This paper considers the local stabilization problem for a hyperchaotic finance system by using a time-delayed feedback controller based on discrete-time observations. The quadratic system theory is employed to represent the nonlinear finance system and a piecewise augmented discontinuous Lyapunov-Krasovskii functional is constructed to analyze the stability of the closed-loop system. By further incorporating some advanced integral inequalities, a stabilization criterion is proposed by means of the feasibility of a set of linear matrix inequalities under which the hyperchaotic finance system can be asymptotically stabilized for any initial condition satisfying certain constraint. As the by-product, a simplified criterion is also obtained for the case without time delay. Moreover, the optimization problems with respect to the domain of attraction are specially discussed, which are transformed into the minimization problems subject to linear matrix inequalities. Finally, numerical simulations are provided to illustrate the effectiveness of the derived results.
Citation: Erfeng Xu, Wenxing Xiao, Yonggang Chen. Local stabilization for a hyperchaotic finance system via time-delayed feedback based on discrete-time observations[J]. AIMS Mathematics, 2023, 8(9): 20510-20529. doi: 10.3934/math.20231045
This paper considers the local stabilization problem for a hyperchaotic finance system by using a time-delayed feedback controller based on discrete-time observations. The quadratic system theory is employed to represent the nonlinear finance system and a piecewise augmented discontinuous Lyapunov-Krasovskii functional is constructed to analyze the stability of the closed-loop system. By further incorporating some advanced integral inequalities, a stabilization criterion is proposed by means of the feasibility of a set of linear matrix inequalities under which the hyperchaotic finance system can be asymptotically stabilized for any initial condition satisfying certain constraint. As the by-product, a simplified criterion is also obtained for the case without time delay. Moreover, the optimization problems with respect to the domain of attraction are specially discussed, which are transformed into the minimization problems subject to linear matrix inequalities. Finally, numerical simulations are provided to illustrate the effectiveness of the derived results.
[1] | J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅰ), Appl. Math. Mech., 22 (2001), 1240–1251. https://doi.org/10.1007/BF02437847 doi: 10.1007/BF02437847 |
[2] | J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅱ), Appl. Math. Mech., 22 (2001), 1375–1382. https://doi.org/10.1007/BF02435540 doi: 10.1007/BF02435540 |
[3] | W. C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fract., 36 (2008), 1305–1314. https://doi.org/10.1016/j.chaos.2006.07.051 doi: 10.1016/j.chaos.2006.07.051 |
[4] | X. Chen, H. Liu, C. Xu, The new result on delayed finance system, Nonlinear Dyn., 78 (2014), 1989–1998. https://doi.org/10.1007/s11071-014-1578-8 doi: 10.1007/s11071-014-1578-8 |
[5] | Y. Fang, H. Xu, M. Perc, Q. Tan, Dynamic evolution of economic networks under the influence of mergers and divestitures, Phys. A, 524 (2019) 89–99. https://doi.org/10.1016/j.physa.2019.03.025 doi: 10.1016/j.physa.2019.03.025 |
[6] | S. Wang, S. He, A. Yousefpour, H. Jahanshahi, R. Repnik, M. Perc, Chaos and complexity in a fractional-order financial system with time delays, Chaos Solitons Fract., 131 (2020), 109521. https://doi.org/10.1016/j.chaos.2019.109521 doi: 10.1016/j.chaos.2019.109521 |
