSalle's invariance principle, we demonstrated the global stability of equilibria. The impact of saturation incidence, latently infected cells, and time delay on the viral co-dynamics was examined. We demonstrated that the saturation could result in persistent viral coinfections. We established conditions under which these types of viruses could coexist. The coexistence conditions were formulated in terms of saturation constants. These findings offered new perspectives on the circumstances under which coexisting viruses (or strains) could live in stable viral populations. It was shown that adding the class of latently infected cells and time delay to the coinfection model reduced the basic reproduction number for each virus type. Therefore, fewer treatment efficacies would be needed to keep the system at the infection-free equilibrium and remove the viral coinfection from the body when utilizing a model with latently infected cells and time delay. To demonstrate the associated mathematical outcomes, numerical simulations were conducted for the model with discrete delays.



    Human viral infections such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), ebola virus, influenza A virus (IAV), influenza B virus (IBV), chikungunya virus (CHIKV), middle east respiratory syndrome coronavirus (MERS-CoV), human T-cell lymphotropic virus (HTLV), zika virus (ZIKV), dengue virus (DENV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a global health concern. It is possible for a person to be infected with two or more types of viruses (or different viral strains) simultaneously or successively. This situation is defined as viral coinfection [1]. Examples of viral coinfections include: HIV and viral hepatitis [2]; HBV and HCV [3]; different strains of SARS-CoV-2 [4]; and SARS-CoV-2 and HBV [5].

    Many researchers are interested in mathematical modeling of viral infections within the host. The development of antiviral drug therapies and vaccines, the understanding of the dynamics of viral infection and the immune system's response to viruses, and the identification of the minimum number of variables needed to analyze experimental data and explain biological phenomena are all made possible by mathematical models. In [6], a basic model for viral single-infection within a host has been formulated. A mathematical model that describes competition of two virus types (or virus variants) for uninfected cells can be given as [7]:

    ˙H(t)=production of uninfected cells ϕdeathηHH(t)infection via virus type C γHCH(t)C(t)infection via virus type B γHBH(t)B(t), (1.1)
    ˙Y(t)=growth of infected cells by virus type C γHCH(t)C(t)deathηYY(t), (1.2)
    ˙Z(t)=growth of infected cells by virus type B γHBH(t)B(t)deathηZZ(t), (1.3)
    ˙C(t)=generation of virus type C θCY(t)viral clearanceηCC(t), (1.4)
    ˙B(t)=generation of virus type B θBZ(t)viral clearanceηBB(t), (1.5)

    where H(t), Y(t), Z(t), C(t), and B(t) are the concentrations of the uninfected cells, infected cells by virus type C, infected cells by virus type B, free virus type C particles, and free virus type B particles at time t, respectively.

    Examples of viruses (or virus strains) which compete for the same target cells including:

    ● Respiratory viruses: Such SARS-CoV-2 and IAV which compete for the epithelial cells in the respiratory tract [1,8]. Human rhinovirus, respiratory syncytial virus, human enterovirus, human metapneumovirus, influenza A/B viruses, parainfluenza virus, coronavirus, and human bocavirus and adenovirus are among the respiratory viruses that have been found to be able to participate in simultaneous infections [9].

    ● Chronic viruses: HIV and HTLV infect the CD4+ T cells, often known as "helper" T cells which play a central role in immune system [10]. HBV and HCV target hepatocytes in the human liver [11].

    ● Victor-born infections: Both DENV and CHIKV infect the monocytes [12].

    ● Virus strains: As new mutants continue to evolve, the genotypes of the same virus in infected hosts that are wild-type and mutant overlap [13]. A number of recombinant viral strains of worldwide epidemiologic significance have been observed as a result of co-occurring HIV infections, which has significant implications for our knowledge of HIV transmission and the development of the AIDS vaccine [14]. Recent research has shown that coinfection can act as a catalyst for the recombination of distinct SARS-CoV-2 subtypes [15].

    Several mathematical models have been developed for viral coinfections including: HIV-1/HTLV-I [16], SARS-CoV-2/IAV [8,17], SARS-CoV-2/HTLV-I[18], SARS-CoV-2/HIV-1 [19], HIV-1/HBV [20] and HIV-1/HCV [21]. Moreover, coinfection with two viral strains have been modeled in several works (see e.g., [13,22,23]).

    In the case of HIV infection, there is no medicine to cure acquired immune deficiency syndrome (AIDS) completely to date, but highly active antiretroviral therapy (HAART) has been used for the last two decades to treat HIV patients, and it has been found successful in suppressing HIV replication and reconstituting the immune system in the human body. However, using HAART cannot eradicate the virus completely [24]. An important reason is that HIV provirus can reside in latently infected cells, which live long, but can be activated to produce virus by relevant antigens, [25]. It has been reported in [26] that a coexistence of two HIV strains in the latent reservoirs is possible.

    Models (1.1)–(1.5) operate under the premise that, upon entry of the virus into an uninfected cell, the cell becomes infected and produces new mature viruses. It is commonly recognized that the infection of free viruses into uninfected cells and the generation of new mature viruses often do not occur instantly but develop over a period of time [27]. Regarding HIV infection, it is believed that the duration between HIV entry into an uninfected cell and the production of new mature HIV particles is around 0.9 days [28]. Consequently, the delay finds extensive application in several models of viral infection, which are essential for studying biological processes that are more like reality (see e.g., [29,30,31]).

    The infection rate is one important factor influencing the propagation of viruses [32]. A number of mathematical models of two competing viruses (or strains of viruses) that have appeared in the literature (see, e.g., [7,23]) include the assumption that bilinear incidence determines the infection rate. In this case, the infection rate per target cell and per virus is a constant. This situation implies that the rate of infection is precisely proportional to the product of the concentrations of the viruses B (or C) interacting with uninfected cells (H), a phenomenon known as the mass-action principle. The incidence rate is linear in each variable over the entire range of B (or C) and H. However, as reported in [33], experiments have demonstrated that the infection rate of microparasitic infections generally increases with the parasite dose and typically exhibits a sigmoidal shape. The law of mass action, for instance, will not apply if the concentration of viruses is higher than the concentration of uninfected cells. In such a scenario, an increase in virus concentration will not result in a rise in infection. A sublinear response in virus concentration might arise from saturation at high virus concentrations, where the infectious fraction is high, leading to a high likelihood of exposure [34]. The goal of the saturation incidence function in epidemiology is to characterize the variance in infection force brought on by the crowding impact of infectious [35]. It is important to note that the models of two competing viruses with bilinear incidences shown in [7,23] do not exhibit the co-existence equilibrium. As a result, these models might not be able to explain situations in which two chronic viruses co-exist, such as HIV, HTLV, HBV, and HCV.

    Papers [27,36,37] studied two strain viral dynamics models with saturated incidence. Nevertheless, these models do not incorporate latently infected cells. Further, the maturation delay of newly released virions was not included in the model given in [27]. Furthermore, it has not been addressed how saturation affects the conditions in which the two strains coexist. Thus, the aim of this study is to construct and analyze mathematical models that characterize the co-dynamics of two competing viruses (or virus variants) with saturated incidence and latently infected cells. The paper's novelty resides in the following aspects:

    A1: Two models (one with discrete delay and the other with distributed delay) have been developed to describe the co-dynamics of two competing viruses within a host.

    A2: Three kinds of discrete (or distributed) time delays have been incorporated into the model: (ⅰ) The formation delay of latently infected cells; (ⅱ) the activation delay of latently infected cells; and (ⅲ) the maturation delay of newly released virions.

    A3: The non-negativity and boundedness of the model's solutions are rigorously analyzed, confirming that the presented models are both mathematically well-posed and biologically plausible.

    A4: Global stability analysis has been presented for both models.

    A5: Conditions for the co-existence of competing viruses that target the same host cells have been established.

    A6: The theoretical findings have been validated through numerical simulations.

    Our proposed model could be valuable for modeling the competitive transmission dynamics of different strains of COVID-19, such as Omicron and Delta [38,39].

    The paper is organized as follows: Sections 2 and 4 focus on formulating the two models, proving the non-negativity and boundedness of the model's solutions, determining the model's equilibria and threshold parameters, and establishing the global stability of the equilibria. Section 3 contains comparison results. Section 5 presents numerical simulations for the model with discrete delays, while Section 6 summarizes our findings and outlines future perspectives.

    In this section, we develop a two-virus co-dynamics model with a saturated incidence rate, latently infection cells, and six discrete-time delays as follows:

    ˙H(t)=ϕηHH(t)γHCH(t)C(t)1+ψCC(t)γHBH(t)B(t)1+ψBB(t), (2.1)
    ˙L(t)=eα1ω1γHCH(tω1)C(tω1)1+ψCC(tω1)(ηL+δL)L(t), (2.2)
    ˙Y(t)=eα2ω2δLL(tω2)ηYY(t), (2.3)
    ˙E(t)=eα4ω4γHBH(tω4)B(tω4)1+ψBB(tω4)(ηE+δE)E(t), (2.4)
    ˙Z(t)=eα5ω5δEE(tω5)ηZZ(t), (2.5)
    ˙C(t)=eα3ω3θCY(tω3)ηCC(t), (2.6)
    ˙B(t)=eα6ω6θBZ(tω6)ηBB(t), (2.7)

    where L and E are the concentrations of the latent cells infected by virus types C and B, respectively. The activation and death rate constants of compartments (L, E) are denoted by (δL, δE) and (ηL, ηE), respectively. The terms γHCHC1+ψCC and γHBHB1+ψBB represent saturated incidence for virus types C and B, respectively, where ψC0 and ψB0 are saturation parameters. Saturated incidence leads to bilinear incidence when ψC=ψB=0. There are three types of time delays:

    (ⅰ) ω1 and ω4, the formation times of latent cells infected by viruses type C and B, respectively;

    (ⅱ) ω2 and ω5, the activation times of latent cells infected by viruses type C and B, respectively;

    (ⅲ) ω3 and ω6, the maturation times of newly released virions type C and B, respectively.

    The factor eαiωi, i=1,2,,6 represents the probability of survival of a cell or virion throughout the delay time [tωi,t], and αi>0.

    The initial conditions for system (2.1)–(2.7) are:

    H(u)=1(u),L(u)=2(u),Y(u)=3(u),E(u)=4(u),Z(u)=5(u),   C(u)=6(u),B(u)=7(u),i(u)0,u[ω,0],i(u)C([ω,0],R0),i=1,2,,7, (2.8)

    where

    ω=max{ω1,ω2,,ω6},

    and C is the Banach space of continuous functions mapping the interval [ω,0] into R0 with

    i=supωu0|i(u)|

    for iC. System (2.1)–(2.7), with initial conditions (2.8), has a unique solution [40,41].

    Remark 1. The production rate of uninfected cells has been represented by a variety of functions in virology literature, including: constant, ϕ, saturated, ϕV1+ϵV [42], exponential, ϕeϵV [43], decreasing, ϕϵϵ+V [44], and general, HΞ(H) [45], where ϵ is constant and Ξ is a general function.

    Proposition 1. The solutions of system (2.1)–(2.7) with initial (2.8) are nonnegative and ultimately bounded.

    Proof. We have that

    ˙HH=0=ϕ>0.

    Hence, H(t)>0 for all t0. Moreover, for all t[0,ω], we have:

    L(t)=2(0)e(ηL+δL)t+eα1ω1γHCt0e(ηL+δL)(tr)H(rω1)C(rω1)1+ψCC(rω1)dr,Y(t)=3(0)eηYt+eα2ω2δLt0eηY(tr)L(rω2)dr,E(t)=4(0)e(ηE+δE)t+eα4ω4γHBt0e(ηE+δE)(tr)H(rω4)B(rω4)1+ψBB(rω4)dr,Z(t)=5(0)eηZt+eα5ω5δEt0eηZ(tr)E(rω5)dr,C(t)=6(0)eηCt+eα3ω3θCt0eηC(tr)Y(rω3)dr,B(t)=7(0)eηBt+eα6ω6θBt0eηB(tr)Z(rω6)dr.

    Hence, L(t),Y(t),E(t),Z(t),C(t),B(t)0 for all t[0,ω]. Through recursive argumentation, we get L(t),Y(t),E(t),Z(t),C(t),B(t) for all t0. Therefore, H,L,Y,E,Z,C and B are nonnegative.

    The nonnegativity of the system's solution implies that

    ˙H(t)ϕηHH(t)  limtsupH(t)=ϕηH=a0.

    Let us define

    Ψ1(t)=eα1ω1H(tω1)+L(t),

    then

    ˙Ψ1(t)=eα1ω1˙H(tω1)+˙L(t)=eα1ω1[ϕηHH(tω1)γHCH(tω1)C(tω1)1+ψCC(tω1)γHBH(tω1)B(tω1)1+ψBB(tω1)]+eα1ω1γHCH(tω1)C(tω1)1+ψCC(tω1)(ηL+δL)L(t)=eα1ω1ϕeα1ω1ηHH(tω1)eα1ω1γHBH(tω1)B(tω1)1+ψBB(tω1)(ηL+δL)L(t)ϕσ1[eα1ω1H(tω1)L(t)]=ϕσ1Ψ1(t),

    where

    σ1=min{ηH,ηL+δL}.

    It follows that

    limtsupΨ1(t)ϕσ1=a1limtsupL(t)a1.

    Let

    Ψ2(t)=eα4ω4H(tω4)+E(t),

    then,

    ˙Ψ2(t)=eα4ω4˙H(tω4)+˙E(t)=eα4ω4[ϕηHH(tω4)γHCH(tω4)C(tω4)1+ψCC(tω4)γHBH(tω4)B(tω4)1+ψBB(tω4)]+eα4ω4γHBH(tω4)B(tω4)1+ψBB(tω4)(ηE+δE)E(t)=eα4ω4ϕeα4ω4ηHH(tω4)eα4ω4γHCH(tω4)C(tω4)1+ψCC(tω4)(ηE+δE)E(t)ϕσ2[eα4ω4H(tω4)E(t)]=ϕσ2Ψ2(t),

    where

    σ2=min{ηH,ηE+δE}.

    Thus

    limtsupΨ2(t)ϕσ2=a2limtsupE(t)a2.

    From Eq (2.3) we get

    ˙Y(t)=eα2ω2δLL(tω2)ηYY(t)δLa1ηYY(t)limtsupY(t)δLa1ηY=a3.

    Equation (2.5) implies that

    ˙Z(t)=eα5ω5δEE(tω5)ηZZ(t)δEa2ηZZ(t)limtsupZ(t)δEa2ηZ=a4.

    Similarly from Eqs (2.6) and (2.7) we get

    ˙C(t)θCa3ηCC(t)limtsupC(t)θCa3ηC=a5,˙B(t)θBa4ηBB(t)limtsupB(t)θBa4ηB=a6.

    This completes the proof.

    Based on Proposition 1 we can show that

    Γ={(H,L,Y,E,Z,C,B)C70:Ha0,La1,Ya3,Ea2,Za4,Ca5,Ba6}

    is positively invariant for system (2.1)–(2.7).

    We calculate the model's equilibria and deduce the conditions of their existence. Any equilibrium point Ξ=(H,L,Y,E,Z,C,B) satisfies

    0=ϕηHHγHCHC1+ψCCγHBHB1+ψBB,0=eα1ω1γHCHC1+ψCC(ηL+δL)L,0=eα2ω2δLLηYY,0=eα4ω4γHBHB1+ψBB(ηE+δE)E,0=eα5ω5δEEηZZ,0=eα3ω3θCYηCC,0=eα6ω6θBZηBB. (2.9)

    System (2.9) admits four equilibria.

    (Ⅰ) Infection-free equilibrium, Ξ0=(H0,0,0,0,0,0,0), where H0=ϕ/ηH.

    (Ⅱ) Virus type C single-infection equilibrium Ξ1=(H1,L1,Y1,0,0,C1,0), where

    H1=eΣ3i=1αiωiηYηC(ηL+δL)+ψCϕδLθCδLθC(ηHψC+γHC), L1=eΣ3i=2αiωiηYηCηHδLθC(ηHψC+γHC)(11), Y1=eα3ω3ηCηHθC(ηHψC+γHC)(11),C1=ηH(ηHψC+γHC)(11),

    and

    1=eΣ3i=1αiωiH0δLθCγHCηYηC(ηL+δL), (2.10)

    which represents the basic reproduction number for virus type C single-infection. It follows that, Ξ1 exists if 1>1.

    (Ⅲ) Virus type B single-infection equilibrium Ξ2=(H2,0,0,E2,Z2,0,B2), where

    H2=eΣ6i=4αiωiηZηB(ηE+δE)+δEψBϕθBδEθB(ηHψB+γHB), E2=eΣ6i=5αiωiηZηBηHδEθB(ηHψB+γHB)(21), Z2=eα6ω6ηBηHθB(ηHψB+γHB)(21),B2=ηH(ηHψB+γHB)(21),

    and

    2=eΣ6i=4αiωiH0δEθBγHBηZηB(ηE+δE). (2.11)

    which represents the basic reproduction number for virus type B single-infection. Therefore, Ξ2 exists if 2>1.

    (Ⅳ) Coexistence equilibrium Ξ3=(H3,L3,Y3,E3,Z3,C3,B3), where

    H3=ϕψCδLθCψBδEθB+ηYηCψBδEθB(ηL+δL)eΣ3i=1αiωi+ηZηBψCδLθC(ηE+δE)eΣ6i=4αiωiδEθBδLθC(ηHψCψB+γHCψB+γHBψC), L3=eΣ3i=2αiωiηYηC(ηHψB+γHB)δLθC(ηHψCψB+γHCψB+γHBψC)(31),   Y3=eα3ω3ηC(ηHψB+γHB)θC(ηHψCψB+γHCψB+γHBψC)(31),E3=eΣ6i=5αiωiηZηB(ηHψC+γHC)δEθB(ηHψCψB+γHCψB+γHBψC)(41),  Z3=eα6ω6ηB(ηHψC+γHC)θB(ηHψCψB+γHCψB+γHBψC)(41),  C3=(ηHψB+γHB)(ηHψCψB+γHCψB+γHBψC)(31),B3=(ηHψC+γHC)(ηHψCψB+γHCψB+γHBψC)(41),

    and

    3=γHCδLθC[ϕψBδEθB+ηZηB(ηE+δE)eΣ6i=4αiωi]eΣ3i=1αiωiηYηCδEθB(ηL+δL)(ηHψB+γHB),4=γHBδEθB[ϕψCδLθC+ηYηC(ηL+δL)eΣ3i=1αiωi]eΣ6i=4αiωiηZηBδLθC(ηE+δE)(ηHψC+γHC).

    Clearly, Ξ3 exists when 3>1 and 4>1.

    Remark 2. We note that we have calculated the basic reproduction numbers R1 and R2 from the existence's conditions of equilibria Ξ1 and Ξ2, respectively. It is worth noting that R1 and R2 can also be calculated using the next-generation matrix method of van den Driessche and Watmough [46] or by analyzing the local stability of the infection-free equilibrium.

    In this part, we use the Lyapunov function construction approach described in [47] to demonstrate the global asymptotic stability of all equilibria. Let Λj(H,L,Y,E,Z,C,B) be a Lyapunov function candidate and ˜Ωj be the largest invariant subset of

    Ωj={(H,L,Y,E,Z,C,B):dΛjdt=0},  j=0,1,2,4.

    Define a function

    ϝ:(0,)[0,)

    as

    ϝ(υ)=υ1lnυ.

    We denote

    (H,L,Y,E,Z,C,B)=(H(t),L(t),Y(t),E(t),Z(t),C(t),B(t)),Hω1=H(tω1),Hω4=H(tω4),Lω2=L(tω2),Yω3=Y(tω3),Eω5=E(tω5),Zω6=Z(tω6),Cω1=C(tω1),Bω4=B(tω4).

    Theorem 1. Consider (2.1)–(2.7) and suppose that 11 and 21, then Ξ0 is globally asymptotically stable (GAS).

    Proof. Define

    Λ0=H0ϝ(HH0)+eα1ω1L+eΣ2i=1αiωi(ηL+δL)δLY+eα4ω4E+eΣ5i=4αiωi(ηE+δE)δEZ+eΣ3i=1αiωiηY(ηL+δL)θCδLC+eΣ6i=4αiωiηZ(ηE+δE)θBδEB+γHCttω1H(u)C(u)1+ψCC(u)du+eα1ω1(ηL+δL)ttω2L(u)du+γHBttω4H(u)B(u)1+ψBB(u)du+eα4ω4(ηE+δE)ttω5E(u)du+eΣ2i=1αiωiηY(ηL+δL)δLttω3Y(u)du+eΣ5i=4αiωiηZ(ηE+δE)δEttω6Z(u)du.

    It is seen that, Λ0>0 for all H,L,Y,E,Z,C,B>0, and Λ0(H0,0,0,0,0,0,0)=0. We calculate dΛ0dt along the solutions of system (2.1)–(2.7) as:

    dΛ0dt=(1H0H)˙H+eα1ω1˙L+eΣ2i=1αiωi(ηL+δL)δL˙Y+eα4ω4˙E+eΣ5i=4αiωi(ηE+δE)δE˙Z+eΣ3i=1αiωiηY(ηL+δL)θCδL˙C+eΣ6i=4αiωiηZ(ηE+δE)θBδE˙B+γHCHC1+ψCCγHCHω1Cω11+ψCCω1+eα1ω1(ηL+δL)[LLω2]+γHBHB1+ψBBγHBHω4Bω41+ψBBω4+eα4ω4(ηE+δE)[EEω5]+eΣ2i=1αiωiηY(ηL+δL)δL[YYω3]+eΣ5i=4αiωiηZ(ηE+δE)δE[ZZω6].

    From Eqs (2.1)–(2.7), we obtain

    dΛ0dt=(1H0H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+γHCHω1Cω11+ψCCω1eα1ω1(ηL+δL)L+eΣ2i=1αiωi(ηL+δL)δL[eα2ω2δLLω2ηYY]+γHBHω4Bω41+ψBBω4eα4ω4(ηE+δE)E+eΣ5i=4αiωi(ηE+δE)δE[eα5ω5δEEω5ηZZ]+eΣ3i=1αiωiηY(ηL+δL)θCδL[eα3ω3θCYω3ηCC]+eΣ6i=4αiωiηZ(ηE+δE)θBδE[eα6ω6θBZω6ηBB]+γHCHC1+ψCCγHCHω1Cω11+ψCCω1+eα1ω1(ηL+δL)Leα1ω1(ηL+δL)Lω2+γHBHB1+ψBBγHBHω4Bω41+ψBBω4+eα4ω4(ηE+δE)Eeα4ω4(ηE+δE)Eω5+eΣ2i=1αiωiηY(ηL+δL)δLYeΣ2i=1αiωiηY(ηL+δL)δLYω3+eΣ5i=4αiωiηZ(ηE+δE)δEZeΣ5i=4αiωiηZ(ηE+δE)δEZω6.

    Then, we collect terms as:

    dΛ0dt=(1H0H)(ϕηHH)+γHCH0CγHCψCH0C21+ψCC+γHBH0BγHBψBH0B21+ψBBeΣ3i=1αiωiηYηC(ηL+δL)θCδLCeΣ6i=4αiωiηZηB(ηE+δE)θBδEB.

    Using the equilibrium condition ϕ=ηHH0, we get

    dΛ0dt=ηH(HH0)2HγHCψCH0C21+ψCCγHBψBH0B21+ψBB+eΣ3i=1αiωiηYηC(ηL+δL)θCδL(11)C+eΣ6i=4αiωiηZηB(ηE+δE)θBδE(21)B.

    Since 11 and 21, then dΛ0dt0 for all H,C,B>0. In addition dΛ0dt=0 when H=H0 and C=B=0. The solutions of system (2.1)–(2.7) tend to ˜Ω0 [40] where C=B=0. Thus, ˙C=˙B=0 and from Eqs (2.6) and (2.7) we have

    0=˙C=eα3ω3θCYω3Y(t)=0, for any t,0=˙B=eα6ω6θBZω6Z(t)=0,  for any t.

    Then from Eqs (2.3) and (2.5) we get

    0=˙Y=eα2ω2δLLω2L(t)=0, for any t,0=˙Z=eα5ω5δEEω5E(t)=0, for any t.

    Therefore, ˜Ω0={Ξ0} and applying LaSalle's invariance principle (LIP) [48], we obtain that Ξ0 is GAS.

    Theorem 2. Consider (2.1)–(2.7) and suppose that 1>1 and 41, then Ξ1 is GAS.

    Proof. Define Λ1 as:

    Λ1=H1ϝ(HH1)+eα1ω1L1ϝ(LL1)+eΣ2i=1αiωi(ηL+δL)δLY1ϝ(YY1)+eα4ω4E+eΣ5i=4αiωi(ηE+δE)δEZ+eΣ3i=1αiωiηY(ηL+δL)θCδLC1ϝ(CC1)+eΣ6i=4αiωiηZ(ηE+δE)θBδEB+γHCH1C11+ψCC1ttω1ϝ(H(u)C(u)(1+ψCC1)H1C1(1+ψCC(u)))du+eα1ω1(ηL+δL)L1ttω2ϝ(L(u)L1)du+γHBttω4H(u)B(u)1+ψBB(u)du+eα4ω4(ηE+δE)ttω5E(u)du+eΣ2i=1αiωiηY(ηL+δL)δLY1ttω3ϝ(Y(u)Y1)du+eΣ5i=4αiωiηZ(ηE+δE)δEttω6Z(u)du.

    We calculate dΛ1dt as:

    dΛ1dt=(1H1H)˙H+eα1ω1(1L1L)˙L+eΣ2i=1αiωi(ηL+δL)δL(1Y1Y)˙Y+eα4ω4˙E+eΣ5i=4αiωi(ηE+δE)δE˙Z+eΣ3i=1αiωiηY(ηL+δL)θCδL(1C1C)˙C+eΣ6i=4αiωiηZ(ηE+δE)θBδE˙B+γHCH1C11+ψCC1[HC(1+ψCC1)H1C1(1+ψCC)ln(HC(1+ψCC1)H1C1(1+ψCC))Hω1Cω1(1+ψCC1)H1C1(1+ψCCω1)+ln(Hω1Cω1(1+ψCC1)H1C1(1+ψCCω1))]+eα1ω1(ηL+δL)L1[LL1ln(LL1)Lω2L1+ln(Lω2L1)]+γHB[HB1+ψBBHω4Bω41+ψBBω4]+eα4ω4(ηE+δE)[EEω5]+eΣ2i=1αiωiηY(ηL+δL)δLY1[YY1ln(YY1)Yω3Y1+ln(Yω3Y1)]+eΣ5i=4αiωiηZ(ηE+δE)δE[ZZω6].

    So, we get

    dΛ1dt=(1H1H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+eα1ω1(1L1L)[eα1ω1γHCHω1Cω11+ψCCω1(ηL+δL)L]+eΣ2i=1αiωi(ηL+δL)δL(1Y1Y)[eα2ω2δLLω2ηYY]+eα4ω4[eα4ω4γHBHω4Bω41+ψBBω4(ηE+δE)E]+eΣ5i=4αiωi(ηE+δE)δE[eα5ω5δEEω5ηZZ]+eΣ3i=1αiωiηY(ηL+δL)θCδL(1C1C)[eα3ω3θCYω3ηCC]+eΣ6i=4αiωiηZ(ηE+δE)θBδE[eα6ω6θBZω6ηBB]+γHCHC1+ψCCγHCHω1Cω11+ψCCω1+γHCH1C11+ψCC1ln(Hω1Cω1(1+ψCC)HC(1+ψCCω1))+eα1ω1(ηL+δL)Leα1ω1(ηL+δL)Lω2+eα1ω1(ηL+δL)L1ln(Lω2L)+γHBHB1+ψBBγHBHω4Bω41+ψBBω4+eα4ω4(ηE+δE)Eeα4ω4(ηE+δE)Eω5+eΣ2i=1αiωiηY(ηL+δL)δLYeΣ2i=1αiωiηY(ηL+δL)δLYω3+eΣ2i=1αiωiηY(ηL+δL)δLY1ln(Yω3Y)+eΣ5i=4αiωiηZ(ηE+δE)δEZeΣ5i=4αiωiηZ(ηE+δE)δEZω6. (2.12)

    Simplifying Eq (2.12), and using the equilibrium conditions for Ξ1:

    ϕ=ηHH1+γHCH1C11+ψCC1,  γHCH1C11+ψCC1=eα1ω1(ηL+δL)L1,δLL1=eα2ω2ηYY1, θCY1=eα3ω3ηCC1,

    we obtain

    dΛ1dt=ηH(HH1)2H+eα1ω1(ηL+δL)L1[4H1HL1Hω1Cω1(1+ψCC1)LH1C1(1+ψCCω1)Y1Lω2YL1C1Yω3CY1+ln(Hω1Cω1(1+ψCC)HC(1+ψCCω1))+ln(Lω2L)+ln(Yω3Y)]+eα1ω1(ηL+δL)L1( (1+ψCC1)C(1+ψCC)C1CC1)+eΣ6i=4αiωiηZηB(ηE+δE)θBδE[H1γHBθBδEeΣ6i=4αiωiηBηZ(ηE+δE)1]BγHBψBH1B21+ψBB.