[7] | Q. Li, Y. Chen, L. Ma, Predefined-time control of chaotic finance/economic system based on event-triggered mechanism, AIMS Math., 8 (2023), 8000–8017. https://doi.org/10.3934/math.2023404 doi: 10.3934/math.2023404 |
[8] | X. Zhao, Z. Li, S. Li, Synchronization of a chaotic finance system, Appl. Math. Comput., 217 (2011), 6031–6039. https://doi.org/10.1016/j.amc.2010.07.017 doi: 10.1016/j.amc.2010.07.017 |
[9] | H. Yu, G. Cai, Y. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dyn., 67 (2012), 2171–2182. https://doi.org/10.1007/s11071-011-0137-9 doi: 10.1007/s11071-011-0137-9 |
[10] | C. Huang, L. Cai, J. Cao, Linear control for synchronization of a fractional-order time-delayed chaotic financial system, Chaos Solitons Fract., 113 (2018), 326–332. https://doi.org/10.1016/j.chaos.2018.05.022 doi: 10.1016/j.chaos.2018.05.022 |
[11] | Y. Xu, C. Xie, Y. Wang, W. Zhou, J. Fang, Chaos projective synchronization of the chaotic finance system with parameter switching perturbation and input time-varying delay, Math. Methods Appl. Sci., 38 (2015), 4279–4288. https://doi.org/10.1002/mma.3364 doi: 10.1002/mma.3364 |
[12] | W. S. Son, Y. J. Park, Delayed feedback on the dynamical model of a financial system, Chaos Solitons Fract., 44 (2011), 208–217. https://doi.org/10.1016/j.chaos.2011.01.010 doi: 10.1016/j.chaos.2011.01.010 |
[13] | M. Zhao, J. Wang, $H_\infty$ control of a chaotic finance system in the presence of external disturbance and input time-delay, Appl. Math. Comput., 233 (2014), 320–327. https://doi.org/10.1016/j.amc.2013.12.085 doi: 10.1016/j.amc.2013.12.085 |
[14] | E. Xu, Y. Zhang, Y. Chen, Time-delayed local feedback control for a chaotic finance system, J. Inequal. Appl., 2020 (2020), 100. https://doi.org/10.1186/s13660-020-02364-2 doi: 10.1186/s13660-020-02364-2 |
[15] | E. Xu, K. Ma, Y. Chen, $H_\infty$ control for a hyperchaotic finance system with external disturbance based on the quadratic system theory, Syst. Sci. Control Eng., 9 (2021), 41–49. https://doi.org/10.1080/21642583.2020.1848658 doi: 10.1080/21642583.2020.1848658 |
[16] | J. A. R. Vargas, E. Grzeidak, E. M. Hemerly, Robust adaptive synchronization of a hyperchaotic finance system, Nonlinear Dyn., 80 (2015), 239–248. https://doi.org/10.1007/s11071-014-1864-5 doi: 10.1007/s11071-014-1864-5 |
[17] | O. I. Tacha, C. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, S. Vaidyanathan, V. T. Pham, Analysis, adaptive control and circuit simulation of a novel nonlinear finance system, Appl. Math. Comput., 276 (2016), 200–217. https://doi.org/10.1016/j.amc.2015.12.015 doi: 10.1016/j.amc.2015.12.015 |
[18] | Z. Wang, X. Huang, H. Shen, Control of an uncertain fractional order economic system via adaptive sliding mode, Neurocomputing, 83 (2012), 83–88. https://doi.org/10.1016/j.neucom.2011.11.018 doi: 10.1016/j.neucom.2011.11.018 |
[19] | A. Hajipour, M. Hajipour, D. Baleanu, On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system, Phys. A, 497 (2018), 139–153. https://doi.org/10.1016/j.physa.2018.01.019 doi: 10.1016/j.physa.2018.01.019 |
[20] | S. Harshavarthini, R. Sakthivel, Y. K. Ma, M. Muslim, Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system, Chaos Solitons Fract., 132 (2020), 109567. https://doi.org/10.1016/j.chaos.2019.109567 doi: 10.1016/j.chaos.2019.109567 |