    Using the following equalities:

    ln(Hω1Cω1(1+ψCC)HC(1+ψCCω1))=ln(LiHω1Cω1(1+ψCCi)LHiCi(1+ψCCω1))+ln(1+ψCC1+ψCCi)+ln(HiH)+ln(CiLCLi),ln(Lω2L)=ln(YiLω2YLi)+ln(YLiYiL),ln(Yω3Y)=ln(CiYω3CYi)+ln(CYiCiY), (2.13)

    where i=1,3, we get

    dΛ1dt=ηH(HH1)2Heα1ω1(ηL+δL)L1[ϝ(H1H)+ϝ(Hω1Cω1L1(1+ψCC1)H1C1L(1+ψCCω1))+ϝ(Y1Lω2YL1)+ϝ(C1Yω3CY1)+ϝ(1+ψCC1+ψCC1)]eα1ω1ψC(ηL+δL)(CC1)2(1+ψCC)(1+ψCC1)C1L1+eΣ6i=4αiωiηZηB(ηE+δE)θBδE(41)BγHBψBH1B21+ψBB.

    Since 41 then, dΛ1dt0 for all H,L,Y,E,Z,C,B>0. Moreover, dΛ1dt=0 when H=H1, L=L1, Y=Y1, C=C1, and B=0. The solutions of system (2.1)–(2.7) tend to ˜Ω1 which includes elements with B=0 which gives ˙B=0. From Eq (2.7) we get

    0=˙B=eα6ω6θBZω6Z(t)=0, for any t.

    Then from Eq (2.5) we have

    0=˙Z=eα5ω5δEEω5E(t)=0, for any t.

    Hence, ˜Ω1={Ξ _{1} } and Ξ1 is GAS using LIP.

    Theorem 3. Consider (2.1)–(2.7) and suppose that 2>1 and 31, then Ξ2 is GAS.

    Proof. Consider

    Λ2=H2ϝ(HH2)+eα1ω1L+eΣ2i=1αiωi(ηL+δL)δLY+eα4ω4E2ϝ(EE2)+eΣ5i=4αiωi(ηE+δE)δEZ2ϝ(ZZ2)+eΣ3i=1αiωiηY(ηL+δL)θCδLC+eΣ6i=4αiωiηZ(ηE+δE)θBδEB2ϝ(BB2)+γHCttω1H(u)C(u)1+ψCC(u)du+eα1ω1(ηL+δL)ttω2L(u)du+γHBH2B21+ψBB2ttω4ϝ(H(u)B(u)(1+ψBB2)H2B2(1+ψBB(u)))du+eα4ω4(ηE+δE)E2ttω5ϝ(E(u)E2)du+eΣ2i=1αiωiηY(ηL+δL)δLttω3Y(u)du+eΣ5i=4αiωiηZ(ηE+δE)δEZ2ttω6ϝ(Z(u)Z2)du.

    We calculate dΛ2dt as:

    dΛ2dt=(1H2H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+eα1ω1[eα1ω1γHCHω1Cω11+ψCCω1(ηL+δL)L]+eΣ2i=1αiωi(ηL+δL)δL[eα2ω2δLLω2ηYY]+eα4ω4(1E2E)[eα4ω4γHBHω4Bω41+ψBBω4(ηE+δE)E]+eΣ5i=4αiωi(ηE+δE)δE(1Z2Z)[eα5ω5δEEω5ηZZ]+eΣ3i=1αiωiηY(ηL+δL)θCδL[eα3ω3θCYω3ηCC]+eΣ6i=4αiωiηZ(ηE+δE)θBδE(1B2B)[eα6ω6θBZω6ηBB]+γHCHC1+ψCCγHCHω1Cω11+ψCCω1+eα1ω1(ηL+δL)Leα1ω1(ηL+δL)Lω2+γHBHB1+ψBBγHBHω4Bω41+ψBBω4+γHBH2B21+ψBB2ln(Hω4Bω4(1+ψBB)HB(1+ψBBω4))+eα4ω4(ηE+δE)Eeα4ω4(ηE+δE)Eω5+eα4ω4(ηE+δE)E2ln(Eω5E)+eΣ2i=1αiωiηY(ηL+δL)δLYeΣ2i=1αiωiηY(ηL+δL)δLYω3+eΣ5i=4αiωiηZ(ηE+δE)δEZeΣ5i=4αiωiηZ(ηE+δE)δEZω6+eΣ5i=4αiωiηZ(ηE+δE)δEZ2ln(Zω6Z). (2.14)

    Then simplifying Eq (2.14) and using the equilibrium conditions for Ξ2:

    ϕ=ηHH2+γHBH2B21+ψBB2,  γHBH2B21+ψBB2=eα4ω4(ηE+δE)E2,δEE2=eα5ω5ηZZ2,       θBZ2=eα6ω6ηBB2,

    and using the following equalities:

    ln(Hω4Bω4(1+ψBB)HB(1+ψBBω4))=ln(EiHω4Bω4(1+ψBBi)EHiBi(1+ψBBω4))+ln(1+ψBB1+ψBBi)+ln(HiH)+ln(BiEBEi),ln(Eω5E)=ln(ZiEω5ZEi)+ln(ZEiZiE),ln(Zω6Z)=ln(BiZω6BZi)+ln(BZiBiZ), (2.15)

    where i=2,3, we get:

    dΛ2dt=ηH(HH2)2Heα4ω4(ηE+δE)E2[ϝ(Hω4Bω4E2(1+ψBB2)H2B2E(1+ψBBω4))+ϝ(H2H)+ϝ(Z2Eω5ZE2)+ϝ(B2Zω6BZ2)+ϝ(1+ψBB1+ψBB2)]eα4ω4ψB(ηE+δE)(BB2)2(1+ψBB)(1+ψBB2)B2E2+eΣ3i=1αiωiηCηY(ηL+δL)θCδL(31)CγHCψCH2C21+ψCC.

    Since 31 then, dΛ2dt0 for all H,L,Y,E,Z,C,B>0. Further, dΛ2dt=0 when H=H2, E=E2, Z=Z2, B=B2 and C=0. The solutions of system (2.1)–(2.7) tend to ˜Ω2 which contains elements with C=0, which gives ˙C=0. Equation (2.6) implies

    0=˙C=eα3ω3θCYω3Y(t)=0, for any t.

    Then, Eq (2.3) becomes

    0=˙Y=eα2ω2δLLω2L(t)=0, for any t.

    Therefore, ˜Ω2={Ξ _{2} }. Applying LIP, we get Ξ2 is GAS.

    Theorem 4. Consider (2.1)–(2.7) and suppose that 3>1 and 4>1, then Ξ3 is GAS.

    Proof. Define

    Λ3=H3ϝ(HH3)+eα1ω1L3ϝ(LL3)+eΣ2i=1αiωi(ηL+δL)δLY3ϝ(YY3)+eα4ω4E3ϝ(EE3)+eΣ5i=4αiωi(ηE+δE)δEZ3ϝ(ZZ3)+eΣ3i=1αiωiηY(ηL+δL)θCδLC3ϝ(CC3)+eΣ6i=4αiωiηZ(ηE+δE)θBδEB3ϝ(BB3)+γHCH3C31+ψCC3ttω1ϝ(H(u)C(u)(1+ψCC3)H3C3(1+ψCC(u)))du+eα1ω1(ηL+δL)L3ttω2ϝ(L(u)L3)du+γHBH3B31+ψBB3ttω4ϝ(H(u)B(u)(1+ψBB3)H3B3(1+ψBB(u)))du+eα4ω4(ηE+δE)E3ttω5ϝ(E(u)E3)du+eΣ2i=1αiωiηY(ηL+δL)δLY3ttω3ϝ(Y(u)Y3)du+eΣ5i=4αiωiηZ(ηE+δE)δEZ3ttω6ϝ(Z(u)Z3)du.

    We calculate dΛ3dt as:

    dΛ3dt=(1H3H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+eα1ω1(1L3L)[eα1ω1γHCHω1Cω11+ψCCω1(ηL+δL)L]+eΣ2i=1αiωi(ηL+δL)δL(1Y3Y)[eα2ω2δLLω2ηYY]+eα4ω4(1E3E)[eα4ω4γHBHω4Bω41+ψBBω4(ηE+δE)E]+eΣ5i=4αiωi(ηE+δE)δE(1Z3Z)[eα5ω5δEEω5ηZZ]+eΣ3i=1αiωiηY(ηL+δL)θCδL(1C3C)[eα3ω3θCYω3ηCC]+eΣ6i=4αiωiηZ(ηE+δE)θBδE(1B3B)[eα6ω6θBZω6ηBB]+γHCHC1+ψCCγHCHω1Cω11+ψCCω1+γHCH3C31+ψCC3ln(Hω1Cω1(1+ψCC)HC(1+ψCCω1))+eα1ω1(ηL+δL)Leα1ω1(ηL+δL)Lω2+eα1ω1(ηL+δL)L3ln(Lω2L)+γHBHB1+ψBBγHBHω4Bω41+ψBBω4+γHBH3B31+ψBB3ln(Hω4Bω4(1+ψBB)HB(1+ψBBω4))+eα4ω4(ηE+δE)Eeα4ω4(ηE+δE)Eω5+eα4ω4(ηE+δE)E3ln(Eω5E)+eΣ2i=1αiωiηY(ηL+δL)δLYeΣ2i=1αiωiηY(ηL+δL)δLYω3+eΣ2i=1αiωiηY(ηL+δL)δLY3ln(Yω3Y)+eΣ5i=4αiωiηZ(ηE+δE)δEZeΣ5i=4αiωiηZ(ηE+δE)δEZω6+eΣ5i=4αiωiηZ(ηE+δE)δEZ3ln(Zω6Z). (2.16)

    Then collecting terms of Eq (2.16) and using the equilibrium conditions for Ξ3:

    ϕ=ηHH3+γHCH3C31+ψCC3+γHBH3B31+ψBB3,  γHCH3C31+ψCC3=eα1ω1(ηL+δL)L3, δLL3=eα2ω2ηYY3,  γHBH3B31+ψBB3=eα4ω4(ηE+δE)E3,  δEE3=eα5ω5ηZZ3,θCY3=eα3ω3ηCC3,  θBZ3=eα6ω6ηBB3,

    and equalities (2.13) and (2.15), we get:

    dΛ3dt=ηH(HH3)2Heα1ω1(ηL+δL)L3[ϝ(H3H)+ϝ(Hω1Cω1L3(1+ψCC3)H3C3L(1+ψCCω1))+ϝ(Y3Lω2YL3)+ϝ(C3Yω3CY3)+ϝ(1+ψCC1+ψCC3)]eα4ω4(ηE+δE)E3[ϝ(H3H)+ϝ(Hω4Bω4E3(1+ψBB3)H3B3E(1+ψBBω4))+ϝ(Z3Eω5ZE3)+ϝ(B3Zω6BZ3)+ϝ(1+ψBB1+ψBB3)]eα1ω1ψC(ηL+δL)(CC3)2(1+ψCC)(1+ψCC3)C3L3eα4ω4ψB(ηE+δE)(BB3)2(1+ψBB)(1+ψBB3)B3E3.

    So, we get dΛ3dt0 for all H,L,Y,E,Z,C,B>0. Further, dΛ3dt=0 when H=H3, L=L3, Y=Y3, E=E3, Z=Z3, C=C3 and Z=Z3. Therefore, ˜Ω3={Ξ _{3} }. Applying LIP, we find that Ξ3 is GAS.

    We have compiled the existence and global stability conditions for each equilibrium point in Table 1 based on the aforementioned results.

    Table 1.  Existence and global stability conditions of the equilibria of system (2.1)–(2.7).
    Equilibrium point Existence conditions Global stability conditions
    Ξ0=(H0,0,0,0,0,0,0) None 11 and 21
    Ξ1=(H1,L1,Y1,0,0,C1,0) 1>1 1>1 and 41
    Ξ2=(H2,0,0,E2,Z2,0,B2) 2>1 2>1 and 31
    Ξ3=(H3,L3,Y3,E3,Z3,C3,B3) 3>1 and 4>1 3>1 and 4>1

     | Show Table
    DownLoad: CSV

    In the preceding section, we assumed that:

    (ⅰ) The formation time of each latently infected cell is fixed;

    (ⅱ) The activation time of each latently infected cell is fixed;

    (ⅲ) The maturation time of each newly released viron is fixed. It is evident from a mathematical and biological perspective that the distributed delay (where the time delay is taken as a random variable drawn from the probability distribution function) is more appropriate in real-world scenarios than the discrete delay. There have been several studies on virus infection models with distributed-time delays (see [27,31]).

    In this section, we extend the two-virus model presented in the previous section by including six distributed-time delays as:

    ˙H(t)=ϕηHH(t)γHCH(t)C(t)1+ψCC(t)γHBH(t)B(t)1+ψBB(t), (3.1)
    ˙L(t)=γHCϰ10P1(ω)eα1ωH(tω)C(tω)1+ψCC(tω)dω(ηL+δL)L(t), (3.2)
    ˙Y(t)=δLϰ20P2(ω)eα2ωL(tω)dωηYY(t), (3.3)
    ˙E(t)=γHBϰ40P4(ω)eα4ωH(tω)B(tω)1+ψBB(tω)dω(ηE+δE)E(t), (3.4)
    ˙Z(t)=δEϰ50P5(ω)eα5ωE(tω)dωηZZ(t), (3.5)
    ˙C(t)=θCϰ30P3(ω)eα3ωY(tω)dωηCC(t), (3.6)
    ˙B(t)=θBϰ60P6(ω)eα6ωZ(tω)dωηBB(t). (3.7)

    Here ω is random taken from probability distributed function Pi(ω) during time interval [0,ϰi], where ϰi is the limit superior of the delay period, i=1,2,,6. We have the assumptions:

    (ⅰ) The probability of uninfected cells touched by viral types C and B at time tω surviving ω time units and becoming latent infected cells at time t are represented by factors Pi(ω)eαiω, where i=1 and 4, respectively.

    (ⅱ) The probability that latent cells infected with viruses type C and B at time tω would survive ω time units and become active are shown by factors Pi(ω)eαiω, where i=2 and 5, respectively.

    (ⅲ) The probability that immature viruses type C and B at time tω survive ω time units to become mature viruses at time t are shown by factors Pi(ω)eαiω, where i=3 and 6, respectively.