[21] | S. Zheng, Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems, Kybernetika, 52 (2016), 241–257. https://doi.org/10.14736/kyb-2016-2-0241 doi: 10.14736/kyb-2016-2-0241 |
[22] | Y. Wang, D. Li, Adaptive synchronization of chaotic systems with time-varying delay via aperiodically intermittent control, Soft Comput., 24 (2020), 12773–12780. https://doi.org/10.1007/s00500-020-05161-7 doi: 10.1007/s00500-020-05161-7 |
[23] | X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica, 49 (2013), 3677–3681. https://doi.org/10.1016/j.automatica.2013.09.005 doi: 10.1016/j.automatica.2013.09.005 |
[24] | X. Mao, W. Liu, L. Hu, Q. Luo, J. Lu, Stabilization of hybrid stochastic differential equations by feedback control based on discrete-time state observations, Syst. Control Lett., 73 (2014), 88–95. https://doi.org/10.1016/j.sysconle.2014.08.011 doi: 10.1016/j.sysconle.2014.08.011 |
[25] | Q. Qiu, W. Liu, L. Hu, X. Mao, S. You, Stabilization of stochastic differential equations with Markovian switching by feedback control based on discrete-time state observation with a time delay, Stat. Probab. Lett., 115 (2016), 16–26. https://doi.org/10.1016/j.spl.2016.03.024 doi: 10.1016/j.spl.2016.03.024 |
[26] | Q. Zhu, Q. Zhang, pth moment exponential stabilisation of hybrid stochastic differential equations by feedback controls based on discrete-time state observations with a time delay, IET Control Theory Appl., 11 (2017), 1992–2003. https://doi.org/10.1049/iet-cta.2017.0181 doi: 10.1049/iet-cta.2017.0181 |
[27] | E. Fridman, A. Seuret, J. P. Richard, Robust sampled-data stabilization of linear systems: an input delay approach, Automatica, 40 (2004), 1441–1446. https://doi.org/10.1016/j.automatica.2004.03.003 doi: 10.1016/j.automatica.2004.03.003 |
[28] | K. Liu, E. Fridman, Wirtinger's inequality and Lyapunov-based sampled-data stabilization, Automatica, 48 (2012), 102–108. https://doi.org/10.1016/j.automatica.2011.09.029 doi: 10.1016/j.automatica.2011.09.029 |
[29] | K. Liu, E. Fridman, Delay-dependent methods and the first delay interval, Syst. Control Lett., 64 (2014), 57–63. https://doi.org/10.1016/j.sysconle.2013.11.005 doi: 10.1016/j.sysconle.2013.11.005 |
[30] | F. Amato, C. Cosentino, A. Merola, On the region of attraction of nonlinear quadratic systems, Automatica, 43 (2007), 2119–2123. https://doi.org/10.1016/j.automatica.2007.03.022 doi: 10.1016/j.automatica.2007.03.022 |
[31] | F. Amato, C. Cosentino, A. Merola, Sufficient conditions for finite-time stability and stabilization of nonlinear quadratic systems, IEEE Trans. Autom. Control, 55 (2009), 430–434. https://doi.org/10.1109/TAC.2009.2036312 doi: 10.1109/TAC.2009.2036312 |
[32] | G. Valmórbida, S. Tarbouriech, G. Garcia, State feedback design for input-saturating quadratic systems, Automatica, 6 (2010), 1196–1202. https://doi.org/10.1016/j.automatica.2010.03.016 doi: 10.1016/j.automatica.2010.03.016 |
[33] | A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030 |
[34] | J. Sun, G. P. Liu, J. Chen, Delay-dependent stability and stabilization of neutral time-delay systems, Int. J. Robust Nonlinear Control, 19 (2009), 1364–1375. https://doi.org/10.1002/rnc.1384 doi: 10.1002/rnc.1384 |
[35] | Y. Chen, Z. Wang, Local stabilization for discrete-time systems with distributed state delay and fast-varying input delay under actuator saturations, IEEE Trans. Autom. Control, 66 (2021), 1337–1344. https://doi.org/10.1109/TAC.2020.2991013 doi: 10.1109/TAC.2020.2991013 |