    Function Pi(ω), i=1,2,,6 satisfy Pi(ω)>0 and

    ϰi0Pi(ω)dω=1,   ϰi0Pi(ω)enωdω<,

    where n>0. Let us denote that

    Pi=ϰi0Pi(ω)eαiωdω, i=1,2,,6.

    This implies that 0<Pi1. The initial conditions for system (3.1)–(3.7) are the same as given by Eq (2.8), where ω=max{ϰ1,ϰ2,,ϰ6}.

    Proposition 2. The solutions of system (3.1)–(3.7) with initial (2.8) are nonnegative and ultimately bounded.

    Proof. We have that

    ˙HH=0=ϕ>0.

    Hence, H(t)>0 for all t0. Moreover, for all t[0,ω], we have:

    L(t)=2(0)e(ηL+δL)t+γHCt0e(ηL+δL)(tr)ϰ10P1(ω)eα1ωH(rω)C(rω)1+ψCC(rω)dωdr,Y(t)=3(0)eηYt+δLt0eηY(tr)ϰ20P2(ω)eα2ωL(rω)dωdr,E(t)=4(0)e(ηE+δE)t+γHBt0e(ηE+δE)(tr)ϰ40P4(ω)eα4ωH(rω)B(rω)1+ψBB(rω)dωdr,Z(t)=5(0)eηZt+δEt0eηZ(tr)ϰ50P5(ω)eα5ωE(rω)dωdr,C(t)=6(0)eηCt+θCt0eηC(tr)ϰ30P3(ω)eα3ωY(rω)dωdr,B(t)=7(0)eηBt+θBt0eηB(tr)ϰ60P6(ω)eα6ωZ(rω)dωdr.

    Hence, L(t),Y(t),E(t),Z(t),C(t),B(t)0 for all t[0,ω]. Through recursive argumentation, we get L(t),Y(t),E(t),Z(t),C(t),B(t) for all t0. Therefore, H,L,Y,E,Z,C and B are nonnegative.

    The nonnegativity of the system's solution implies that:

    ˙H(t)ϕηHH(t)  limtsupH(t)=ϕηH=a0.

    Let us define

    Φ1(t)=ϰ10P1(ω)eα1ωH(tω)dω+L(t).

    Then

    ˙Φ1(t)=ϰ10P1(ω)eα1ω˙H(tω)dω+˙L(t)=ϰ10P1(ω)eα1ω[ϕηHH(tω)γHCH(tω)C(tω)1+ψCC(tω)γHBH(tω)B(tω)1+ψBB(tω)]dω+γHCϰ10P1(ω)eα1ωH(tω)C(tω)1+ψCC(tω)dω(ηL+δL)L(t)=ϕϰ10P1(ω)eα1ωdωηHϰ10P1(ω)eα1ωH(tω)dωγHBϰ10P1(ω)eα1ωH(tω)B(tω)1+ψBB(tω)dω(ηL+δL)L(t)ϕηHϰ10P1(ω)eα1ωH(tω)dω(ηL+δL)L(t)ϕσ1[ϰ10P1(ω)eα1ωH(tω)dωL(t)]=ϕσ1Φ(t).

    It follows that

    limtsupΦ1(t)ϕσ1=a1limtsupL(t)a1.

    Let

    Φ2(t)=ϰ40P4(ω)eα4ωH(tω)dω+E(t),

    then,

    ˙Φ2(t)=ϰ40P4(ω)eα4ω˙H(tω)dω+˙E(t)=ϰ40P4(ω)eα4ω[ϕηHH(tω)γHCH(tω)C(tω)1+ψCC(tω)γHBH(tω)B(tω)1+ψBB(tω)]dω+γHBϰ40P4(ω)eα4ωH(tω)B(tω)1+ψBB(tω)dω(ηE+δE)E(t)=ϕϰ40P4(ω)eα4ωdωηHϰ40P4(ω)eα4ωH(tω)dωγHCϰ40P4(ω)eα4ωH(tω)C(tω)1+ψCC(tω)(ηE+δE)E(t)ϕηHϰ40P4(ω)eα4ωH(tω)dω(ηE+δE)E(t)ϕσ2[ϰ40P4(ω)eα4ωH(tω)dω+E(t)]=ϕσ2Φ(t).

    It follows that

    limtsupΦ2(t)ϕσ2=a2limtsupE(t)a2.

    From Eq (3.3) we get

    ˙Y(t)=δLϰ20P2(ω)eα2ωL(tω)dωηYY(t)δLa1ηYY(t)limtsupY(t)δLa1ηY=a3.

    Equation (3.5) implies that

    ˙Z(t)=δEϰ50P5(ω)eα5ωE(tω)dωηZZ(t)δEa2ηZZ(t)limtsupZ(t)δEa2ηZ=a4.

    Similarly from Eqs (3.6) and (3.7) we get

    ˙C(t)θCa3ηCC(t)limtsupC(t)θCa3ηC=a5,˙B(t)θBa4ηBB(t)limtsupB(t)θBa4ηB=a6.

    Based on Proposition 2 we can show that Γ is positively invariant for system (3.1)–(3.7).

    We calculate the model's equilibria deduce when they exist. Any equilibria point Ξ=(H,L,Y,E,Z,C,B) satisfies:

    0=ϕηHHγHCHC1+ψCCγHBHB1+ψBB,0=P1γHCHC1+ψCC(ηL+δL)L,0=P2δLLηYY,0=P4γHBHB1+ψBB(ηE+δE)E,0=P5δEEηZZ,0=P3θCYηCC,0=P6θBZηBB. (3.8)

    System (3.8) admits four equilibria.

    (Ⅰ) Infection-free equilibrium, Ξ0=(H0,0,0,0,0,0,0), where H0=ϕ/ηH.

    (Ⅱ) Virus type C single-infection equilibrium Ξ1=(H1,L1,Y1,0,0,C1,0), where

    H1=ηYηC(ηL+δL)+ψCϕδLθCΠ3i=1PiδLθC(ηHψC+γHC)Π3i=1Pi, L1=ηYηCηHδLθC(ηHψC+γHC)Π3i=2Pi(R11),Y1=ηCηHP3θC(ηHψC+γHC)(R11), C1=ηH(ηHψC+γHC)(R11),

    where, R1 is given by

    R1=H0δLθCγHCΠ3i=1PiηYηC(ηL+δL).

    It follows that, Ξ1 exists if R1>1.

    (Ⅲ) Virus type B single-infection equilibrium Ξ2=(H2,0,0,E2,Z2,0,B2), where

    H2=ηZηB(ηE+δE)+δEψBϕθBΠ6i=4PiδEθB(ηHψB+γHB)Π6i=4Pi, E2=ηZηBηHδEθB(ηHψB+γHB)Π6i=5Pi(R21),Z2=ηBηHP6θB(ηHψB+γHB)(R21), B2=ηH(ηHψB+γHB)(R21),

    where

    R2=H0δEθBγHBΠ6i=4PiηZηB(ηE+δE).

    Therefore, Ξ2 exists if R2>1.

    (Ⅳ) Coexistence equilibrium Ξ3=(H3,L3,Y3,E3,Z3,C3,B3), where

    H3=ϕψCδLθCψBδEθBΠ6i=1Pi+ηYηCψBδEθB(ηL+δL)Π6i=4Pi+ηZηBψCδLθC(ηE+δE)Π3i=1PiδEθBδLθC(ηHψCψB+γHCψB+γHBψC)Π6i=1Pi, L3=ηYηC(ηHψB+γHB)δLθC(ηHψCψB+γHCψB+γHBψC)Π3i=2Pi(R31),  Y3=ηC(ηHψB+γHB)P3θC(ηHψCψB+γHCψB+γHBψC)(R31),E3=ηZηB(ηHψC+γHC)δEθB(ηHψCψB+γHCψB+γHBψC)Π6i=5Pi(R41),  Z3=ηB(ηHψC+γHC)P6θB(ηHψCψB+γHCψB+γHBψC)(R41),  C3=ηHψB+γHBηHψCψB+γHCψB+γHBψC(R31),  B3=ηHψC+γHCηHψCψB+γHCψB+γHBψC(R41),

    where

    R3=γHCδLθC[ϕψBδEθBΠ6i=4Pi+ηZηB(ηE+δE)]Π3i=1PiηYηCδEθB(ηL+δL)(ηHψB+γHB)Π6i=4Pi,R4=γHBδEθB[ϕψCδLθCΠ3i=1Pi+ηYηC(ηL+δL)]Π6i=4PiηZηBδLθC(ηE+δE)(ηHψC+γHC)Π3i=1Pi.

    Clearly, Ξ3 exists when R3>1 and R4>1.

    Let Θj(H,L,Y,E,Z,C,B) be a Lyapunov function candidate and ˜Υj be the largest invariant subset of

    Υj={(H,L,Y,E,Z,C,B):dΘjdt=0},  j=0,1,2,4.

    We denote

    (H,L,Y,E,Z,C,B)=(H(t),L(t),Y(t),E(t),Z(t),C(t),B(t))

    and

    (Hω,Lω,Yω,Eω,Zω,Cω,Bω)=(H(tω),L(tω),Y(tω),E(tω),Z(tω),C(tω),B(tω)).

    Theorem 5. For system (3.1)–(3.7) suppose that R11 and R21, then Ξ0 is GAS.

    Proof. Define

    Θ0=H0ϝ(HH0)+1P1L+(ηL+δL)P1P2δLY+1P4E+(ηE+δE)P4P5δEZ+ηY(ηL+δL)P1P2P3θCδLC+ηZ(ηE+δE)P4P5P6θBδEB+1P1γHCϰ10P1(ω)eα1ωttωH(u)C(u)1+ψCC(u)dudω+(ηL+δL)P1P2ϰ20P2(ω)eα2ωttωL(u)dudω+1P4γHBϰ40P4(ω)eα4ωttωH(u)B(u)1+ψBB(u)dudω+(ηE+δE)P4P5ϰ50P5(ω)eα5ωttωE(u)dudω+ηY(ηL+δL)P1P2P3δLϰ30P3(ω)eα3ωttωY(u)dudω+ηZ(ηE+δE)P4P5P6δEϰ60P6(ω)eα6ωttωZ(u)dudω.

    It is seen that, Θ0>0 for all H,L,Y,E,Z,C,B>0, and Θ0(H0,0,0,0,0,0,0)=0. Calculate dΘ0dt as:

    dΘ0dt=(1H0H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+1P1[γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω(ηL+δL)L]+(ηL+δL)P1P2δL[δLϰ20P2(ω)eα2ωLωdωηYY]+1P4[γHBϰ40P4(ω)eα3ωHωBω1+ψBBωdω(ηE+δE)E]+(ηE+δE)P4P5δE[δEϰ50P5(ω)eα5ωEωdωηZZ]+ηY(ηL+δL)P1P2P3θCδL[θCϰ30P3(ω)eα3ωYωdωηCC]+ηZ(ηE+δE)P4P5P6θBδE[θBϰ60P6(ω)eα6ωZωdωηBB]+γHCHC1+ψCC1P1γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω+(ηL+δL)P1L(ηL+δL)P1P2ϰ20P2(ω)eα2ωLωdω+γHBHB1+ψBB1P4γHBϰ40P4(ω)eα4ωHωBω1+ψBBωdω+(ηE+δE)P4E(ηE+δE)P4P5ϰ50P5(ω)eα5ωEωdω+ηY(ηL+δL)P1P2δLYηY(ηL+δL)P1P2P3δLϰ30P3(ω)eα3ωYωdω+ηZ(ηE+δE)P4P5δEZηZ(ηE+δE)P4P5P6δEϰ60P6(ω)eα6ωZωdω.

    Collecting terms and using the equilibrium condition ϕ=ηHH0, we get:

    dΘ0dt=ηH(HH0)2HγHCψCH0C21+ψCCγHBψBH0B21+ψBB+ηYηC(ηL+δL)P1P2P3θCδL(R11)C+ηZηB(ηE+δE)P4P5P6θBδE(R21)B.

    Since R11 and R21, then dΘ0dt0 for all H,C,B>0. In addition dΘ0dt=0 when H=H0 and C=B=0. The solutions of system (3.1)–(3.7) tend to ˜Υ0 [40] which includes elements with C=B=0. Thus, ˙C=˙B=0 and from Eqs (3.6) and (3.7) we have:

    0=˙C=θCϰ30P3(ω)eα3ωYωdωY(t)=0, for any t,0=˙B=θBϰ60P6(ω)eα6ωZωdωZ(t)=0, for any t.

    Then from Eqs (3.3) and (3.5) we get

    0=˙Y=δLϰ20P2(ω)eα2ωLωdωL(t)=0, for any t,0=˙Z=δEϰ50P5(ω)eα5ωEωdωE(t)=0, for any t.

    Therefore, ˜Υ0={Ξ0} and applying LIP, we obtain that Ξ0 is GAS.

    Theorem 6. For system (3.1)–(3.7) suppose that R1>1 and R41, then Ξ1 is GAS.

    Proof. Let us formulate a Lyapunov function Θ1 as:

    Θ1=H1ϝ(HH1)+1P1L1ϝ(LL1)+(ηL+δL)P1P2δLY1ϝ(YY1)+1P4E+(ηE+δE)P4P5δEZ+ηY(ηL+δL)P1P2P3θCδLC1ϝ(CC1)+ηZ(ηE+δE)P4P5P6θBδEB+1P1γHCH1C11+ψCC1ϰ10P1(ω)eα1ωttωϝ(H(u)C(u)(1+ψCC1)H1C1(1+ψCC(u)))dudω+(ηL+δL)P1P2L1ϰ20P2(ω)eα2ωttωϝ(L(u)L1)dudω+1P4γHBϰ40P4(ω)eα4ωttωH(u)B(u)1+ψBB(u)dudω+(ηE+δE)P4P5ϰ50P5(ω)eα5ωttωE(u)dudω+ηY(ηL+δL)P1P2P3δLY1ϰ30P3(ω)eα3ωttω+ηZ(ηE+δE)P4P5P6δEϰ60P6(ω)eα6ωttωZ(u)dudω.

    We calculate dΘ1dt as:

    dΘ1dt=(1H1H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+1P1(1L1L)[γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω(ηL+δL)L]+(ηL+δL)P1P2δL(1Y1Y)[δLϰ20P2(ω)eα2ωLωdωηYY]+1P4[γHBϰ40P4(ω)eα4ωHωBω1+ψBBωdω(ηE+δE)E]+(ηE+δE)P4P5δE[δEϰ50P5(ω)eα5ωEωdωηZZ]+ηY(ηL+δL)P1P2P3θCδL(1C1C)[θCϰ30P3(ω)eα3ωYωdωηCC]+ηZ(ηE+δE)P4P5P6θBδE[θBϰ60P6(ω)eα6ωZωdωηBB]+γHCHC1+ψCC1P1γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω+1P1γHCH1C11+ψCC1ϰ10P1(ω)eα1ωln(HωCω(1+ψCC)HC(1+ψCCω))dω+(ηL+δL)P1L(ηL+δL)P1P2ϰ20P2(ω)eα2ωLωdω+(ηL+δL)P1P2L1ϰ20P2(ω)eα2ωln(LωL)dω+γHBHB1+ψBB1P4γHBϰ40P4(ω)eα4ωHωBω1+ψBBωdω+(ηE+δE)P4E(ηE+δE)P4P5ϰ50P5(ω)eα5ωEωdω+ηY(ηL+δL)P1P2δLYηY(ηL+δL)P1P2P3δLϰ30P3(ω)eα3ωYωdω+ηY(ηL+δL)P1P2P3δLY1ϰ30P3(ω)eα3ωln(YωY)dω+ηZ(ηE+δE)P4P5δEZηZ(ηE+δE)P4P5P6δEϰ60P6(ω)eα6ωZωdω. (3.9)

    Simplifying Eq (3.9) and using the equilibrium conditions for Ξ1:

    ϕ=ηHH1+γHCH1C11+ψCC1,  γHCH1C11+ψCC1=1P1(ηL+δL)L1,P2δLL1=ηYY1,  P3θCY1=ηCC1,

    and the following equalities:

    ln(HωCω(1+ψCC)HC(1+ψCCω))=ln(LiHωCω(1+ψCCi)LHiCi(1+ψCCω))+ln(1+ψCC1+ψCCi)+ln(HiH)+ln(CiLCLi),ln(LωL)=ln(YiLωYLi)+ln(YLiYiL),ln(YωY)=ln(CiYωCYi)+ln(CYiCiY), (3.10)

    where i=1,3, we get:

    dΘ1dt=ηH(HH1)2HγHBψBH1B21+ψBB1P1(ηL+δL)L1[ϝ(H1H)+ϝ(1+ψCC1+ψCC1)]ψC(ηL+δL)(CC1)2P1(1+ψCC)(1+ψCC1)C1L11P21(ηL+δL)L1ϰ10P1(ω)eα1ωϝ(HωCωL1(1+ψCC1)H1C1L(1+ψCCω))dω1P1P2(ηL+δL)L1ϰ20P2(ω)eα2ωϝ(Y1LωYL1)dω1P1P3(ηL+δL)L1ϰ30P3(ω)eα3ωϝ(C1YωCY1)dω+ηZηB(ηE+δE)P4P5P6θBδE(R41)B.

    Since R41 then, dΘ1dt0 for all H,L,Y,E,Z,C,B>0. Moreover, dΘ1dt=0 when H=H1, L=L1, Y=Y1, C=C1, and B=0. The solutions of system (3.1)–(3.7) tend to ˜Υ1 which includes elements with B=0 which gives ˙B=0. From Eq (3.7) we get

    0=˙B=θBϰ60P6(ω)eα6ωZωdωZ(t)=0, for any t.

    Then from Eq (3.5) we have

    0=˙Z=δEϰ50P5(ω)eα5ωEωdωE(t)=0, for any t.

    Hence, ˜Υ1={Ξ _{1} } and Ξ1 is GAS using LIP.

    Theorem 7. For system (3.1)–(3.7) suppose that R2>1 and R31, then Ξ2 is GAS.

    Proof. Consider

    Θ2=H2ϝ(HH2)+1P1L+(ηL+δL)P1P2δLY+1P4E2ϝ(EE2)+(ηE+δE)P4P5δEZ2ϝ(ZZ2)+ηY(ηL+δL)P1P2P3θCδLC+ηZ(ηE+δE)P4P5P6θBδEB2ϝ(BB2)+1P1γHCϰ10P1(ω)eα1ωttωH(u)C(u)1+ψCC(u)dudω+(ηL+δL)P1P2ϰ20P2(ω)eα2ωttωL(u)dudω+1P4γHBH2B21+ψBB2ϰ40P4(ω)eα4ωttωϝ(H(u)B(u)(1+ψBB2)H2B2(1+ψBB(u)))dudω+(ηE+δE)P4P5E2ϰ50P5(ω)eα5ωttωϝ(E(u)E2)dudω+ηY(ηL+δL)P1P2P3δLϰ30P3(ω)eα3ωttωY(u)dudω+ηZ(ηE+δE)P4P5P6δEZ2ϰ60P6(ω)eα6ωttωϝ(Z(u)Z2)dudω.

    We calculate dΘ2dt as:

    dΘ2dt=(1H2H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+1P1[γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω(ηL+δL)L]+(ηL+δL)P1P2δL[δLϰ20P2(ω)eα2ωLωdωηYY]+1P4(1E2E)[γHBϰ40P4(ω)eα4ωHωBω1+ψBBωdω(ηE+δE)E]+(ηE+δE)P4P5δE(1Z2Z)[δEϰ50P5(ω)eα5ωEωdωηZZ]+ηY(ηL+δL)P1P2P3θCδL[θCϰ30P3(ω)eα3ωYωdωηCC]+ηZ(ηE+δE)P4P5P6θBδE(1B2B)[θBϰ60P6(ω)eα6ωZωdωηBB]+γHCHC1+ψCC1P1γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω+(ηL+δL)P1L(ηL+δL)P1P2ϰ20P2(ω)eα2ωLωdω+γHBHB1+ψBB1P4γHBϰ40P4(ω)eα4ωHωBω1+ψBBωdω+1P4γHBH2B21+ψBB2ϰ40P4(ω)eα4ωln(HωBω(1+ψBB)HB(1+ψBBω))dω+(ηE+δE)P4E(ηE+δE)P4P5ϰ50P5(ω)eα5ωEωdω+(ηE+δE)P4P5E2ϰ50P5(ω)eα5ωln(EωE)dω+ηY(ηL+δL)P1P2δLYηY(ηL+δL)P1P2P3δLϰ30P3(ω)eα3ωYωdω+ηZ(ηE+δE)P4P5δEZηZ(ηE+δE)P4P5P6δEϰ60P6(ω)eα6ωZωdω+ηZ(ηE+δE)P4P5P6δEZ2ϰ60P6(ω)eα6ωln(ZωZ)dω. (3.11)

    Then simplifying Eq (3.11) and using the equilibrium conditions for Ξ2:

    ϕ=ηHH2+γHBH2B21+ψBB2,  γHBH2B21+ψBB2=1P4(ηE+δE)E2,P5δEE2=ηZZ2,  P6θBZ2=ηBB2,

    and the following equalities:

    ln(HωBω(1+ψBB)HB(1+ψBBω))=ln(EiHωBω(1+ψBBi)EHiBi(1+ψBBω))+ln(1+ψBB1+ψBBi)+ln(HiH)+ln(BiEBEi),ln(EωE)=ln(ZiEωZEi)+ln(ZEiZiE),ln(ZωZ)=ln(BiZωBZi)+ln(BZiBiZ), (3.12)

    where i=2,3, we get:

    dΘ2dt=ηH(HH2)2HγHCψCH2C21+ψCC1P4(ηE+δE)E2[ϝ(H2H)+ϝ(1+ψBB1+ψBB2)]ψB(ηE+δE)(BB2)2P4(1+ψBB)(1+ψBB2)B2E21P24(ηE+δE)E2ϰ40P4(ω)eα4ωϝ(HωBωE2(1+ψBB2)H2B2E(1+ψBBω))dω1P4P5(ηE+δE)E2ϰ50P5(ω)eα5ωϝ(Z2EωZE2)dω1P4P6(ηE+δE)E2ϰ60P6(ω)eα6ωϝ(B2ZωBZ2)dω+ηCηY(ηL+δL)P1P2P3θCδL(R31)C.

    Since R31 then, dΘ2dt0 for all H,L,Y,E,Z,C,B>0. Further, dΘ2dt=0 when H=H2, E=E2, Z=Z2, B=B2 and C=0. The solutions of system (3.1)–(3.7) tend to ˜Υ2 which contains elements with C=0, which gives ˙C=0. Equation (3.6) implies

    0=˙C=θCϰ30P3(ω)eα3ωYωdωY(t)=0, for any t.

    Then, Eq (3.3) becomes

    0=˙Y=δLϰ20P2(ω)eα2ωLωdωL(t)=0, for any t.

    Therefore, ˜Υ2={Ξ _{2} }. Applying LIP, we get Ξ2 is GAS.

    Theorem 8. For system (3.1)–(3.7) assume that R3>1 and R4>1, then Ξ3 is GAS.

    Proof. Define a function Θ3 as:

    Θ3=H3ϝ(HH3)+1P1L3ϝ(LL3)+(ηL+δL)P1P2δLY3ϝ(YY3)+1P4E3ϝ(EE3)+(ηE+δE)P4P5δEZ3ϝ(ZZ3)+ηY(ηL+δL)P1P2P3θCδLC3ϝ(CC3)+ηZ(ηE+δE)P4P5P6θBδEB3ϝ(BB3)+1P1γHCH3C31+ψCC3ϰ10P1(ω)eα1ωttωϝ(H(u)C(u)(1+ψCC3)H3C3(1+ψCC(u)))dudω+(ηL+δL)P1P2L3ϰ20P2(ω)eα2ωttωϝ(L(u)L3)dudω+1P4γHBH3B31+ψBB3ϰ40P4(ω)eα4ωttωϝ(H(u)B(u)(1+ψBB3)H3B3(1+ψBB(u)))dudω+(ηE+δE)P4P5E3ϰ50P5(ω)eα5ωttωϝ(E(u)E3)dudω+ηY(ηL+δL)P1P2P3δLY3ϰ30P3(ω)eα3ωttωϝ(Y(u)Y3)dudω+ηZ(ηE+δE)P4P5P6δEZ3ϰ60P6(ω)eα6ωttωϝ(Z(u)Z3)dudω.

    We calculate dΘ3dt as:

    dΘ3dt=(1H3H)[ϕηHHγHCHC1+ψCCγHBHB1+ψBB]+1P1(1L3L)[γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω(ηL+δL)L]+(ηL+δL)P1P2δL(1Y3Y)[δLϰ20P2(ω)eα2ωLωdωηYY]+1P4(1E3E)[γHBϰ40P4(ω)eα4ωHωBω1+ψBBωdω(ηE+δE)E]+(ηE+δE)P4P5δE(1Z3Z)[δEϰ50P5(ω)eα5ωEωdωηZZ]+ηY(ηL+δL)P1P2P3θCδL(1C3C)[θCϰ30P3(ω)eα3ωYωdωηCC]+ηZ(ηE+δE)P4P5P6θBδE(1B3B)[θBϰ60P6(ω)eα6ωZωdωηBB]+γHCHC1+ψCC1P1γHCϰ10P1(ω)eα1ωHωCω1+ψCCωdω+1P1γHCH3C31+ψCC3ϰ10P1(ω)eα1ωln(HωCω(1+ψCC)HC(1+ψCCω))dω+(ηL+δL)P1L(ηL+δL)P1P2ϰ20P2(ω)eα2ωLωdω+(ηL+δL)P1P2L3ϰ20P2(ω)eα2ωln(LωL)dω+γHBHB1+ψBB1P4γHBϰ40P4(ω)eα4ωHωBω1+ψBBωdω+1P4γHBH3B31+ψBB3ϰ40P4(ω)eα4ωln(HωBω(1+ψBB)HB(1+ψBBω))dω+(ηE+δE)P4E(ηE+δE)P4P5ϰ50P5(ω)eα5ωEωdω+(ηE+δE)P4P5E3ϰ50P5(ω)eα5ωln(EωE)dω+ηY(ηL+δL)P1P2δLYηY(ηL+δL)P1P2P3δLϰ30P3(ω)eα3ωYωdω+ηY(ηL+δL)P1P2P3δLY3ϰ30P3(ω)eα3ωln(YωY)dω+ηZ(ηE+δE)P4P5δEZηZ(ηE+δE)P4P5P6δEϰ60P6(ω)eα6ωZωdω+ηZ(ηE+δE)P4P5P6δEZ3ϰ60P6(ω)eα6ωln(ZωZ)dω. (3.13)

    Then collecting terms of Eq (3.13) and using the equilibrium conditions for Ξ3:

    ϕ=ηHH3+γHCH3C31+ψCC3+γHBH3B31+ψBB3,  γHCH3C31+ψCC3=1P1(ηL+δL)L3,P2 δLL3=ηYY3,  γHBH3B31+ψBB3=1P4(ηE+δE)E3,  P5δEE3=ηZZ3, P3θCY3=ηCC3,  P6θBZ3=ηBB3,

    and equalities (3.10) and (3.12), we get:

    dΘ3dt=ηH(HH3)2H1P1(ηL+δL)L3[ϝ(H3H)+ϝ(1+ψCC1+ψCC3)]ψC(ηL+δL)(CC3)2P1(1+ψCC)(1+ψCC3)C3L31P4(ηE+δE)E3[ϝ(H3H)+ϝ(1+ψBB1+ψBB3)]ψB(ηE+δE)(BB3)2P4(1+ψBB)(1+ψBB3)B3E3(ηL+δL)P21L3ϰ10P1(ω)eα1ωϝ(HωCωL3(1+ψCC3)H3C3L(1+ψCCω))dω(ηL+δL)P1P2L3ϰ20P2(ω)eα2ωϝ(Y3LωYL3)dω(ηE+δE)P24E3ϰ40P4(ω)eα4ωϝ(HωBωE3(1+ψBB3)H3B3E(1+ψBBω))dω(ηE+δE)P4P5E3ϰ50P5(ω)eα5ωϝ(Z3EωZE3)dω(ηL+δL)P1P3L3ϰ30P3(ω)eα3ωϝ(C3YωCY3)dω(ηE+δE)P4P6E3ϰ60P6(ω)eα6ωϝ(B3ZωBZ3)dω.

    So, we get dΘ3dt0 for all H,L,Y,E,Z,C,B>0. Further, dΘ3dt=0 when H=H3, L=L3, Y=Y3, E=E3, Z=Z3, C=C3 and Z=Z3. Therefore, ˜Υ3={Ξ _{3} }. Applying LIP, we find that Ξ3 is GAS.