[36] | Y. Chen, Z. Wang, B. Shen, Q. L. Han, Local stabilization for multiple input-delay systems subject to saturating actuators: the continuous-time case, IEEE Trans. Autom. Control, 67 (2022), 3090–3097. https://doi.org/10.1109/TAC.2021.3092556 doi: 10.1109/TAC.2021.3092556 |
[37] | A. Al-Khedhairi, A. E. Matouk, I. Khan, Chaotic dynamics and chaos control for the fractional-order geomagnetic field model, Chaos Solitons Fract., 128 (2019), 390–401. https://doi.org/10.1016/j.chaos.2019.07.019 doi: 10.1016/j.chaos.2019.07.019 |
[38] | S. Kumar, A. E. Matouk, H. Chaudhary, S. Kant, Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques, Int. J. Adapt. Control Signal Process., 35 (2021), 484–497. https://doi.org/10.1002/acs.3207 doi: 10.1002/acs.3207 |
[39] | A. M. Sayed, A. E. Matouk, S. Kumar, V. Ali, L. Bachioua, Chaotic dynamics and chaos control in a fractional-order satellite model and its time-delay counterpart, Discrete Dyn. Nat. Soc., 2021 (2021), 5542908. https://doi.org/10.1155/2021/5542908 doi: 10.1155/2021/5542908 |
[40] | F. Han, J. Liu, J. Li, J. Song, M. Wang, Y. Zhang, Consensus control for multi-rate multi-agent systems with fading measurements: the dynamic event-triggered case, Syst. Sci. Control Eng., 11 (2023), 2158959. https://doi.org/10.1080/21642583.2022.2158959 doi: 10.1080/21642583.2022.2158959 |
[41] | X. Wang, Y. Sun, D. Ding, Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques, Int. J. Network Dyn. Intell., 1 (2022), 85–98. https://doi.org/10.53941/ijndi0101008 doi: 10.53941/ijndi0101008 |
[42] | J. Wu, C. Peng, H. Yang, Y. L. Wang, Recent advances in event-triggered security control of networked systems: a survey, Int. J. Syst. Sci., 53 (2022), 2624–2643. https://doi.org/10.1080/00207721.2022.2053893 doi: 10.1080/00207721.2022.2053893 |
[43] | X. Yang, H. Wang, Q. Zhu, Event-triggered predictive control of nonlinear stochastic systems with output delay, Automatica, 140 (2022), 110230. https://doi.org/10.1016/j.automatica.2022.110230 doi: 10.1016/j.automatica.2022.110230 |
[44] | Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067 |
[45] | P. Gahinet, A. Nemirovskii, A. J. Laub, M. Chilali, The LMI control toolbox, Proceedings of 33rd IEEE Conference on Decision and Control, 1994. https://doi.org/10.1109/CDC.1994.411440 |
[46] | Y. Tang, L. Zhou, J. Tang, Y. Rao, H. Fan, J. Zhu, Hybrid impulsive pinning control for mean square synchronization of uncertain multi-link complex networks with stochastic characteristics and hybrid delays, Mathematics, 11 (2023), 1697. https://doi.org/10.3390/math11071697 doi: 10.3390/math11071697 |
[47] | A. Seuret, F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett., 81 (2015), 1–7. https://doi.org/10.1016/j.sysconle.2015.03.007 doi: 10.1016/j.sysconle.2015.03.007 |
[48] | Q. Zhu, T. Huang, Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion, Syst. Control Lett., 140 (2020), 104699. https://doi.org/10.1016/j.sysconle.2020.104699 doi: 10.1016/j.sysconle.2020.104699 |
[49] | Y. Chen, K. Ma, R. Dong, Dynamic anti-windup design for linear systems with time-varying state delay and input saturations, Int. J. Syst. Sci., 53 (2022), 2165–2179. https://doi.org/10.1080/00207721.2022.2043483 doi: 10.1080/00207721.2022.2043483 |
[50] | Q. Zhang, Y. Zhou, Recent advances in non-Gaussian stochastic systems control theory and its applications, Int. J. Network Dyn. Intell., 1 (2022), 111–119. https://doi.org/10.53941/ijndi0101010 doi: 10.53941/ijndi0101010 |