    We compare our model (2.1)–(2.7) with the following model, where saturation is ignored:

    ˙H=ϕηHHγHCHCγHBHB, (4.1)
    ˙L=eα1ω1γHCHω1Cω1(ηL+δL)L, (4.2)
    ˙Y=eα2ω2δLLω2ηYY, (4.3)
    ˙E=eα4ω4γHBHω4Bω4(ηE+δE)E, (4.4)
    ˙Z=eα5ω5δEEω5ηZZ, (4.5)
    ˙C=eα3ω3θCYω3ηCC, (4.6)
    ˙B=eα6ω6θBZω6ηBB. (4.7)

    Model (4.1)–(4.7) has only three equilibria:

    (Ⅰ) Infection-free equilibrium, ˜Ξ0=(˜H0,0,0,0,0,0,0), where ˜H0=ϕ/ηH.

    (Ⅱ) Virus type C single-infection equilibrium ˜Ξ1=(˜H1,˜L1,˜Y1,0,0,˜C1,0), where

    ˜H1=eΣ3i=1αiωiηYηC(ηL+δL)δLθCγHC, ˜L1=eΣ3i=2αiωiηYηCηHδLθCγHC(11),˜Y1=eα3ω3ηCηHθCγHC(11), ˜C1=ηHγHC(11).

    (Ⅲ) Virus type B single-infection equilibrium ˜Ξ2=(˜H2,0,0,˜E2,˜Z2,0,˜B2), where

    ˜H2=eΣ6i=4αiωiηZηB(ηE+δE)δEθBγHB, ˜E2=eΣ6i=5αiωiηZηBηHδEθBγHB(21),˜Z2=eα6ω6ηBηHθBγHB(21), ˜B2=ηHγHB(21).

    We note that the basic reproduction numbers 1 and 2 do not depend on the saturation parameters ψB and ψC. It should be noted that the co-existence equilibrium is absent from this model and a number of other models that have been published in the literature (see, for example, [7,23]). Consequently, one of the elements that can lead to the coexistence of the two rival viruses is saturation.

    Remark 1. When ψB=0 and ψC=0, then 3=12 and 4=21.

    Corollary 1. Consider (4.1)–(4.7) then:

    (ⅰ) If 11 and 21, then ˜Ξ0 is GAS;

    (ⅱ) If 1>1 and 12, then ˜Ξ1 is GAS;

    (ⅲ) If 2>1 and 21, then ˜Ξ2 is GAS.

    Next we show the range of the saturation parameters ψB and ψC that ensure the coexistence equilibrium will appear.

    We have shown that the coexistence equilibrium Ξ3appears when 3>1 and 4>1. When all other parameters are fixed, 3 and 4 are functions of ψB and ψC, respectively. In addition, we have

    3ψB=eΣ3i=1αiωiγHCδLηBηHηZθC(ηE+δE)eΣ6i=4αiωiδEηCηYθB(ηL+δL)(ηHψB+γHB)2(21),4ψC=eΣ6i=4αiωiγHBδEηCηHηYθB(ηL+δL)eΣ3i=1αiωiδLηBηZθC(ηE+δE)(ηHψC+γHC)2(11).

    Hence, if 1>1 and 2>1, then 3 and 4 are increasing functions of ψB and ψC, respectively.

    Let us compute ψminB and ψminC such that

    3>1, for all ψB>ψminB,4>1, for all ψC>ψminC,
    ψminB=max{0,ηBηZ(ηE+δE)eΣ6i=4αiωiδEθBϕ(2111)},ψminC=max{0,ηCηY(ηL+δL)eΣ3i=1αiωiδLθCϕ(1221)}.

    Then the coexistence conditions are

    1>1,2>1,ψB>ψminB  and   ψC>ψminC. (4.8)

    We have two cases:

    (ⅰ) If 2>1>1, then

    ψminB=ηBηZ(ηE+δE)eΣ6i=4αiωiδEθBϕ(2111),ψminC=0.

    (ⅱ) If 1>2>1, then

    ψminB=0,ψminC=ηCηY(ηL+δL)eΣ3i=1αiωiδLθCϕ(1221).

    We see that model (4.1)–(4.7) does not include the scenario where two types of viruses coexist. It was noted that several patients in the studies reported in [14] had co-infections with two different strains of HIV. As such, ignoring saturation might not provide an adequate description of the coinfection dynamics between the two types of viruses (or strains). This lends credence to the notion of including saturation in the coinfection model of two types of viruses, in which the coexistence of two types of viruses is seen. Chronic viral coinfections can also result from other reasons, including immune response [16] and superinfection [49].

    To demonstrate why it is crucial to incorporate latently infected cells and time delays in our proposed model, we examine the model (2.1)–(2.7) in the presence of reverse transcriptase inhibitors (RTIs), a class of medications that may effectively block the free viral infection of target cells. Let ϵC[0,1] and ϵB[0,1] be the efficacies of RTIs for the viruses types C and B, respectively [22]. Under the effect of RTIs, model (2.1)–(2.7) becomes:

    ˙H=ϕηHHγHC(1ϵC)HC1+ψCCγHB(1ϵB)HB1+ψBB, (4.9)
    ˙L=eα1ω1γHC(1ϵC)Hω1Cω11+ψCCω1(ηL+δL)L, (4.10)
    ˙Y=eα2ω2δLLω2ηYY, (4.11)
    ˙E=eα4ω4γHB(1ϵB)Hω4Bω41+ψBBω4(ηE+δE)E, (4.12)
    ˙Z=eα5ω5δEEω5ηZZ, (4.13)
    ˙C=eα3ω3θCYω3ηCC, (4.14)
    ˙B=eα6ω6θBZω6ηBB. (4.15)

    The basic reproduction numbers of system (4.9)–(4.15) are:

    ϵC1=(1ϵC)eΣ3i=1αiωiH0δLθCγHCηYηC(ηL+δL)=(1ϵC)1,ϵB2=(1ϵB)eΣ6i=4αiωiH0δEθBγHBηZηB(ηE+δE)=(1ϵB)2.

    We now compute the drug efficacies ϵC and ϵB, which make ϵC11 and ϵB11, and then stabilize system (4.9)–(4.15) about the infection-free equilibrium Ξ0

    ϵC111ϵCϵminC=max{111,0}, (4.16)
    ϵB111ϵBϵminB=max{212,0}. (4.17)

    If the latently infected cells in model (4.9)–(4.15) are disregarded, we get

    ˙H=ϕηHHγHC(1ϵC)HC1+ψCCγHB(1ϵB)HB1+ψBB, (4.18)
    ˙Y=eα1ω1γHC(1ϵC)Hω1Cω11+ψCCω1ηYY, (4.19)
    ˙Z=eα4ω4γHB(1ϵB)Hω4Bω41+ψBBω4ηZZ, (4.20)
    ˙C=eα3ω3θCYω3ηCC, (4.21)
    ˙B=eα6ω6θBZω6ηBB, (4.22)

    and the basic reproduction numbers of model (4.18)–(4.22) are given by

    ˉϵC1=(1ϵC)e(α1ω1+α3ω3)H0θCγHCηYηC=(1ϵC)ˉ1,ˉϵB2=(1ϵB)e(α4ω4+α6ω6)H0θBγHBηZηB=(1ϵB)ˉ2.

    We determine the drug efficacies \epsilon_{C} and \epsilon_{B} , which make \bar{\Re}_{1}^{\epsilon_{C}}\leq1 and \bar{\Re}_{1}^{\epsilon_{B}}\leq1 and stabilizes the infection-free equilibrium of system (4.18)–(4.22) as:

    \begin{align} \bar{\Re}_{1}^{\epsilon_{C}} & \leq1\Longleftrightarrow1\geq \epsilon_{C} \geq \bar{\epsilon}_{C}^{\min} = \max \left \{ \frac{\bar{\Re}_{1}-1}{\bar{\Re }_{1}},0\right \} , \end{align} (4.23)
    \begin{align} \bar{\Re}_{1}^{\epsilon_{B}} & \leq1\Longleftrightarrow1\geq \epsilon_{B} \geq \bar{\epsilon}_{B}^{\min} = \max \left \{ \frac{\bar{\Re}_{2}-1}{\bar{\Re }_{2}},0\right \} . \end{align} (4.24)

    Since 0 < e^{-\alpha_{2}\omega_{2}}\leq1 and 0 < e^{-\alpha_{5}\omega_{5}} \leq1 , then

    \begin{align*} \Re_{1} & = \frac{e^{-\Sigma_{i = 1}^{3}\alpha_{i}\omega_{i}}H_{0}\delta _{L}\theta_{C}\gamma_{HC}}{\eta_{Y}\eta_{C}(\eta_{L}+\delta_{L})}\leq \frac{e^{-(\alpha_{1}\omega_{1}+\alpha_{3}\omega_{3})}H_{0}\delta_{L} \theta_{C}\gamma_{HC}}{\eta_{Y}\eta_{C}(\eta_{L}+\delta_{L})} < \frac {e^{-(\alpha_{1}\omega_{1}+\alpha_{3}\omega_{3})}H_{0}\theta_{C}\gamma_{HC} }{\eta_{Y}\eta_{C}} = \bar{\Re}_{1},\\ \Re_{2} & = \frac{e^{-\Sigma_{i = 4}^{6}\alpha_{i}\omega_{i}}H_{0}\delta _{E}\theta_{B}\gamma_{HB}}{\eta_{Z}\eta_{B}(\eta_{E}+\delta_{E})}\leq \frac{e^{-(\alpha_{4}\omega_{4}+\alpha_{6}\omega_{6})}H_{0}\delta_{E} \theta_{B}\gamma_{HB}}{\eta_{Z}\eta_{B}(\eta_{E}+\delta_{E})} < \frac {e^{-(\alpha_{4}\omega_{4}+\alpha_{6}\omega_{6})}H_{0}\theta_{B}\gamma_{HB} }{\eta_{Z}\eta_{B}} = \bar{\Re}_{2}. \end{align*}

    Hence, \Re_{1}^{\epsilon_{C}} < \bar{\Re}_{1}^{\epsilon_{C}} and \Re _{2}^{\epsilon_{B}} < \bar{\Re}_{2}^{\epsilon_{B}} and thus eliminating the latently infected cells from the two-virus co-dynamics model would lead to an overestimation of the basic reproduction numbers. By comparing Eqs (4.16), (4.17) and (4.23), (4.24) we get that \epsilon _{C}^{\min} < \bar{\epsilon}_{C}^{\min} and \epsilon_{B}^{\min} < \bar{\epsilon }_{B}^{\min} . Thus, in order to keep the system at the infection-free equilibrium and remove the two types of viruses from the body, fewer treatment efficacies will be needed when utilizing a model with latently infected cells.

    Similar to the discussion, one can find that the presence of time delays reduces the basic reproduction numbers. Then, when using a model with time delays, fewer treatment efficacies will be needed to keep the system at infection-free equilibrium and remove the two types of viruses from the body.

    We perform numerical simulation for the model with discrete-time delays (2.1)–(2.7) in this section. We use the values of the parameters given in Table 2. Using MATLAB's dde23 solver, the system of DDEs is numerically solved.

    Table 2.  The values of parameters of system (2.1)–(2.7).
    Parameter Value Source Parameter Value Source Parameter Value Source
    \phi 10 [29,44,50] \theta_{C} 1 [30] \alpha_{1} 0.2 [51]
    \eta_{H} 0.01 [50,52] \theta_{B} 1.2 Assumed \alpha_{2} 0.3 [51]
    \gamma_{HC} Varied - \eta_{C} 2.4 [29,44] \alpha_{3} 0.4 [51]
    \gamma_{HB} Varied - \eta_{B} 2.4 [29,44] \alpha_{4} 0.5 [51]
    \psi_{C} Varied - \eta_{L} 0.02 [44,53] \alpha_{5} 0.6 [51]
    \psi_{B} Varied - \eta_{E} 0.01 [50] \alpha_{6} 0.9 [51]
    \eta_{Y} 0.5 [28,30] \delta_{L} 0.2 [53]
    \eta_{Z} 0.2 [54] \delta_{E} 0.003 [55]

     | Show Table
    DownLoad: CSV

    In this subsection, we fix the delay parameters as: \omega_{1} = 1, \omega_{2} = 0.8, \omega_{3} = 0.6, \omega_{4} = 0.4, \omega_{5} = 0.2, and \omega_{6} = 0.1. Moreover, we solve system (2.1)–(2.7) with the following initial conditions:

    I-1: (H(u), L(u), Y(u), E(u), Z(u), C(u), B(u)) = (800, 5, 1.5,100, 1, 1, 0.6) ,

    I-2: (H(u), L(u), Y(u), E(u), Z(u), C(u), B(u)) = (600, 10, 3,150, 2, 1.5, 1), I-3: (H(u), L(u), Y(u), E(u), Z(u), C(u), B(u)) = (300, 15, 4.5,200, 3, 2, 1.4) ,

    where u\in \lbrack-1, 0].

    Selecting the values of \gamma_{HC} , \gamma_{HB} , \psi_{C} and \psi_{B} leads to the following plans:

    Plan 1. \gamma_{HC} = 0.001 , \gamma_{HB} = 0.0003 and \psi_{C} = \psi_{B} = 0.01 . These values yield \Re_{1} = 0.38 < 1 and \Re_{2} = 0.11 < 1 . Figure 1 displays that the solutions initiating with I-1, I-2 and I-3 converge the equilibrium \Xi_{0} = (1000, 0, 0, 0, 0, 0, 0) . This illustrates the global asymptotic stability of \Xi_{0} proven Theorem 1. Both virus types C and B will finally be eradicated in this case.

    Figure 1.  Numerical solutions of system (2.1)–(2.7) when \Re _{1}\leq1 and \Re_{2}\leq1 (Plan 1).

    Plan 2. \gamma_{HC} = 0.005 , \gamma_{HB} = 0.0005 and \psi_{C} = \psi_{B} = 0.01 . For such choice, we have \Re_{1} = 1.92 > 1 and \Re_{4} = 0.10 < 1 . It is evident from Figure 2 that for the three selected initial values, the system's solutions converge to the equilibrium \Xi_{1} = (530.5, 17.47, 5.5, 0, 0, 1.8, 0) . This shows that \Xi_{1} is GAS, according to Theorem 2. This situation represents the infection of virus type C only.

    Figure 2.  Numerical solutions of system (2.1)–(2.7) when \Re _{1} > 1 and \Re_{4}\leq1 (Plan 2).

    Plan 3. \gamma_{HC} = 0.001, \gamma_{HB} = 0.005 and \psi _{C} = \psi_{B} = 0.01 . These parameters provide that \Re_{2} = 1.91 > 1 and \Re _{3} = 0.20 < 1 . In Figure 3, we display that the equilibrium \Xi _{2} = (531.73, 0, 0,294.91, 3.92, 0, 1.79) is reached for all initials I-1, I-2 and I-3. This shows that \Xi_{2} is GAS, according to Theorem 3. This situation represents the infection of virus type B only.

    Figure 3.  Numerical solutions of system (2.1)–(2.7) when \Re _{2} > 1 and \Re_{3}\leq1 (Plan 3).

    Plan 4. \gamma_{HC} = \gamma_{HB} = 0.01 and \psi_{C} = \psi_{B} = 0.9 . For such values, we get that \Re_{3} = 2.35 > 1 and \Re_{4} = 2.34 > 1 . From Figure 4, we can see that the equilibrium \Xi_{3} = (490.25, 9.5, 2.99,160.3, 2.12, 0.98, 0.97) is reached for the three selected initials. This illustrates the global asymptotic stability of \Xi_{3} proven Theorem 1. This case show the coexistence of the two type of viruses.

    Figure 4.  Numerical solutions of system (2.1)–(2.7) when \Re _{3} > 1 and \Re_{4} > 1 (Plan 4).

    In this part we show the effect of the saturation parameters \psi_{B} and \psi_{C} on viral co-dynamics. Here, we fix the delay parameters as

    \omega_{1} = 1,\ \ \ \omega_{2} = 0.8,\ \ \ \omega_{3} = 0.6,\ \ \ \omega_{4} = 0.4,\ \ \ \omega_{5} = 0.2 \; \; \; \text{and}\; \; \; \omega_{6} = 0.1.

    We have two situations to identify the values of \psi_{B} and \psi_{C} that lead to the coexistence of the two types of viruses:

    Situation (Ⅰ). \Re_{2} > \Re_{1} > 1 . In this case we choose

    \gamma_{HC} = 0.008\; \; \; \text{and}\; \; \; \gamma_{HB} = 0.009.

    Then we get

    \Re_{1} = 3.07041 > 1,\ \ \ \Re_{2} = 3.44588 > 1,\ \ \ \psi_{B}^{\min} = 0.0473656\; \; \; \text{and}\; \; \; \psi_{C}^{\min} = 0.

    Therefore, \Xi _{3} exists when

    \psi_{B} > 0.0473656 \; \; \; \text{and}\; \; \; \psi _{C} > 0.

    Situation (Ⅱ). \Re_{1} > \Re_{2} > 1 . We take

    \gamma_{HC} = 0.009\; \; \; \text{and}\; \; \; \gamma_{HB} = 0.008.

    Then we get

    \Re_{1} = 3.45421, \ \ \ \Re_{2} = 3.063, \ \ \ \psi _{B}^{\min} = 0.0 \; \; \; \text{and}\; \; \; \psi_{C}^{\min} = 0.0494083.

    It follows that, \Xi _{3} exists when

    \psi_{B} > 0 \; \; \; \text{and}\; \; \; \psi_{C} > 0.0494083.

    Now we show the effect of the saturation parameters \psi_{B} and \psi_{C} on the solutions of model (2.1)–(2.7) in case of Situation (Ⅱ). We consider the initial condition

    I-4: (H(u), L(u), Y(u), E(u), Z(u), C(u), B(u)) = (600, 10, 3, 80, 1, 1, 0.5), \; \; u\in \lbrack-\omega^{\ast}, 0].

    Figure 5 shows the effect of saturation on the viral co-dynamics. We note that a rise in \psi_{C} and \psi_{B} results in a drop in the incidence rate between uninfected cells and the two types of viruses. This decrease is followed by an increase in the concentration of uninfected cells and a decrease in the concentrations of infected cells and free viruses. The infection-free equilibrium \Xi_{0} will not be maintained by raising \psi_{B} and \psi_{C} because the basic reproduction numbers \Re_{1} and \Re_{2} are independent of the saturation parameters.

    Figure 5.  Numerical solutions of system (2.1)–(2.7) with different saturation parameters \psi_{C}, \psi_{B} .

    In this subsection, we analyze the impact of time delay parameters \omega _{i}, i = 1, 2, \ldots, 6 on the co-dynamics of the two types of viruses. We fix the parameters that \gamma_{HC} = 0.009, \gamma_{HB} = 0.08 , and \psi_{C} = \psi _{B} = 0.9 . We consider the scenarios given in Table 3. We solve the system (2.1)–(2.7) under the following initial condition:

    Table 3.  Different scenarios for the delay parameters.
    Scenario \omega_{1} \omega_{2} \omega_{3} \omega_{4} \omega_{5} \omega_{6}
    S1 1 0.9 0.8 0.7 0.6 0.5
    S2 1.5 1.4 1.3 1.2 1 0.9
    S3 2 1.8 1.7 1.6 1.5 1.4
    S4 2.1229 2.1229 2.1229 1.916 1.916 1.916
    S5 7 6 5 4 3 2
    S6 9 8 7 6 5 4

     | Show Table
    DownLoad: CSV

    I-5: (H(u), L(u), Y(u), E(u), Z(u), C(u), B(u)) = (600, 10, 3,150, 2, 1.5, 1), \; \; u\in \lbrack-\omega^{\ast}, 0].

    The numerical results are shown in Figure 6. It is observed that time delays might lead to a notable rise in the quantity of uninfected cells and a decrease in the quantity of remaining compartments. We note that, \Re_{1} and \Re_{2} given by Eqs (2.10) and (2.11) depend on \omega_{i}, i = 1, 2, \ldots, 6 when all other parameters are fixed. We observe from Table 4 that \Re_{1} and \Re_{2} decrease if \omega_{i} increases; hence, the stability of \Xi_{0} will be changed.

    Figure 6.  The impact of the delay on the co-infection dynamics.
    Table 4.  The values of parameters of system (2.1)–(2.7).
    Delay parameters \Re_{1} \Re_{2}
    \omega_{1}=1, \ \omega_{2}=0.9, \omega_{3}=0.8, \text{ }\omega _{4}=0.7, \ \omega_{5}=0.6, \ \ \omega_{6}=0.5 3.09 14.47
    \omega_{1}=1.5, \ \omega_{2}=1.4, \omega_{3}=1.3, \text{ }\omega _{4}=1.2, \ \omega_{5}=1, \ \ \omega_{6}=0.9 1.97 6.18
    \omega_{1}=2, \text{ }\omega_{2}=1.8, \ \omega_{3}=1.7, \ \omega_{4}=1.6, \ \omega_{5}=1.5, \ \omega_{6}=1.4 1.35 2.39
    \omega_{1}=\omega_{2}=\omega_{3}=2.1229, \ \ \omega _{4}= \ \omega_{5}=\omega_{6}=1.916 1 1
    \omega_{1}=7, \ \omega_{2}=6, \ \omega_{3}=5, \ \omega _{4}=4, \ \omega_{5}=3, \ \omega_{6}=2 0.038 0.17
    \omega_{1}=9, \ \omega_{2}=8, \ \omega_{3}=7, \ \omega _{4}=6, \ \omega_{5}=5, \ \omega_{6}=4 0.006 0.003

     | Show Table
    DownLoad: CSV

    Now, we need to calculate the critical values of the delay parameters \omega_{i} , i = 1, 2, \ldots, 6 that make the system stable around the equilibrium point \Xi_{0} . Let \omega_{C} = \omega_{1} = \omega_{2} = \omega_{3} and \omega_{B} = \omega_{4} = \omega_{5} = \omega_{6} , and we write \Re_{1} (\omega_{C}) and \Re_{2}(\omega_{B}) as:

    \Re_{1}(\omega_{C}) = \frac{e^{-(\alpha_{1}+\alpha_{2}+\alpha_{3})\omega_{C} }H_{0}\delta_{L}\theta_{C}\gamma_{HC}}{\eta_{Y}\eta_{C}(\eta_{L}+\delta_{L} )},\qquad \Re_{2}(\omega_{B}) = \frac{e^{-(\alpha_{4}+\alpha _{5}+\alpha_{6})\omega_{B}}H_{0}\delta_{E}\theta_{B}\gamma_{HB}}{\eta_{Z} \eta_{B}(\eta_{E}+\delta_{E})}.

    Clearly, when all other parameters are fixed, \Re_{1} and \Re_{2} are decreasing functions of \omega_{C} and \omega_{B} , respectively. Let us calculate \omega_{C}^{\min} and \omega_{B}^{\min} such that \Re _{1}(\omega_{C}^{\min}) = 1 and \Re_{2}(\omega_{B}^{\min}) = 1 as:

    \begin{align*} \omega_{C}^{\min} & = \max \left \{ 0,\frac{1}{\alpha_{1}+\alpha_{2} +\alpha_{3}}\ln \left( \frac{H_{0}\delta_{L}\theta_{C}\gamma_{HC}}{\eta _{Y}\eta_{C}(\eta_{L}+\delta_{L})}\right) \right \} ,\\ \omega_{B}^{\min} & = \max \left \{ 0,\frac{1}{\alpha_{4}+\alpha_{5} +\alpha_{6}}\ln \left( \frac{H_{0}\delta_{E}\theta_{B}\gamma_{HB}}{\eta _{Z}\eta_{B}(\eta_{E}+\delta_{E})}\right) \right \} . \end{align*}

    Consequently,

    \begin{align*} \Re_{1}(\omega_{C}) & \leq1,\text{ for all }\omega_{C}\geq \omega_{C}^{\min },\\ \Re_{2}(\omega_{B}) & \leq1,\text{ for all }\omega_{B}\geq \omega_{B}^{\min}. \end{align*}

    Therefore, \Xi_{0} is GAS when \omega_{C}\geq \omega_{C}^{\min} and \omega_{B}\geq \omega_{B}^{\min} . Using the values of the parameters in Table 2, we get \omega_{C} = 2.1229 and \omega_{B} = 1.9160 . It follows that:

    (ⅰ) If \omega_{C}\geq2.1229 and \omega_{B}\geq1.9160, then \Re_{1} (\omega_{C})\leq1 and \Re_{2}(\omega_{B})\leq1 , and then \Xi_{0} is GAS.

    (ⅱ) If \omega_{C} < 2.1229 and/or \omega_{B} < 1.9160, then \Re_{1} (\omega_{C}) > 1 and/or \Re_{2}(\omega_{B}) > 1 . In this case, \Xi_{0} will lose its stability. We see that the effects of antiviral medications and time delays can be comparable. This can help scientists develop novel therapies that lengthen time delays in cases of coinfection between the C and B viruses.

    In this work, we examined a mathematical model of the population co-dynamics of two types of viruses (or virus variants) infecting the same target cells. The infection rate is given by the saturated incidence. The model included the latently infected cells. Three kinds of discrete (or distributed) time delays were incorporated into the model:

    (ⅰ) The formation delay of latently infected cells;

    (ⅱ) The activation delay of latently infected cells;

    (ⅲ) The maturation delay of newly released virions.

    First, we demonstrated nonnegativity and boundedness, which are the key characteristics of the solutions. Second, we proved that the model admits four equilibria. We derived four threshold parameters, which decide whether the model's equilibria exist and are globally asymptotically stable. We demonstrated the global asymptotic stability for every equilibrium point using the Lyapunov approach. We used a numerical method to solve the model, and then we displayed the findings graphically. We found a correlation between the theoretical and numerical results. Our findings are contrasted with models that do not account for saturation incidence, latently infected cells, or time delays. We have the following observations:

    ● When saturation is not present, only one type of virus with the highest reproduction number can survive in equilibrium. The rivalry between two virus kinds for shared resources leads to the survival of just one viral type with the highest reproduction number. In our proposed model with saturated incidence, two types of viruses can coexist in equilibrium. We can think of this situation as follows: Two viral kinds can coexist because saturation incidence lowers infection rates, which also lessens rivalry between the two virus types. We established conditions under which these types of viruses can coexist. The coexistence conditions are formulated in terms of saturation constants.

    ● The presence of latently infected cells and/or time delays reduces the basic reproduction numbers. Then, when using a model with latently infected cells and/or time delays, fewer treatment efficacies will be needed to keep the system at infection-free equilibrium and remove the two types of viruses from the body. This may help scientists develop novel therapies that lengthen time delays.

    ● Our results indicate that saturated, latently infected cells and time delay are essential elements of the two-virus model that cannot be ignored.

    Our study's main flaw is that we were unable to use actual data to estimate the model's parameter values. The following are the causes:

    (ⅰ) Genuine data on two-virus infections is lacking;

    (ⅱ) Comparing our findings to a limited number of genuine studies may not be particularly reliable;

    (ⅲ) It can be challenging to collect real data from patients who have two virus infections.

    Our proposed model can be extended by considereing different incidene rate forms, such as: Beddington-DeAngelis incidence \frac{\gamma_{HV} HV}{1+\psi_{V}V+\psi_{H}H} [56]; Crowley-Martin incidence \frac{\gamma_{HV}HV}{(1+\psi_{V}V)(1+\psi_{H}H)} [57]; Hattaf-Yousf incidence \frac{\gamma_{HV}HV}{\psi_{0} +\psi_{V}V+\psi_{H}H+\psi_{VH}HV} , [58]; general incidence \xi(H, V) [59], where V is the concentration of the viruses, \psi_{0}, \psi_{V}, \psi_{H}, \psi_{VH}\geq 0 and \xi is a general function. Investigating the memory effect on the dynamics of our model using fractional differential equations (FDEs) sounds like a fascinating direction [60]. FDEs can capture non-local and memory-dependent effects, which are often crucial in viological systems [61], and epidemical systems [62,63]. Additionally, we would like to contrast the results with real data from people who have the infection.

    We observe that active-particle methods have recently been used to model epidemics through a detailed description of the immune competition at the cellular scale. Specifically, the competition between the primary virus and variants has been considered, see [64,65]. This approach has not yet considered comorbidities. We believe that our approach can contribute to include different types of viruses within the model proposed in [64,65].

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflicts of interest.



    [1] L. Lansbury, B. Lim, V. Baskaran, W. S. Lim, Co-infections in people with COVID-19: a systematic review and meta-analysis, J. Infect., 81 (2020), 266–275. https://doi.org/10.1016/j.jinf.2020.05.046 doi: 10.1016/j.jinf.2020.05.046
    [2] K. Lacombe, J. Rockstroh, HIV and viral hepatitis coinfections: advances and challenges, Gut, 61 (2012), 47–58. https://doi.org/10.1136/gutjnl-2012-302062 doi: 10.1136/gutjnl-2012-302062
    [3] M. G. Mavilia, G. Y. Wu, HBV-HCV coinfection: viral interactions, management, and viral reactivation, J. Clin. Transl. Hepatol., 6 (2018), 296–305. https://doi.org/10.14218/JCTH.2018.00016 doi: 10.14218/JCTH.2018.00016
    [4] H. O. Hashim, M. K. Mohammed, M. J. Mousa, H. H. Abdulameer, A. T. Alhassnawi, S. A. Hassan, et al., Infection with different strains of SARS-CoV-2 in patients with COVID-19, Arch. Biol. Sci., 72 (2020), 575–585.
    [5] S. Shoraka, S. R. Mohebbi, S. M. Hosseini, A. Ghaemi, M. R. Zali, SARS-CoV-2 and chronic hepatitis B: focusing on the possible consequences of co-infection, J. Clin. Virol. Plus, 3 (2023), 100167. https://doi.org/10.1016/j.jcvp.2023.100167 doi: 10.1016/j.jcvp.2023.100167
    [6] M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. https://doi.org/10.1126/science.272.5258.74 doi: 10.1126/science.272.5258.74
    [7] P. de Leenheer, S. S. Pilyugin, Multistrain virus dynamics with mutations: a global analysis, Math. Med. Biol., 25 (2008), 285–322. https://doi.org/10.1093/imammb/dqn023 doi: 10.1093/imammb/dqn023
    [8] L. Pinky, H. M. Dobrovolny, SARS-CoV-2 coinfections: could influenza and the common cold be beneficial? J. Med. Virol., 92 (2020), 2623–2630. https://doi.org/10.1002/jmv.26098 doi: 10.1002/jmv.26098
    [9] M. D. Nowak, E. M. Sordillo, M. R. Gitman, A. E. P. Mondolfi, Coinfection in SARS-CoV-2 infected patients: where are influenza virus and rhinovirus/enterovirus? J. Med. Virol., 92 (2020), 1699–1700. https://doi.org/10.1002/jmv.25953 doi: 10.1002/jmv.25953
    [10] S. Kalinichenko, D. Komkov, D. Mazurov, HIV-1 and HTLV-1 transmission modes: mechanisms and importance for virus spread, Viruses, 14 (2022), 152. https://doi.org/10.3390/v14010152 doi: 10.3390/v14010152
    [11] J. Schmidt, H. E. Blum, R. Thimme, T-cell responses in hepatitis B and C virus infection: similarities and differences, Emerg. Micro. Infect., 2 (2013), e15. https://doi.org/10.1038/emi.2013.14 doi: 10.1038/emi.2013.14
    [12] M. Ruiz Silva, J. A. A. Briseño, V. Upasani, H. van der Ende-Metselaar, J. M. Smit, I. A. Rodenhuis-Zybert, Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus, PLoS Negl. Trop. Dis., 11 (2017), e0005712. https://doi.org/10.1371/journal.pntd.0005712 doi: 10.1371/journal.pntd.0005712
    [13] A. Nurtay, M. G. Hennessy, J. Sardanyés, L. Alsedà, S. F. Elena, Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis, R. Soc. Open Sci., 6 (2019), 181179. https://doi.org/10.1098/rsos.181179 doi: 10.1098/rsos.181179
    [14] P. J. Goulder, B. D. Walker, HIV-1 superinfection: a word of caution, New Engl. J. Med., 347 (2002), 756–758. https://doi.org/10.1056/NEJMe020091 doi: 10.1056/NEJMe020091
    [15] Y. He, W. Ma, S. Dang, L. Chen, R. Zhang, S. Mei, et al., Possible recombination between two variants of concern in a COVID-19 patient, Emerg. Micro. Infect., 11 (2022), 552–555. https://doi.org/10.1080/22221751.2022.2032375 doi: 10.1080/22221751.2022.2032375
    [16] A. M. Elaiw, N. H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., 295 (2021), 198204. https://doi.org/10.1016/j.virusres.2020.198204 doi: 10.1016/j.virusres.2020.198204
    [17] A. M. Elaiw, R. S. Alsulami, A. D. Hobiny, Modeling and stability analysis of within-host IAV/SARS-CoV-2 coinfection with antibody immunity, Mathematics, 10 (2022), 4382. https://doi.org/10.3390/math10224382 doi: 10.3390/math10224382
    [18] A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Global stability of delayed SARS-CoV-2 and HTLV-I coinfection models within a host, Mathematics, 10 (2022), 4756. https://doi.org/10.3390/math10244756 doi: 10.3390/math10244756
    [19] A. M. Elaiw, A. D. Al Agha, S. A. Azoz, E. Ramadan, Global analysis of within-host SARS-CoV-2/HIV coinfection model with latency, Eur. Phys. J. Plus, 137 (2022), 174. https://doi.org/10.1140/epjp/s13360-022-02387-2 doi: 10.1140/epjp/s13360-022-02387-2
    [20] H. Nampala, S. Livingstone, L. Luboobi, J. Y. T. Mugisha, C. Obua, M. Jablonska-Sabuka, Modelling hepatotoxicity and antiretroviral therapeutic effect in HIV/HBV coinfection, Math. Biosci., 302 (2018), 67–79. https://doi.org/10.1016/j.mbs.2018.05.012 doi: 10.1016/j.mbs.2018.05.012
    [21] R. Birger, R. Kouyos, J. Dushoff, B. Grenfell, Modeling the effect of HIV coinfection on clearance and sustained virologic response during treatment for hepatitis C virus, Epidemics, 12 (2015), 1–10. https://doi.org/10.1016/j.epidem.2015.04.001 doi: 10.1016/j.epidem.2015.04.001
    [22] L. Rong, Z. Feng, A. S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol., 69 (2007), 2027–2060. https://doi.org/10.1007/s11538-007-9203-3 doi: 10.1007/s11538-007-9203-3
    [23] P. Wu, H. Zhao, Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains, Appl. Math. Modell., 84 (2020), 240–264. https://doi.org/10.1016/j.apm.2020.03.040 doi: 10.1016/j.apm.2020.03.040
    [24] B. J. Nath, K. Sadri, H. K. Sarmah, K. Hosseini, An optimal combination of antiretroviral treatment and immunotherapy for controlling HIV infection, Math. Comput. Simul., 217 (2024), 226–243. https://doi.org/10.1016/j.matcom.2023.10.012 doi: 10.1016/j.matcom.2023.10.012
    [25] Y. Liu, Y. Wang, D. Jiang, Dynamic behaviors of a stochastic virus infection model with Beddington-DeAngelis incidence function, eclipse-stage and Ornstein-Uhlenbeck process, Math. Biosci., 2024 (2024), 109154. https://doi.org/10.1016/j.mbs.2024.109154 doi: 10.1016/j.mbs.2024.109154
    [26] O. Lambotte, M. L. Chaix, B. Gubler, N. Nasreddine, C. Wallon, C. Goujard, et al., The lymphocyte HIV reservoir in patients on long-term HAART is a memory of virus evolution, AIDS, 18 (2004), 1147–1158. https://doi.org/10.1097/00002030-200405210-00008 doi: 10.1097/00002030-200405210-00008
    [27] W. Chen, Z. Teng, L. Zhang, Global dynamics for a drug-sensitive and drug-resistant mixed strains of HIV infection model with saturated incidence and distributed delays, Appl. Math. Comput., 406 (2021), 126284. https://doi.org/10.1016/j.amc.2021.126284 doi: 10.1016/j.amc.2021.126284
    [28] A. Perelson, A. Neumann, M. Markowitz, J. Leonard, D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582 doi: 10.1126/science.271.5255.1582
    [29] R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4^{+} T-cells, Math. Biosci., 165 (2000), 27–39. https://doi.org/10.1016/s0025-5564(00)00006-7 doi: 10.1016/s0025-5564(00)00006-7
    [30] S. K. Sahani, Yashi, Effects of eclipse phase and delay on the dynamics of HIV infection, J. Biol. Syst., 26 (2018), 421–454. https://doi.org/10.1142/S0218339018500195 doi: 10.1142/S0218339018500195
    [31] R. Xu, Global dynamics of an HIV-1 infection model with distributed intracellular delays, Comput. Math. Appl., 61 (2011), 2799–2805. https://doi.org/10.1016/j.camwa.2011.03.050 doi: 10.1016/j.camwa.2011.03.050
    [32] J. Li, X. Wang, Y. Chen, Analysis of an age-structured HIV infection model with cell-to-cell transmission, Eur. Phys. J. Plus, 139 (2024), 78. https://doi.org/10.1140/epjp/s13360-024-04873-1 doi: 10.1140/epjp/s13360-024-04873-1
    [33] D. Ebert, C. D. Zschokke-Rohringer, H. J. Carius, Dose effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia, 122 (2000), 200–209. https://doi.org/10.1007/PL00008847 doi: 10.1007/PL00008847
    [34] X. Song, A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281–297. https://doi.org/10.1016/j.jmaa.2006.06.064 doi: 10.1016/j.jmaa.2006.06.064
    [35] O. A. Razzaq, N. A. Khan, M. Faizan, A. Ara, S. Ullah, Behavioral response of population on transmissibility and saturation incidence of deadly pandemic through fractional order dynamical system, Results Phys., 26 (2021), 104438. https://doi.org/10.1016/j.rinp.2021.104438 doi: 10.1016/j.rinp.2021.104438
    [36] W. Chen, N. Tuerxun, Z. Teng, The global dynamics in a wild-type and drug-resistant HIV infection model with saturated incidence, Adv. Differ. Equations, 2020 (2020), 25. https://doi.org/10.1186/s13662-020-2497-2 doi: 10.1186/s13662-020-2497-2
    [37] W. Chen, L. Zhang, N. Wang, Z. Teng, Bifurcation analysis and chaos for a double-strains HIV coinfection model with intracellular delays, saturated incidence and logistic growth, Saturated Incidence Logist. Growth, 2023. https://doi.org/10.21203/rs.3.rs-3132841/v1
    [38] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Solitons Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [39] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [40] J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, Springer-Verlag, 1993.
    [41] Y. Kuang, Delay differential equations with applications in population dynamics, Academic Press, 1993.
    [42] D. Wodarz, D. C. Krakauer, Defining CTL-induced pathology: implications for HIV, Virology, 274 (2000), 94–104. https://doi.org/10.1006/viro.2000.0399 doi: 10.1006/viro.2000.0399
    [43] A. S. Perelson, Modeling the interaction of the immune system with HIV, In: C. Castillo-Chavez, Mathematical and statistical approaches to AIDS epidemiology, Springer Berlin Heidelberg, 1989,350–370. https://doi.org/10.1007/978-3-642-93454-4_17
    [44] A. S. Perelson, D. E. Kirschner, R. de Boer, Dynamics of HIV Infection of CD4^{+} T cells, Math. Biosci., 114 (1993), 81–125.
    [45] W. A. Woldegerima, M. I. Teboh-Ewungkem, G. A. Ngwa, The impact of recruitment on the dynamics of an immune-suppressed within-human-host model of the Plasmodium falciparum parasite, Bull. Math. Biol., 81 (2019), 4564–4619. https://doi.org/10.1007/s11538-018-0436-0 doi: 10.1007/s11538-018-0436-0
    [46] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
    [47] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001 doi: 10.1016/j.bulm.2004.02.001
    [48] H. K. Khalil, Nonlinear systems, 3 Eds., Prentice Hall, 2002.
    [49] L. Pinky, G. González-Parran, H. M. Dobrovolny, Superinfection and cell regeneration can lead to chronic viral coinfections, J. Theor. Biol., 466 (2019), 24–38. https://doi.org/10.1016/j.jtbi.2019.01.011 doi: 10.1016/j.jtbi.2019.01.011
    [50] F. Li, W. Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response, Math. Methods Appl. Sci., 41 (2018), 3000–3017. https://doi.org/10.1002/mma.4797 doi: 10.1002/mma.4797
    [51] N. H. Alshamrani, Stability of an HTLV-HIV coinfection model with multiple delays and CTL-mediated immunity, Adv. Differ. Equations, 2021 (2021), 270. https://doi.org/10.1186/s13662-021-03416-7 doi: 10.1186/s13662-021-03416-7
    [52] D. S. Callaway, A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. https://doi.org/10.1006/bulm.2001.0266 doi: 10.1006/bulm.2001.0266
    [53] Y. Wang, J. Liu, L. Liu, Viral dynamics of an HIV model with latent infection incorporating antiretroviral therapy, Adv. Differ. Equations, 2016 (2016), 225. https://doi.org/10.1186/s13662-016-0952-x doi: 10.1186/s13662-016-0952-x
    [54] Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527. https://doi.org/10.1016/j.jmaa.2017.10.027 doi: 10.1016/j.jmaa.2017.10.027
    [55] B. Asquith, C. R. Bangham, Quantifying HTLV-I dynamics, Immunol. Cell Biol., 85 (2007), 280–286. https://doi.org/10.1038/sj.icb.7100050 doi: 10.1038/sj.icb.7100050
    [56] G. Huang, W. Ma, Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 22 (2009), 1690–1693. https://doi.org/10.1016/j.aml.2009.06.004 doi: 10.1016/j.aml.2009.06.004
    [57] X. Zhou, J. Cui, Global stability of the viral dynamics with Crowley-Martin functional response, Bull. Korean Math. Soc., 48 (2011), 555–574. https://doi.org/10.4134/BKMS.2011.48.3.555 doi: 10.4134/BKMS.2011.48.3.555
    [58] K. Hattaf, N. Yousfi, A class of delayed viral infection models with general incidence rate and adaptive immune response, Int. J. Dyn. Control, 4 (2016), 254–265. https://doi.org/10.1007/s40435-015-0158-1 doi: 10.1007/s40435-015-0158-1
    [59] G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693–2708. https://doi.org/10.1137/090780821 doi: 10.1137/090780821
    [60] K. Hattaf, A new mixed fractional derivative with applications in computational biology, Computation, 12 (2024), 7. https://doi.org/10.3390/computation12010007 doi: 10.3390/computation12010007
    [61] J. Danane, K. Allali, Z. Hammouch, Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos Solitons Fract., 136 (2020), 109787. https://doi.org/10.1016/j.chaos.2020.109787 doi: 10.1016/j.chaos.2020.109787
    [62] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [63] W. Adel, H. Günerhan, K. S. Nisar, P. Agarwal, A. El-Mesady, Designing a novel fractional order mathematical model for COVID-19 incorporating lockdown measures, Sci. Rep., 14 (2024), 2926. https://doi.org/10.1038/s41598-023-50889-5 doi: 10.1038/s41598-023-50889-5
    [64] N. Bellomo, D. Burini, N. Outada, Multiscale models of COVID-19 with mutations and variants, Networks Heterog. Media, 17 (2022), 293–310. https://doi.org/10.3934/nhm.2022008 doi: 10.3934/nhm.2022008
    [65] D. Burini, D. Knopoff, Epidemics and society-a multiscale vision from the small world to the globally interconnected world, Math. Models Methods Appl. Sci., 34 (2024), 295. https://doi.org/10.1142/S0218202524500295 doi: 10.1142/S0218202524500295
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(927) PDF downloads(54) Cited by(0)

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog